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Abstract. Storytelling is prominent part of the daily lives of humans.  
Entertainers, educators, and trainers often concern themselves with the 
production of novel stories for entertainment, education, and training.  
However, it is possible for the consumption of story content by end-users to 
outpace the rate of production of story content.  One solution is to instill greater 
creativity in computer systems in the form of story generation.  We present an 
incremental advancement to planning-based story generation that increases the 
space of narratives that can be automatically searched in an attempt to make 
planning-based story generation more creative.  The VB-POCL story planning 
algorithm implements a form of case-based planning that can incorporate 
vignettes – plot fragments that are a priori known to be “good” – into a 
narrative planning process.  We show that VB-POCL can generate narratives 
with favorable structural properties that cannot be generated reliably with 
previous attempts at planning-based narrative generation. 

1 Introduction 

Storytelling is a pervasive part of our daily lives and culture.  Storytelling is 
particularly prominent in entertainment, where stories can be viewed as artifacts to be 
consumed by an audience.  Story also plays a role in education and training, where 
stories and scenarios can be used to illustrate and guide.  The production of these 
artifacts – stories and scenarios – is a primary activity in the entertainment industry 
and also a significant bottleneck in the educational and training industries.  In an “on-
demand” society, waiting for periodic updates to serial narratives – weekly television 
series, movie series, and novels – is not considered ideal.  Likewise, players of 
computer games that rely on stories and quests can complete quests faster than 
designers can create new quests (for a case study, see [1]).  How do we handle the 
situation in which content consumption outpaces content production?  One way to 
overcome the bottleneck of content production is to instill in a computer system the 
creative ability to generate new content.  

Because of the prevalence of story in non-interactive media such as books and 
movies, as well as interactive media such as computer games, we concern ourselves 
with the automated generation of narrative content.  The issue is whether an 
automated story generation system can be considered creative enough or skilled 
enough to be trusted to produce content – stories – that will be experienced by users.  
More generally, the output of a creative system, such as an automated story 



generation system, must be novel, surprising, and valuable [2].  Whether an artifact is 
valuable is subjective.  For the purposes of this paper, we will consider the minimal 
requirements for a story artifact to be considered valuable if it (a) meets the intended 
purpose of its creation and (b) is sufficiently mimetic – appearing to resemble reality, 
but in a way that it is more aesthetically pleasing than reality.  In brief, stories should 
be novel, but not so novel that they are unrecognizable [3]. 

In this paper, we describe recent work on planning-based narrative generation.  
Planning is one model of narrative creation that has been shown to be favorable for 
story generation (c.f. [4], [5], [6], and [7; 8]).  We are considering a model of 
interactivity in which a user is afforded the ability to specify a set of parameters that 
abstractly define a desired story.  The system then responds to the request by 
generating a novel story that best meets the given parameters.  However, other models 
of interactivity can also be considered such as interactive stories, where a user can 
participate in a story in real-time.  See [9], [10] for techniques for creating interactive 
experiences by that recursively invoking plan-based narrative generators, and [1] for 
alternative approach to using planning in interactive narrative system.  There are non-
planning based approaches to interactive story systems – a non-exhaustive list 
includes [12], [13], [14], and [15] and derivate works – which are more dependent on 
hand-authored narrative content and therefore less applicable to the problem of 
scaling up the pace of content creation.  However, further discussion of real-time 
interactivity is beyond the scope of this paper. 

Our goal is to incrementally improve the ability of planning-based story generation 
by increasing the space of narratives that can be explored algorithmically.  We believe 
that this will provide a capability to address the issue of consumption versus 
production, and also to create more customized experiences for users under either 
model of interactivity.  While the problem of determining whether a generated story 
is good is still largely an open problem, we can make claims about the existence of 
stories with certain properties – properties that could not previously reliably be 
generated.  In particular, we describe the vignette-based partial-order causal link (VB-
POCL) narrative planning algorithm.  VB-POCL implements a form of case-based 
planning that can incorporate vignettes – plot fragments that are a priori known to be 
“good” – into the narrative planning process. 

2 Planning Stories 

We view story generation as a problem-solving activity where the problem is to create 
an artifact – a narrative – that achieves particular desired effects on an audience.  We 
favor a general approach where we model the story generation process as planning. 
One reason for this is that plans are reasonable models of narrative [6].  But also 
planners “walk the space” of possible narratives in search of a solution that meets 
certain qualities, making it a good model of creativity in general [2]. This follows 
from other research efforts modeling story generation as planning (c.f., [5], [7;8]).  

The planning process is as follows: a planner chooses an incomplete plan to work 
on at the fringe of the problem space, and chooses a flaw in that plan to work on, 
resulting in zero or more new plans in which the flaw is repaired (and often 



introducing new flaws).  These plans become part of the new fringe, and the process 
is repeated.  One type of flaw pertinent to this work is an open condition flaw, which 
exists when an action in the plan (or the goal state) has a precondition that has not 
been recognized as being satisfied by the effect of a preceding action (or the initial 
state).  Applying one of the following repair strategies can repair the flaw: 

(i) Selecting an existing action in the plan that has an effect that unifies with the 
precondition in question. 

(ii) Selecting and instantiating an operator from the domain operator library that 
has an effect that unifies with the precondition in question. 

A planner is non-deterministic, meaning it applies all strategies and then uses a 
heuristic function to determine which parts of the fringe should be expanded next.  
There are other types of flaws as well, such as causal threat flaws, which occur when 
an action threatens to undo the satisfaction of another action’s preconditions.  
Conventional planners assure that plans are sound, meaning that they are guaranteed 
to execute successfully in the absence of unanticipated changes in the world [16].   

However, stories are much more than just ways of achieving an intended outcome 
in the most efficient manner.  Stories should meet the expectations of the audience.  
This may mean putting in details that are aesthetically pleasing even if they are not 
strictly necessary.  When humans write stories, they call on their lifetime of 
experiences as a member of culture and society.  A computer system that generates 
stories does not have access to this wealth of information.  As a way of mitigating this 
handicap, a computer system can be provided with a wealth of knowledge in the form 
of traces of previous problem-solving activities or a library of previous solutions – in 
this case stories. Transformational multi-reuse planning is a form of case-based 
reasoning in which prior solutions are adapted to new planning problems; systems 
such as [17] and [18] retrieve and reuse full or portions of old solutions (e.g. plans) to 
assemble new plans.  We adapt the transformational multi-reuse approach and 
customize it to the particulars of generating stories.  However, instead of assuming a 
knowledge base of complete stories, we bootstrap the planning process with a library 
of “vignettes” – fragments of stories that capture some particular context. 

2.1 Vignettes 

We use the term vignette to refer to a fragment of a story that represents a “good” 
example of a situation and/or context that commonly occurs in stories [19].  For 
example, a library of vignettes would contain one or more specific instances of bank 
robberies, betrayals, cons, combat situations, etc. We do not presume to know how 
these vignettes were created, only that we have the solutions and that they have 
favorable mimetic qualities.  It is important to note that the library contains specific 
examples of these situations instead of general templates.  The implication of the 
existence of this library is that a story generator does not need to “reinvent the wheel” 
and thus does not need the specialized knowledge required to be able to create 
specialized narrative situations.  Vignettes are fragments of story structure. How does 
one know what actions should be included in the vignette and which can be left out?  
We use the minimal vignette rubric: a minimal vignette is one in which removing any 



one action from the vignette causes it to no longer be considered a good example of 
the situation and/or context it was meant to represent. 

Computationally, vignettes are stored as plan fragments. As a plan fragment, it is 
possible that some actions do not have to have all of its preconditions satisfied.  This 
is a way of saying that it is not important how the situation is established or even 
why, but once the conditions are established certain things should happen.  Vignette 
plan fragments do not reference specific characters, objects, or entities so that a 
planner can fit the vignette into new story contexts by making appropriate 
assignments.  To ensure illegal or non-sense assignments are not made, co-
designation and non-co-designation variable constraints are maintained.  Fig. 1 shows 
an example vignette capturing a very simple combat between two characters where 
one character (represented by the variable ?c2) is stronger than the other (represented 
by the variable ?c1).  The weaker character wounds the stronger character twice 
before the stronger character delivers a mortally wounding blow.  Finally, the 
mortally wounded character dies of its wounds.  This vignette could be used in any 
plan in which a character must become wounded, mortally wounded, or dead, or plans 
in which battles must be started. 

