Skip to main content

(LIA) - Model Evolution with Linear Integer Arithmetic Constraints

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5330))

Abstract

Many applications of automated deduction require reasoning modulo some form of integer arithmetic. Unfortunately, theory reasoning support for the integers in current theorem provers is sometimes too weak for practical purposes. In this paper we propose a novel calculus for a large fragment of first-order logic modulo Linear Integer Arithmetic (LIA) that overcomes several limitations of existing theory reasoning approaches. The new calculus — based on the Model Evolution calculus, a first-order logic version of the propositional DPLL procedure — supports restricted quantifiers, requires only a decision procedure for LIA-validity instead of a complete LIA-unification procedure, and is amenable to strong redundancy criteria. We present a basic version of the calculus and prove it sound and (refutationally) complete.

The work of the last two authors was partially supported by the National Science Foundation grant number 0237422.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hierachic First-Order Theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)

    Article  MATH  Google Scholar 

  2. Baumgartner, P.: Theory Reasoning in Connection Calculi. LNCS (LNAI), vol. 1527. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  3. Baumgartner, P.: Logical Engineering with Instance-Based Methods. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 404–409. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing Finite Models by Reduction to Function-Free Clause Logic. Journal of Applied Logic (in Press, 2007)

    Google Scholar 

  5. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the Model Evolution Calculus. International Journal of Artificial Intelligence Tools 15(1), 21–52 (2006)

    Article  MATH  Google Scholar 

  6. Baumgartner, P., Fuchs, A., Tinelli, C.: – Model Evolution With Linear Integer Arithmetic Constraints. Technical Report, Department of Computer Science, The University of Iowa (2008), http://www.cs.uiowa.edu/~tinelli

  7. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Bürckert, H.J.: A Resolution Principle for Clauses with Constraints. In: Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI), vol. 449, pp. 178–192. Springer, Heidelberg (1990)

    Google Scholar 

  9. Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Ge, Y., Barrett, C., Tinelli, C.: Solving Quantified Verification Conditions Using Satisfiability Modulo Theories. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603. Springer, Heidelberg (2007)

    Google Scholar 

  11. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic Into Superposition Calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Antonio, J., Peréz, N.: Encoding and Solving Problems in Effectively Propositional Logic. PhD thesis, The University of Manchester (2007)

    Google Scholar 

  13. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J. of the ACM 53(6), 937–977 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier/MIT press (2001)

    Google Scholar 

  15. Stickel, M.E.: Automated Deduction by Theory Resolution. J. of Aut. R. 1, 333–355 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baumgartner, P., Fuchs, A., Tinelli, C. (2008). (LIA) - Model Evolution with Linear Integer Arithmetic Constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2008. Lecture Notes in Computer Science(), vol 5330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89439-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89439-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89438-4

  • Online ISBN: 978-3-540-89439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics