Return Value Predictability Profiles for Self-Healing

Michael E. Locastb, Angelos Stavroty, Gabriela F. Cretty Angelos D. Keromytis,
and Salvatore J. Stoffo

! Institute for Security Technology Studies, Dartmouth Egé
2 Department of Computer Science, George Mason University
3 Department of Computer Science, Columbia University

Abstract. Current embryonic attempts at software self-healing pteduech-
anisms that are often oblivious to the semantics of the coel supervise. We
believe that, in order to help inform runtime repair strésgsuch systems re-
quire a more detailed analysis of dynamic application bimawe describe how
to profile an application by analyzing all function callsdlinding library and
system) made by a process. We create predictability prafflése return values
of those function calls. Self—healing mechanisms thatoela transactional ap-
proach to repair (that is, rolling back execution to a knoafegoint in control
flow or slicing off the current function sequence) can berfeditn these return
value predictability profiles. Profiles built for the apg@ltons we tested can pre-
dict behavior with 97% accuracy given a context window of @iBdtions. We
also present a survey of the distribution of actual retutnegfor real software
as well as a novel way of visualizing both the macro and mitmacture of the
return value distributions. Our system helps demonstradeasibility of com-
bining binary—level behavior profiling with self—healingpairs.

keywords: behavior profiling, anonamly detection, self-healing

1 Introduction

The growing sophistication of software attacks has cretitecheed for increasingly
finer-grained intrusion detection systems to drive the gse®f automated response and
intrusion prevention. Because such fine-grained mechangsencurrently perceived as
too expensive in terms of their performance impact, questielating to the feasibility
and value of such analysis remain unexplored. In particitlaeems that self-healing
mechanisms would benefit from a detailed behavior profile.

This paper demonstrates the efficacy and feasibility ofdiugj profiles of applica-
tion behavior at a fine-grained level of detail. We focus aa tise of function return
values as the main feature of these profiles. We do so becatusa values can help
drive control flow decisions after a self~healing repairtHis paper, we show how to
build profiles that contain this information at the binaryde— that is, without making
changes to the application’s source, the OS, or the compiler

1.1 Observing Program Behavior

A popular approach to observing program behavior utilizesaaly detection on a pro-
file derived from system call sequences [1-5]. Relativetieliattention has been paid
to the question of building profiles — in a non-invasive fashi— at a level of detalil
that includes the applicationisternal behavior. In contrast, typical system call pro-
filing techniques characterize the application’s intacactvith the operating system.
Because these approaches treat the application as a blacthbyg are generally sus-
ceptiblé! to mimicry attacks [7]. Furthermore, the increasing sofitasion of software
attacks [8] calls into question the ability to protect anlaggtion while remaining at this
level of abstractioni(e.,system call interface). Finally, most other previous apph®es
instrument the application’s source code or perform statalysis. In contrast, we con-
structed a non—invasive return value collector tool ushng Rin [9] dynamic binary
rewriting framework to gather profile information.

1.2 Self-Healing

Various approaches to software self—healing [10—13] catnate on a transactional ap-
proach in which the current sequence of functions is rolleckito some known safe
point in execution [14, 11, 15], and the calculations don¢heyaborted “transactions”
are undone. Such approaches require a profiling mechanibotiauide the selection
of “known safe points” and set appropriate state at thosetpoi

For example, the concepts efror virtualization [12] andfailure—oblivious com-
puting[10] are representative of approaches that attempt to éxémwugh faults€.g.,
memory corruption due to an exploit) by manufacturing infation that helps control
subsequent execution. Failure—oblivious computing metufes values for read op-
erations and silently expands or truncates memory ovegsvrlh error virtualization,
a heuristic helps determine the return value for an aboredtion; the hope is that
the rest of the software will gracefully handle this mantdiaed error return value and
continue executing, albeit without the influence of theckitea

Determining these return values employs source code asalyisthe return type
of the function in question. This approach is somewhat usfsatory; it seems as if
it should be possible to dynamically and automatically extllenough information to
determine appropriate error virtualization values. Trapgr addresses the problem of
how to automatically extract enough information from p@rgrexecution to accurately
characterize program behavior in terms of return valuesppart self—healing.

Behavior profiling has been used to create policies for dietefl6, 17]. In contrast,
we suggest using this information to help automaticallyegate templates for repair
policies [18]. In addition, this information can drive thelection of “rescue points” for
the ASSURE system [15]. One goal of this paper is to provideesys like SEAD and
ASSURE with a profiling mechanism.

4 Gaoet al.[6] discuss a measure of behavioral distance where segsiehsgstem calls across
heterogeneous hosts are correlated to help avoid mimitagat.

1.3 Caveats and Limitations

Binary-level function profiling proves more difficult thanaw initially be expected.
Functions are source level artifacts that have only rouglogiues at the machine level.
Since a compiler can arbitrarily transform the source-Heygresentation of a function
or signal handling can interrupt control flow, it is diffictidt cover all cases of function
entry and exit. We rely on Pin [9] to detect these eventspalth it can fail to do so in
the presence of tail recursion or aggressive functionimdjrioy the compiler. Finally,
because the profile is dependent on a particular binaryysteis must recognize when
an older profile is no longer applical#eg.,as a result of a new version of the applica-
tion being rolled out, or due a patch. We can detect this iersdways, including the
modification time of the program image on disk.

1.4 Contributions

Overall, we demonstrate the utility of fine-grained apglmamodeling to support self—
healing repairs. Our work differs from related work (Sewt) on anomaly detection
and self—healing software in two important respe¢ts:the structure and granularity
of our profiles, and2) the focus on repair rather than detection.

We create a new model of program behavior extrackgaamicallyfrom the ex-
ecution of the program binary without instrumenting therseuwode, modifying the
compiler, or altering the OS. We condition this model basedideature set that in-
cludes a mixture of parent functions and previous siblimgcfions. Prior approaches
look at the call stack, thus ignoring previous siblings, ethhave already completed
execution and so are no longer part of the call stack. Thisaincahn help select ap-
propriate error virtualization values, inform the choiderescue points, or drive the
creation of repair policy templates. In addition, we preval survey of return values
used in real software. Finally, we propasdative scaled k-means clusteesnew way
to simultaneously visualize both the micro and macro stiecbf feature-frequency
behavior models. Details on our profiling experiments amsdilts can be found in Sec-
tion 4. Section 5 characterizes the return value conteriteoptofiles.

2 Related Work

Our work provides a mechanism to describe application hehavhus, our modeling

algorithm draws from arich literature on host—-based anguhetection schemes. While
this area is well-mined, we believe it is worthwhile to révsevious efforts to validate

and potentially improve on them. Most significantly, we fean the utility of behavior

profiles for post-attack repair rather than pre-attackaite.

Anomaly DetectiorHost-based anomaly detection is not a new topic. The semviorl

of Hofmeyr, Somayaiji, and Forrest [19, 3] helped initiatplagation behavior profiling
at the system call level. Ferg al.[4] and Bhatkaket al.[20] contain good overviews of
the literature in this space. Most approaches to host-basegion detection perform
anomaly detection [2, 16, 5, 21] on sequences of systemanadigheir arguments [22]

because the system call interface represents the serkimesser—level malcode, once
activated, must use to effect persistent state changesthedforms of /0. System
call information is easy to collect; thet r ace(1) andl trace(1) tools for Linux
are built to do exactly that. The closest work to our buildaidpehavior profiles is the
work by Mutzet al.[1] and Fencet al.[4]; the most significant differences in our model
building is that we employ sibling functions when buildingfiles, and we examine the
return values (rather than arguments). The most signifioeerall differences between
our current work and the general space of system call AD iswieaconsider how to
use this profile in the process of self—healing repairs.

Profiling for Self-HealingThe key assumption underlying error virtualization [12] is
that a mapping can be created between the set of errorsdabltoccur during a pro-
gram’s execution and the limited set of errors that are eitjylihandled by the existing
program code. By virtualizing the errors, an application cantinue execution through
a fault or exploited vulnerability by nullifying the effexbf such a fault or exploit and
using a manufactured return value for the function wherdahk occurred.

ASSURE [15] attempts to minimize the likelihood of a semeaity incorrect re-
sponse to a fault or attack by identifyirggror virtualization rescue pointsprogram
locations that are known (or at least conjectured, accgrtbna behavior profile) to
successfully propagate errors and recover execution. @pénkight is that a program
should respond to malformed input differently than benigpuit; locations in the code
that successfully handle these sorts of anticipated infautlts” are good candidates
for recovering to a safe execution flow. We view our behaviafijing as a service
provider to ASSURE's rescue point selection; ASSURE presidn input training set
and handles the details of “teleporting” a failure to therappate rescue point.

3 Profile Structure

We define a profile structure that allows us to predict fumcteiurn values based on the
preceding context [23, 1] (functions that have just finiskedcuting). Our system is a
hybrid that captures aspects of both control flow (via theatien context) and portions
of the data flow (via function return values). We constructexecution context” for
each function based on the application’s behavior in terhl®th control (predecessor
function calls) and data (return values) flow. This contetph collaps®ccurrence®f
a function into arinstanceof a function to avoid under-fitting or over-fitting the model

A behavior profile is a graph of execution history recordsctEeecord contains
an identifier, a return value, a set of arguments, and a corierction names serve
as identifiers (although callsite addresses are sometiniegtisited). Parent and pre-
vious sibling functions compose the context. Argument atdrn values correspond
to the values at function entrance and exit, respectiveig purpose of each item is
to help identify an instance of a function. For example, ader$ng every occurrence
of printf () asthesameinstance reduces our ability to make predictions about its
behavior. Likewise, considering all occurrencegof nt f () to bedistinctinstances
reduces our ability to make predictions in a reasonable atmfitime.

We adopt a mixture of parents and siblings to define a contexivo reasons. First,
a flat or nil context contains very little information to baseeturn value prediction on.

Average number of valid context windows for different applications

- -] [w w -
=] o] =] v =] @ =]

Average number of context windows
w

o

0 2 4 6] i0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Window size
M hitpd-24153 B wget-32220 W bigo-3 gee-32107 mdSsum-32310 M xterm-31738

Fig. 1. Drop in Average Valid Window Contexthis graph shows that the amount of unique
execution contexts we need to store to detect changes inotflotv decreases as window size
increasesxt er mis a special case because it executes a number of other afpie If we
consider the ratio of valid context windows to all possib&mutations of functions, then we
would see an even sharper decrease.

Second, previous work focuses on the state of a call stacichwdonsists solely of
parent functions. As our results in Section 4 demonstratecombination of parents
and siblings is a powerful predictor of return values. Thadeiw size determines, for
each function whose profile is being constructed, the nurobfmctions preceding it
in the execution trace that will be used in constructing firafile. Figure 1 provides
insight: it shows that the amount of unique execution castexops as the window
size increases. In contrast, if there were a large amourdliof windows, our detection
ability would be diminished.

4 Evaluating Profile Generation

We start by assessing the feasibility of generating profies can predict the return
values of functions. This section considers how to generliable profiles of appli-
cation execution behavior for both server programs and camanfine utilities. These
profiles are based on the binary call graph features combiithdthe return values of
each function instance. We test and analyze applicaticatsatie representative of the
software that runs on current server and desktop Unix emrients, includingxt er m
(X.0Org 6.7.0),gcc (GNU v3.4.4),md5sum(v5.2.1),wget (GNU v1.10.2), thessh
client (OpenSSH 3.9pl) antuk t pd (Apache/2.0.53). We also employ some crafted
test applications to verify that both the data and the methmed to process them are
correct. We include only one of these applicationsgo) here because it is relatively
small, simple to understand, and can easily be comparedsigabfiles obtained from

the other applications. The number of unique functions fbthese applications is:
xterm, 2111; gcc, 294; md5sum, 239; wget, 846; ssh, 1362¢hit123; and bigo, 129.

Predictability of return values for various applications

1.000

0.975

Predictability of output
=] =] =] =] =]
g 3 8 8 8

0.825

0.800

001 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Window size

|I gcc-32107 @ xterm-31738 A ssh-2837 mdSsum-32319 bigo-0 ¥ httpd-24153 wget-32220 |

Fig. 2. Average Predictability of Return ValueReturn value prediction for various applications
against a varying context window size. Window sizes of 15 orerachieve an average prediction
of 97% or more for all applications other thaht pd (with a rate of about 90%).

Return Value PredictionFinding a suitable repair for a function, in the context o th
self-healing systems we have been discussing, entailsiexagrihe range of return
values that the function produces. As Section 3 explaires,nittion of return value
“predictability” is defined as a value froffr.1 for a specific context window size. A
predictability value ofl indicates that we can fully predict the function’s returtuea
for a given context window.

Figure 2 shows the average predictability for the set of émathapplications. It
presents a snapshot of our ability to predict the returnevédu various applications
when we vary the context window sizee(, the history of execution). Using window
sizes of more than 15 can achieve an average predictionfratere than 97% for all
applications other thant t pd. Forht t pd, prediction rates are around 90%. This rate
is mainly caused by Apache’s use of a large number of custotifuns that duplicate
the behavior of standard library functions. Moreover, Amaés larger and more com-
plex than the other applications and has the potential falerdivergent behavior. Of
course, this first data set is only a bird’s eye view of an d/&#end since it is based on
the behavior of the average of our ability to predict functieturn values.

To better understand how our predictions perform, we neexdldi@ closely exam-
ine the measurements for different runs of the same apijolicalin Figure 3(b) and
Figure 3(a) we present results for different rundiof pd andwget . Thewget utility
was executed using different command line arguments ageitsites. Apache was used
as a daemon with the default configuration file but exposediifiexent set of requests

Predictability of return values for wget Predictability of return values for httpd

R

875

58 EE

8§

Predi
3
Predictabllty of outp
28 3

0500+
o

3115 16 17 18 19 0500
Window size 0 1 23 4 5 6 7 8 910 11121314 1516 17 18 19 20 21 22 23 24 25 25 27 28 29 30

W wget-32268 @ wget-32257 4 wget32304 wget-32278 © wget32276 V¥ wget-32292 - wget-32266 Window size

Wget32270 1 wget32244 < wget32248 M wget32220 B hitpd-24863_© httpd25429 A httpd-24242 hitpd-24851 - httpd-24163

(a) Average Predictability of Return Valuéls) Average Predictability of Return Values

for Different Runs ofaget . Although therdor ht t pd and for Different RunsAlthough

are 11 runs fomget, each individual rumeturn value prediction remains higix90%)

is both highly predictablex98%) and veryor ht t pd, some variations are observable

similar to the others’ behavior for differebetween the different runs. This phenomena

window sizes. is encouraging because it suggests that the
profile can be specialized to an application’s
use at a particular site.

Fig. 3. Return Value Predictability for bothget andht t pd with Different Window Sizes

for each of the runs. As we expectedjet has similar behavior between different runs:
both the function call graph and the generated return vatealmost identical. On the
other hand, Apache has runs that appear to have small bageabte differences. As
reflected in the average plots, however, all runs still hagh predictability.

Some questions remain, including how effective our metisaat predicting return
values of individual functions. Also, if there are any fuoatthat we cannot predict
well, how many functions of this type are there, and is thenmes common feature
of these functions that defies prediction? Answering thesstipns requires measure-
ments for individual function predictability. To visualtfarify these measurements, in
Figures 4(a) and 4(b), we remove functions that have a grediof two or more stan-
dard deviations from the average. The evolution of prebitita for wget andht t pd
is illustrated in Figure 4(a) and Figure 4(b). This evolatis consistent with what we
observe in Figure 2: most functions are predictable — andrfwall context windows.

Table 1.Percentage of Unpredictable (Outlier) FunctioMge illustrate the nature of the overlap
in behavior profiles by examining which functions are oudlieoth within and across programs.

Application ||% outliers |% common outliers|% common functions
gcc 5 53 51
md5sum 5 87 84
wget 6 62 56
xterm 6 39 17
ssh 5 35 33
httpd 10 10 28

The distributions without outliers for wget The distributions without outliers for httpd

e
®

Predictability of output
e
&

oz 4 6 o# 0 12 M o6 1 oM o2 oM o oa 2 00
Window size

0 2 4 6 8§ 1 12 4 f6 18 2 2 2 26 2 W
Window size

(a) Predictability of Return Values fomget (b) Predictability of Return Values foht t pd
Functions Each line represents a function gnghctions Each line represents a function and its
its predictability evolution as context windgwedictability evolution as context window size
size increases. Most functions stabilize afténaeases. As expectetli t pd has more func-
window size of ten. This graph excludes a sntialhs that diverge from the average. It also has
set (Table 1) of outlier functions (functions thmore outliers, as shown by Table 1.

are two standard deviations from the average).

Fig. 4. Per-Function Return Value Predictability for bathet andht t pd

A small percentage of the functions, however, produce metalues which are
highly unpredictable. This situation is completely natuwee cannot expect to predict
return values that depend on runtime information such asonemddresses. Addi-
tionally, there are some functions that wrpectto return a non-predictable value: a
random number generator is a simple example. In practio@easan deduce from our
experiments (see Table 1), the number of such “outlier” fians is rather small in
comparison to the total number of well-behaved, predietabictions.

In Table 1, each column represents the percentage (outfofraliions in each pro-
gram) of common or outlier functions. The first column preséine percentage of func-
tions that are outliersithin a program: that is, functions that deviate from the average
profile by more than two standard deviations for all windowsiae >10. For each
program, there are relatively few “outlier” functions. Teecond column examines the
percentage of common outliers: outliers that appear in tvmare applications. We
can see that the functions that are unpredictable are ¢ens&d can be accounted for
when creating profiles. The third column displays non-eutlunctions that are com-
mon across applications. These common and predictablédasdelp show that some
aspects of program behavior are consistent across programs

5 Return Value Characteristics

While Section 4 shows how well we can predict return values, $ection focuses on
whatreturn values actually form part of the execution profilee#lrsoftware, and how
those values are embedded throughout the model structereurdée a Pin tool to cap-
ture the frequency distribution of return values occuriimg selection of real software,

and we created distributions of these values. These disiiits provide insight into

both the micro and macro structure of a return value behgwifile. Our data visual-

ization technique scales the height and width of each dltsteimultaneously display
both the intra- and inter-cluster structure. Our analysrssao show that return values
can reliably classify similar runs of a program as the sanognam as well as distin-
guish between execution models of different programs.

Return Value Frequency Modef3ur Pin tool intercepts the execution of the monitored
process to record each function’s return value. The todtibia table of return value
frequencies. After the run of the program completes, we feexddata to MATLAB
for a further evaluation that leads to a final return valuguiency model. As a proof
of concept, a model for a particular monitored process ipkntonsisting of the av-
erage frequency distribution over multiple runs of the sgragram. Intuitively, we
expect several types of clusters to emerge out of the avéremeency distribution. We
anticipate clusters that contain very high frequency retalues, such as -1, 0, and 1
(standard error or success values as well as standard batpdies). We expect a larger,
more dispersed cluster that records pointer values as wellcduster containing more
“data” values such as ASCII data processed by characteriog $tandling routines.

Table 2. Manhattan Distance Within and Between Modé&lke diagonal (shown in italics) dis-

plays the average distance between each trace and the dtrepenfile derived from each trace

of that program. All other entries display the distance leetwthe execution models for each
program. We omit the lower entries because the table is syriamiote the difference between

gzip and gunzip as well as the similarity of gzip to itself.

date echo gzip | gunzip {md5sum|shalsunm] sort
date 3.03e+033.72e+031.61e+071.87e+066.46e+046.47e+045.45e+03
echo - 548 |1.61e+071.87e+066.41e+046.42e+045.43e+03
gzip - - 212.4 |1.79e+071.61e+071.61e+071.61e+07
gunzip - - - 1.91e+041.92e+061.92e+061.87e+06
md5sum - - - - 3.03e+043.38e+046.56e+04
shalsum - - - - - 1.67e+046.57e+04
sort - - - - - - 74.24e+03

We examine three hypothesis dealing with the efficacy of @tkeic behavior pro-
files based on return value frequency:

1. traces of the same program under the same input condwidirize correlated with
their model

2. the model of all traces of one program can be distingui$toad the model of all
traces of another program

3. we can make the structure of the return value frequencyefaagpparent using
k-means clustering

For the first hypothesis, we use Manhattan distance as aasityiimetric in order
to compare each trace of the same process with the retura raddel of that process.