2.2 Planning Stories with Vignettes 

The Vignette-Based Partial Order Causal Link (VB-POCL) planner is a modification 
of standard partial order planners to take advantage of the existence of a 
knowledgebase of vignettes.  The VB-POCL planning algorithm is similar to other 
case-based planners such as [17] and [18] in that it adds a third strategy for repairing 
open condition flaws: 

(iii) Retrieve and reuse a case that has an action with an effect that unifies with the 
precondition in question. 

Given an action in the plan that has an unsatisfied precondition VB-POCL non-
deterministically chooses one of the three above strategies.  Strategies (i) and (ii) are 
performed in the standard way [16].  If strategy (iii) is selected, VB-POCL doesn’t 
immediately repair the flaw.  Instead, the plan is annotated with a fit flaw, indicating 
the plan is to be considered flawed until all actions from the vignette are fitted into 
the plan.  Repairing a fit flaw is a process of selecting an action from the retrieved 
vignette and adding it to the new plan (or selecting an existing action in the plan that 
is identical to the selected action to avoid unnecessary action repetition).  It may take 

Vignette: 
Steps: 1: Start-Battle (?c1, ?c2, ?place) 
       2: Wound (?c1, ?c2) 
       3: Wound (?c1, ?c2) 
       4: Mortally-Wound (?c2, ?c1) 
       5: Die (?c1) 
       6: End-Battle (?c1, ?c2) 
Causation: 1→(battling ?c1 ?c2)→2 
           1→(battling ?c1 ?c2)→3 
           1→(battling ?c1 ?c2)→4 
           1→(battling ?c1 ?c2)→6 
           4→(mortally-wounded ?c1)→5 

Constraints: (character ?c1) 
             (character ?c2) 
             (stronger ?c2 ?c1) 
Variable-constraints: ?c1 ≠ ?c2 
Ordering: 1→2, 2→3, 3→4, 4→5, 4→6 
Effects: (battling ?c1 ?c2) 
         (not (battling ?c1 ?c2)) 
         (wounded ?c2) 
         (mortally-wounded ?c1) 
         (not (alive ?c1)) 

Fig 1. An example vignette data structure. 



several invocations of the fitting procedure to completely repair a fit flaw.  This may 
seem more inefficient than just adding all vignette actions to the plan at once. 
However, there are three advantages to iterative fitting.  First, it is easier to recognize 
and avoid action repetition.  Second, it allows for interleaving of repair of other flaws, 
which can lead to discovery of interesting plans.  For example, fitting may lead to the 
creation of new open condition flaws that in turn are repaired through conventional 
planning (strategies i and ii) or by retrieving new vignettes (strategy iii). Third, 
problems in the fitting process can be identified sooner in case the strategy must be 
abandoned.   

The algorithm for VB-POCL is given in Fig. 2. VB-POCL is instantiated with an 
empty plan P, a set of flaws F, and libraries of un-instantiated action templates and 
vignettes.  Initially, P is an empty plan that only contains information about the initial 
state – the description of the story world before the story begins – and the outcome 
state – the description of what the human user wants the story world to be like at the 
end of the story.  VB-POCL selects a flaw.  Initially the only flaws are that the 
outcome state is made up of state propositions that are unsatisfied.  As described 
earlier, open condition flaws, in which an action’s precondition (or an outcome state 
proposition) is unsatisfied, are repaired by three strategies.  Strategies (i) and (ii) 
make up conventional planning (c.f. [16]) and are represented as causal planning in 
Fig. 2.  Strategy (iii) is initially handled by the vignette reuse portion of the algorithm 
in Fig. 2.  VB-POCL retrieves all vignettes that can satisfy the open condition.  How 

Fig. 2. The vignette-based planning algorithm. 

 

VB-POCL (P, F, Λa, Λ v) 

The VB-POCL algorithm takes a plan that is a partial solution to the problem (or the empty plan) P, a set 
of flaws F evidencing why P cannot be a solution, a library of un-instantiated operators Λa that represent 
templates of actions that characters can take in the world, and a library of vignettes Λv. 

I. Termination: if F = ∅ and P is sound, return P.  Otherwise, fail. 

II. Planning:  
A. Goal selection: Select an open condition flaw f = <sneed, pneed> or a fit flaw f = <Pc, sc, ec, pneed, sneed> 

from F.  Let F’ = F \ {f}. 
B. Operator selection: Non-deterministically do one of the following (if valid): 

1. Causal planning (if f is an open condition flaw): As normal, non-deterministically choosing and 
instantiating an action from Λa or reusing an instantiated operator already in P.  If instantiating a 
new action, add open condition flaws for every precondition of the new action. 

2. Vignette reuse (if f is an open condition flaw): Non-deterministically retrieve a plan fragment Pc 
from the vignette library Λv such that some step sc in Pc has an effect ec that unifies with p.  Let f’ 
be a fit flaw such that f’ = <Pc, sc, ec, pneed, sneed>.  F’ = F’ ∪ {f’}.  Let P’ be a copy of P. 

3. Plan refitting (if f is a fit flaw): Choose a step snext from Pc that hasn’t been chosen before.  Let P’ 
be a copy of P.  Let sadd be snext or a step in P’ that is identical to snext (choose non-
deterministically).  If sadd = snext, add sadd to P’, including relevant causal links, temporal links, 
and variable bindings.  Else, only add relevant causal links, temporal links, and variable bindings 
from Pc.  If snext = sc then add a causal link from sadd to sneed in P’.  Add necessary open condition 
flaws to F’ for sadd for each precondition that will not be satisfied by a causal link in Pc. Let  
f’ = <Pc’, sc, ec, pneed, sneed> where Pc’ is a copy of Pc with snext removed. F’ = F’ ∪ {f’}. 

C. Threat resolution: Performed in the standard way (if no resolution exists, backtrack). 
III. Recursive Invocation: Call VB-POCL(P’, F’, Λa, Λv). 



this retrieval happens is relatively simple, but is beyond the scope of this paper.  Each 
successful retrieval creates a branch in the problem space.  For each branch, a fit flaw 
is created, storing the vignette (Pc), information about the action and precondition that 
is not satisfied (sneed and p), and information about which action in the vignette – 
called the satisfier action – can be used to satisfy the original open condition flaw (sc 
and ec).  A vignette can be retrieved multiple times with different satisfier actions.  
The algorithm resolves any causal threats in the normal way (c.f. [16]), and iterates.   

When VB-POCL chooses to work on a fit flaw, the plan refitting portion of the 
algorithm is invoked.  An action is arbitrarily selected from the vignette and 
instantiated into the plan (or an identical action that already exists in the plan is 
chosen).  The order doesn’t affect the soundness or completeness of the algorithm.  
All necessary causal links, temporal links, and variable bindings are added to the plan 
to ensure proper placement and character references of the new or existing action.  A 
special case occurs when the action selected from the vignette is the action that should 
be used to satisfy the original open condition flaw on action sc.  When this happens, 
an extra causal link is extended from the vignette action to the original action with the 
unsatisfied precondition.  This finally solves the open condition flaw that prompted 
the vignette retrieval in the first place.  To complete the plan refitting process, the 
action selected from the vignette is removed from the copy of the vignette Pc, and the 
new plan is annotated with a new fit flaw that has a slightly smaller vignette. The 
algorithm resolves any causal threats and iterates. 

Planning is complete when a plan is found on the fringe that has no flaws.   

2.3 Example 

To illustrate the VB-POCL planning algorithm, we provide an example of how the 
planner could use the vignette shown in Fig. 1.  Suppose we wanted a story set in 
J.R.R. Tolkein’s Middle Earth.  The story world is in the state in which one character, 
called Enemy, has in his possession a Silmiril – a precious magical stone.  The 
outcome, provided by the human user, is that another character, called Hero, gains 
possession of the Silmiril.  In the remainder of this section, we trace the planning 
process, describing only one of many possible paths that VB-POCL can follow1.  The 
planner starts by non-deterministically choosing to satisfy the goal by having Hero 
take the Silmiril from Enemy.  This requires that the Enemy not be alive.  The planner 
could use the vignette from Fig. 1 here by retrieving it and binding Enemy to ?c1.  
Note that this strategy will eventually fail because it would require a character 
stronger than Enemy. Instead the planner chooses to use conventional planning to 
instantiate an action, Die-of-Infection, that causes Enemy to not be alive.  This 
requires that Enemy be superficially wounded.  Here VB-POCL retrieves the vignette 
from Fig. 1 because it has an action that can have the effect (once variables are 
bound) of causing Enemy to become wounded.  Each vignette action is spliced into 