In effect, we compare each return value frequency to theespaonding average fre-
guency among all traces of that program. To evaluate thenselogpothesis, we use

the Manhattan distance between each process model. Thedideethe return values

consists of all return values exhibited by all processesdh@aanalyzed over all their

runs. Table 2 shows how each model for a variety of prograrasye include a va-

riety of programs, like sorting, hashing, simple I/O, andhpoession) stays consistent
with itself under the same input conditions (smaller Matdratlistance) and different
from models for each other program (larger Manhattan digtan

) sonfc‘lusterz)

800 r

700 r

600 r

@

=}

S}
I
T

Average RV frequency
IS
S
3
1
T

300 r
sort-cluster2
25

sort-cluster4

N

S}
N
o

200 r

=

a
.
o

sort-clusterl

=
o

100 r

Average RV frequency

o

@
Average RV frequency
=
5

ge RV frequency

PO RN
o

0 0
24 -122 -12 -1091.081.07 1 -5 o0 05 1 0 2 4 6 8 10 12
RV x10° R¥10° RV x10° RV x10°

Avera

Fig. 5. Relatively Scaled k-means Clusters $ar t . Note how each component of the model is
scaled relative to the others while displaying the distidgn of similar-frequency values inter-
nally; this technique clearly displays the differencesassn the high frequency return values
(cluster 3) and the frequent but more widespread parts ofribael (cluster 4) as well as the
behavior of values within each component. Both the vertical horizontal dimensions of each
cluster are scaled. We display the clusters in increasidgrdrom left to right determined by the
lower end of the horizontal axis range.

Each process has a particular variance with each traceifjedrin the similarity
value between its model and the trace itself, but when coegpagainst the rest of the
processes it can be easily distinguished. We ran each pnagratimes under the same

10

input profile to collect the traces and generate the modeddch program. We used as
input profiles generic files/strings that can be easily ogpéid (in some cases no input
was needed): date - N/A, echo - “Hello World!”, gzipnttpd-2.2.8.tay gunzip -httpd-
2.2.8.tar.gzmd5sunhttpd-2.2.8.tayshalsum httpd-2.2.8.taiand sort -httpd.confthe
unmodified config file for httpd-2.2.8).

Clustering with k-meansSection 4 shows how to build profiles that are useful in pre-
dicting return values. The analysis here aims to achievétarbdea of what those actual
return values are and how frequently real applications lusmt We cluster the return
values into frequency classes, and we chose the k-mean®antttaccomplish the
clustering. The large disparity in the magnitude of retuatue frequencies can reduce
our ability to convey information about the overall struetof the model if displayed in
a simple histogram. Accordingly, we found a new way to sian#iously display both
the internal structure of each cluster as well as the exteetationships between the
clusters. Our clustering method captures the localized wiereturn value frequency
per RV region and our visualization method provides insigtd the relative coverage
of a particular RV region. Figures 5, 6(a), 6(b), 7(a), 7@(g), and 8(b) present the
clusters obtained for each of the analyzed processes. Eadklhas a predominant
cluster €.g., cluster2 for data, cluster2 for gzigtc) which contains the discriminative
return value frequencies and has coverage. The remainirsgecs contain the lower
frequency return values. We conjecture that by increasiagnumber of cluster we can
achieve better granularity that can distinguish betweé#arént types of return values
and classify them accordingly.

6 Conclusion

We propose a novel approach to dynamically profiling appboaexecution behavior:
modeling the return values of internal functions. Our netualue sniffer is available
under the GNU GPL at our webstteWe show that using a window of return values,
including values returned by sibling and parent functi@as, make return value predic-
tion as accurate as 97%. We also introduce a novel visualizatethod for conveying
both the micro and macro structure of the return value fraquenodel components.
We intend to investigate models that operate independehthye input profile. We in-
tend to investigate how our behavior profiling mechanismlmaised to create repair
policy and assist other self—-healing systems select aropppte response.

Acknowledgments

This paper reports on work that was supported in part by ARCExontract DA
WO911NF-04-1-0442, USAF/AFRL contract FA9550-07-1-052Ad NSF Grant 06-
27473. The content of this work is the responsibility of thehars and should not be
taken to represent the views or practices of the U.S. Govenhor its agencies.

Shttp://ww. cs. dart mout h. edu/ ~ ocast o/ resear ch/ rval /

11

References

10.