                                                             
1 The VB-POCL algorithm follows all possible paths to solving a problem in a best-first 

manner.  We use the term non-deterministic to gloss over all the incorrect choices at any 
given decision-point until it makes a choice that leads to a solution. 



the new story plan one at a time, using the process of refitting described earlier.  
Determining where in the plan to splice an action is resolved by repairing causal and 
temporal inconsistencies (e.g. causal threat flaws).  For example, when Die(Hero) is 
spliced into the story plan, it must be temporally ordered after Take to avoid 
inconsistencies; for a character to Take an item, the character cannot be dead.   

The vignette is fairly self-contained, but the vignette action, Start-Battle does 
require that the planner establish that both Hero and Enemy are at the same place, 
which in this case the North.  This precondition is satisfied in the normal way, by 
using conventional planning strategies to instantiate an action in which Hero travels 
to the North (Enemy is already there).  The final story plan is shown in Fig. 3.  Boxes 
are actions and arrows represent causal links.  A causal link indicates how an effect of 
one step establishes a world state condition necessary for a precondition of latter steps 
to be met.  For clarity, only some preconditions and causal links on each action are 
shown. 

2.4 Vignette Transformation 

VB-POCL assumes a library of vignettes that are already in the domain of the story to 
be generated.  A domain is a set of propositions that describe the world, including 
characters, and a set of operator templates that described what characters can do and 
ways in which the world can be changed.  In the example, the domain describes 
characters such as Hero and Enemy and operators such as Travel and Wound.  
However, we may want the story planner to have access to vignettes from other 
domains, especially if our new story is set in an unique and specialized story world 

Fig 3. A story plan generated by VB-POCL. 

 



domain.  We use the term far transfer to refer to the process of transferring a vignette 
from one domain to another.  

To engage in far transfer on vignettes, one must first find analogies between 
domains.  Analogy-finding algorithms have been demonstrated to be able to find 
analogies between stories when stories are pre-existing.  Far transfer differs from the 
problem of finding analogies between stories because there is not a second instance of 
a story to compare.  Instead, we search for analogies between domains and use that 
information to translate a known vignette from one domain to another. 

The far transfer process is summarized as follows.  A source vignette is a vignette 
in an arbitrary domain, called the source domain.  The target domain is the domain of 
the story to be generated.  For each action in the source vignette, the far transfer 
algorithm searches for an action in the target domain that is most analogical. The 
search involves a single-elimination tournament where target domain actions compete 
to be the most analogical according to the Connectionist Analogy Builder (CAB) 
[20].  The winner of the tournament is the target domain vignette most analogical to 
the source domain vignette.  The result is a mapping of source domain actions to 
target domain actions that can be used to translate a source vignette into a target 
domain through substitution. 

The far transfer algorithm runs CAB m*n times, where m is the number of actions 
in the source domain vignette and n is the number of actions in the target domain.  
The algorithm’s complexity is subsumed by the complexity of CAB, which is NP-
complete. 

Translated vignettes may have gaps where translation is not perfect.  This is not a 
problem because the VB-POCL will recognize this and fill in the gaps via planning.  
Applying this process to all vignettes in a library results in a new library in which all 
vignettes are in the proper domain.  See [19] for a detailed description of far transfer. 

2.5 Discussion 

One of the interesting properties of VB-POCL is that vignette retrieval can result in 
story plans in which there are actions that are not causally relevant to the outcome.  
Trabasso and van den Broek [21] refers to actions that are causally irrelevant to the 
outcome as dead-ends.  In the example above, the causal chain involving Enemy 
mortally wounding Hero and then Hero dying appears to be a dead-end because those 
actions do not contribute to Hero acquiring the Silmiril. Dead-ends are not 
remembered as well as actions that are causally relevant to the outcome [21], 
suggesting that dead-ends should be avoided. A battle in which a single wound was 
inflicted on Enemy would have sufficed, and this is what planners such as [16] and 
[7] would have settled on.   

Human authors regularly include dead-end events in stories suggesting some 
importance to dead-ends.  We hypothesize that there are certain mimetic requirements 
to be met in any story and that dead-ends can serve this purpose.  For example, we 
assume that a combat scenario in which many blows of varying strengths are 
exchanged is more interesting than a combat in which a single blow is dealt.  
Interestingly, what may be a dead-end causal chain to the story planner may not be 
considered a dead-end by a human reader, and vice versa.  That is, the reader may 



interpret the example story as a tragedy and consider the death of Hero as one of two 
primary causal chains, whereas the planner’s representation contains only one causal 
chain that leads to the human user’s imposed outcome (Hero has the Silmiril). More 
research needs to be done to create intelligent heuristics to recognize when dead-ends 
(from the planner’s perspective) are favorable, tolerable, or damaging. 

VB-POCL is capable of finding stories that other causal-planning based story 
generation techniques are not able to find.  Specifically, these are stories in which 
some actions are not strictly necessary for causal achievement of some human-
specified outcome state.  As noted in [8], expanding the space that can be explored 
provides an opportunity to find more solutions that are valuable.  However, one could 
claim that some – or all – of the creativity occurred in the process of transforming 
vignettes, executed prior to generation.  As a first step toward improving the ability of 
planning-based story generation to reliably produce valuable, mimetic stories, the 
VB-POCL algorithm provides the technical capability of searching a large space of 
possible solutions.  Future work requires strategies for controlling the search space 
exploration, including heuristics for ranking solution “goodness.”  That is, VB-POCL 
currently has no understanding of how multiple vignettes add or detract from each 
other or the overall quality of the story being generated.  

On a practical note, planning stories with vignettes is a way to increase the average 
length of stories that can be generated.  Ideally, a planner should only have to make 
O(n) decisions where n is the length of the plan generated.  In practice, planners 
backtrack, meaning that they spend time generating action sequences that do not pan 
out and must return to an earlier decision point.  Any effort spent on a line of 
reasoning that does not pan out is wasted effort.  In the worst case, a planner must 
consider all ways of making every decision (O(bn) where b is the number of ways a 
decision can be made, and n is the length of the solution [16]).  Vignettes, when 
selected, guide the process of adding actions to the story plan, offering up actions in 
hand-coded sequences that are less likely to result in backtracking than if every action 
must be chosen independently.  Of course, VB-POCL can interleave multiple 
vignettes during which time new issues that cause backtracking can arise; this is the 
price of flexibility.  Future work is needed to develop powerful heuristic functions 
that can help VB-POCL discriminate between vignettes when more than one can be 
applied to an open condition flaw.  The practical result of less backtracking is that 
more time can be spent of fruitful action sequences, potentially allowing for longer 
plans to be created in less time.   

3 Related Work 

Search based narrative generation approaches include Tale-Spin [22], which uses a 
simulation-like approach, modeling the goals of story world characters and applying 
inference to determine what characters should do. Dehn [4] argues that a story 
generation system should satisfy the goals of the human user.  That is, what outcome 
does the user want to see?  The Universe system [5] uses means-ends planning to 
generate an episode of a story that achieves a user’s desired outcome for the episode.  
More recent work on narrative generation attempts to balance between character goals 



and human user goals [7].  Further work on story planning addresses expanding the 
space of stories that could be searched [8].   

Case-based reasoning (c.f. [23]) has been found to be related to creativity [2; 24]. 
Several approaches to narrative generation use case-based reasoning.  Minstrel [25] 
implements a model of cognitive creativity based on routines for transforming old 
stories into new stories in new domains.  ProtoPropp [26] uses case-based reasoning 
to generate novel folk tales from an ontological case base of existing Proppian stories.  
Mexica [27] uses examples of prior stories to propose plot points and then applies 
means-ends planning to fill in missing details.  VB-POCL is an attempt to harness the 
power of search-based generation and case-based creativity in a formalized causal 
planning framework.  