11.

12.

13.

14.

15.

16.

17.

. Mutz, D., Robertson, W., Vigna, G., Kemmerer, R.: ExphgtExecution Context for the

Detection of Anomalous System Calls. In: Proceedings ofriternational Symposium on
Recent Advances in Intrusion Detection (RAID). (2007)

. Chari, S.N., Cheng, P.C.: BlueBoX: A Policy—driven, Hddased Intrusion Detection Sys-

tem. In: Proceedings of tH&" Symposium on Network and Distributed Systems Security
(NDSS 2002). (2002)

. Somayaiji, A., Forrest, S.: Automated Response Usinge8y&tall Delays. In: Proceedings

of the 9*" USENIX Security Symposium. (August 2000)

. Feng, H.H., Kolesnikov, O., Fogla, P., Lee, W., Gong, Wnofaly Detection Using Call

Stack Information. In: Proceedings of the 2003 IEEE Symyposbn Security and Privacy.
(May 2003)

. Gao, D., Reiter, M.K., Song, D.: Gray-Box Extraction ofdextion Graphs for Anomaly

Detection. In: Proceedings of the ACM Conference on Compartd Communications Se-
curity (CCS). (2004)

. Gao, D., Reiter, M.K., Song, D.: Behavioral Distance furiision Detection. In: Proceed-

ings of thes'” International Symposium on Recent Advances in Intrusicie€ten (RAID).
(September 2005) 63—-81

. Wagner, D., Soto, P.: Mimicry Attacks on Host-Based Isimn Detection Systems. In:

Proceedings of the ACM Conference on Computer and CommtimisaSecurity (CCS).
(November 2002)

. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., lyer, R.K.:-Rontrol-Data Attacks Are Realistic

Threats. In: Proceedings of the*" USENIX Security Symposium. (August 2005) 177-191

. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Loay G., Wallace, S., Reddi, V.J.,

Hazelwood., K.: Pin: Building Customized Program AnalyBi®Is with Dynamic Instru-
mentation. In: Proceedings of Programming Language Designmplementation (PLDI).
(June 2005)

Rinard, M., Cadar, C., Dumitran, D., Roy, D., Leu, T., WeBee, J.: Enhancing Server Avail-
ability and Security Through Failure-Oblivious Computithg: Proceedingé’" Symposium
on Operating Systems Design and Implementation (OSDI)cébwwer 2004)

Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: Trg&imgs as Allergies — A Safe Method
to Survive Software Failures. In: Proceedings of the Syrym®n Systems and Operating
Systems Principles (SOSP). (2005)

Sidiroglou, S., Locasto, M.E., Boyd, S.W., KeromytisDA Building a Reactive Immune
System for Software Services. In: Proceedings of the USEAKual Technical Confer-
ence. (April 2005) 149-161

Smirnov, A., Chiueh, T.: DIRA: Automatic Detection, td#ication, and Repair of Control-
Hijacking Attacks. In: Proceedings of tHe!" Symposium on Network and Distributed
System Security (NDSS). (February 2005)

Brown, A., Patterson, D.A.: Rewind, Repair, Replay:&hR’s to dependability. Intot”
ACM SIGOPS European Workshop, Saint-Emilion, France (&aper 2002)

Sidiroglou, S., Laadan, O., Keromytis, A.D., Nieh, J.sifng Rescue Points to Navigate
Software Recovery (Short Paper). In: Proceedings of th&lBmposium on Security and
Privacy. (May 2007)

Provos, N.: Improving Host Security with System Calliiek. In: Proceedings of the2t"
USENIX Security Symposium. (August 2003) 207-225

Lam, L.C., cker Chiueh, T.: Automatic Extraction of Acate Application-Specific Sand-
boxing Policy. In: Proceedings of té" International Symposium on Recent Advances in
Intrusion Detection. (September 2004)

12

18.

19.

20.

21.

22.

23.

Locasto, M.E., Stavrou, A., Cretu, G.F., Keromytis, A.Brom STEM to SEAD: Specula-
tive Execution for Automatic Defense. In: Proceedings @& tHSENIX Annual Technical
Conference. (June 2007) 219-232

Hofmeyr, S.A., Somayaji, A., Forrest, S.: Intrusion &gion System Using Sequences of
System Calls. Journal of Computer Secufi(g) (1998) 151-180

Bhatkar, S., Chaturvedi, A., Sekar., R.: Improving Akt®etection in Host-Based IDS by
Learning Properties of System Call Arguments. In: Progegsiof the IEEE Symposium on
Security and Privacy. (2006)

Giffin, J.T., Dagon, D., Jha, S., Lee, W., Miller, B.P.vitanment-Sensitive Intrusion Detec-
tion. In: Proceedings of thg" International Symposium on Recent Advances in Intrusion
Detection (RAID). (September 2005)

Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalougst&m Call Detection. ACM
Transactions on Information and System Sec\8{ty) (February 2006) 61-93

Eskin, E., Lee, W., Stolfo, S.J.: Modeling System CatlsIhtrusion Detection with Dy-
namic Window Sizes. In: Proceedings of DARPA Informatiom&tabilty Conference and
Exposition Il (DISCEX II). (June 2001)

13

gunzip-cluster2

4500 F

4000 E

3500 F

3000 F

Average RV frequency
g
:
T

qunzip-cuserl L
L. 40 1500 r
;T 30
é 1000 + - qunzip-cluster 5, gunzip-clusterd
%20 5 5
g 2 S
z B F & E
< 500 s os z 05
g 0 20
25 -2 -15 -1 -05 1 0 1 < 05 115 <1 2 a3
RV x10° RV g RV 10 RV x10°
(a) k-means cluster fogunzi p return values
10° gzp-cluster3
45 L L
N L
‘j:.’ 254 E
gzip-clusterl z
: g . L
g
2
2
2z 154 r
?c) 15
z 14 L
aé, N z lgz\p-clusleﬂ 5 . gzip-clusterd
£ 054 E £
05 E 05 i 05
¢ H
o o0 . 2o
25 -2 -15 -1 05 -0 5 0 _, 0 5 10 0 1 2 3
RV x10° R\f 10° RV 3 RV %10°

(b) k-means cluster fogzi p return values

Fig. 6. Return Value Frequency Distributions for a CompressiomgRnm

14

date-cluster2
L

6004 F
5004 F
§ 400 L
g
>
z
date-clusterl &
e £ 3004 E
I
20
g 2004 F date-cluster3
g1s
z g
z g 5 dateclusterd
%10 g 10 H
g 100 L& g
H g g
s & 5 z 5
2
-125 -12 -115 -11 -105 -1 o 1 12 14 16 < 15 16 17
RV x10° RV g Y RY 100

(a) k-means cluster fodat e return values

echo-clusterd

2004 r
3 150 r
echo-cluster2 H
2 FY
g
2
< 100 r
2
N echo-cluster3
g15
£ ?
echo-clusterl 2 §
304 P g 50 L
g - £
3 3 >
gos 2 z
> 205
z 02 05 H
3 2
go1
z I L
-12412391238 _: B - -109 -108 -107
v 124 122 12 RV 5 -5 0 5 10 15 20
10 RV x10° x10 RV <10’

(b) k-means cluster foecho return values

Fig. 7. Return Value Frequency Distributions for Output Programs

15

1o'shatsum-cluster3
4

shalsum-cluster1

Average RV frequency
I
T

Average RV frequency

700 154 L
. 600
S 500
£ 1 r
z 40
Y g g ohatsumcster2 o shalsum-cluster4
g0 H g
H g i 315
200 g 05 &
zos >
100 B Sos
g [
2, 0
225 2 15 -1 -05 . 10 -5 0 e o 5 & o5 1 15 2 25
RV x10° Vo xae® RV <10 RV «10°
& 10*mdSsum-cluster2
" i I
354 =
34 L
25 F
mdssum-clusterl E
g
z [
700 S
g
600 <
154 =
500 mdssum-cluster3
400 . 5
§15 mdssum-clusterd
300 g >
S0 Y
200 054 g £
g H
§ 4
100 z° 3
g 2
. z
<125 -12 <115 -11 -105 -9 -5 o 5 13 14 15 15 16 17
RV x10° RV X107 RV x10° RY 10°

(b) k-means cluster fard5sumreturn values

Fig. 8. Return Value Frequency Distributions for Hash Programs

16