VB-POCL is a variation on case-based reasoning.  Case-based reasoners typically 
engage in four processes: retrieve, reuse, revise, and retain [23].  Transformational 
multi-reuse planners attempt to reuse components of solutions to similar problems to 
solve new problems, thus possibly invoking retrieve, reuse, and revise processes more 
than once.  VB-POCL is most similar to [17] and [18], but differs from them and all 
other case-based planners in the following ways.  First, vignettes are not complete 
solutions to previously solved problems; a vignette is not a case.  But vignettes are 
used like a case.  Regarding VB-POCL functionality, the VB-POCL retrieval process 
retrieves all vignettes that can conceivably be used to satisfy an open condition. 
Typically, the cost of retrieval and reuse is very high so a system must deliberate 
about the cost tradeoff of standard planning versus retrieval and reuse.  Trying all 
vignettes that meet the requirements for retrieval is not practical if vignettes require 
extensive modifications for reuse. VB-POCL assumes that vignettes in the library are 
in the domain of the story being generated and thus do not require extensive effort for 
reuse.  An offline algorithm – summarized in Section 2.4 and described in detail in 
[19] – is used to transform all vignettes from arbitrary domains into the domain of the 
new story to be generated.  That is, many of the computationally intensive aspects of 
reuse occurs offline and thus fitting a vignette into a plan is trivial.  Second, vignettes 
don’t require modification because vignettes are minimal.  Reuse is performed by 
blindly inserting all actions in a retrieved vignette into the plan; VB-POCL does not 
need to make hard decisions about which actions should be kept and which actions 
should be discarded.  Finally, because vignettes are not cases, VB-POCL does not 
reincorporate (e.g. retain) its solution story plans back into the knowledge base.  That 
is, VB-POCL does not attempt to learn to solve problems from past examples.  One of 
the interesting properties of transformational multi-reuse planning algorithms such as 
[17] and [18] is that they can operate when there are no applicable cases available; the 
algorithm can fall back on conventional planning.   VB-POCL shares this trait, but 
unlike transformational multi-reuse planners VB-POCL is also complete, meaning it 
can find all solutions that exist (the proof is beyond the scope of the paper). 

It may be possible to use hierarchical task network (HTN) planners [28] or a 
decompositional planner such as DPOCL [29] to achieve similar effects as VB-
POCL.  However, using HTNs or other decompositional techniques to generate story 
requires reasoning at higher levels of abstraction than the action (or event), and this 
introduces potentially rigid top-down structuring of plot that can limit opportunistic 
discovery such as in [7; 8].  Further, vignettes can potentially come from many 
sources, which may or may not be accompanied by abstract context information. 



There are many similarities between VB-POCL and macro-operator planners.  
Indeed, VB-POCL’s vignette retrieval process can be considered analogous to 
selecting a virtual macro-operator.  Macro-operator planners transform an action 
space into a more compact action space for efficiency gains by learning to group 
primitive actions that occur together frequently into abstract operators [30].  
However, VB-POCL doesn’t learn vignettes.  Indeed, vignettes often contain action 
sequences that cannot be found by the planner.  Further, VB-POCL needs to operate 
in the primitive action space so that vignettes can be spliced together or so that VB-
POCL can use conventional planning techniques to discover new action sequences. 

4 Conclusions 

VB-POCL is a planning algorithm that extends conventional planning algorithms 
(e.g. [16]) to make it more applicable to narrative creation.  Specifically, VB-POCL 
extends the conventional planning algorithm by retrieving and reusing vignettes.  This 
is a strategy for tapping into the experiences of other presumably expert story authors.  
VB-POCL shares many similarities with case-based planners such as [17] and 
especially [18].   However, by treating plans as narratives – that is, the plan is not a 
schedule of actions to be executed for goal attainment but a description of events that 
lead to an outcome – we are able to simplify the case (vignette) reuse problem by 
assuming that our library of vignettes includes only minimal vignettes.   

VB-POCL can explore a greater space of stories because it can consider story plans 
that have action that are not causally necessary to reach some given outcome.  We 
believe that some of these stories will be more valuable because of the mimetic 
qualities of the vignettes and the potential for these stories to possess both global 
novelty and localized familiarity.  While we have not yet performed an evaluation of 
VB-POCL, we believe that this is a step towards instilling computer systems with the 
ability to assume responsibility for story content creation.  This can be an important 
for application areas where content creation is a bottleneck and it is possible for the 
pace of content consumption to overtake the pace of content production. 
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