
Return Value Predictability Profiles for Self–Healing

Michael E. Locasto1, Angelos Stavrou2, Gabriela F. Cretu3, Angelos D. Keromytis3,
and Salvatore J. Stolfo3

1 Institute for Security Technology Studies, Dartmouth College
2 Department of Computer Science, George Mason University

3 Department of Computer Science, Columbia University

Abstract. Current embryonic attempts at software self–healing produce mech-
anisms that are often oblivious to the semantics of the code they supervise. We
believe that, in order to help inform runtime repair strategies, such systems re-
quire a more detailed analysis of dynamic application behavior. We describe how
to profile an application by analyzing all function calls (including library and
system) made by a process. We create predictability profilesof the return values
of those function calls. Self–healing mechanisms that relyon a transactional ap-
proach to repair (that is, rolling back execution to a known safe point in control
flow or slicing off the current function sequence) can benefitfrom these return
value predictability profiles. Profiles built for the applications we tested can pre-
dict behavior with 97% accuracy given a context window of 15 functions. We
also present a survey of the distribution of actual return values for real software
as well as a novel way of visualizing both the macro and micro structure of the
return value distributions. Our system helps demonstrate the feasibility of com-
bining binary–level behavior profiling with self–healing repairs.

keywords: behavior profiling, anonamly detection, self-healing

1 Introduction

The growing sophistication of software attacks has createdthe need for increasingly
finer-grained intrusion detection systems to drive the process of automated response and
intrusion prevention. Because such fine-grained mechanisms are currently perceived as
too expensive in terms of their performance impact, questions relating to the feasibility
and value of such analysis remain unexplored. In particular, it seems that self–healing
mechanisms would benefit from a detailed behavior profile.

This paper demonstrates the efficacy and feasibility of building profiles of applica-
tion behavior at a fine-grained level of detail. We focus on the use of function return
values as the main feature of these profiles. We do so because return values can help
drive control flow decisions after a self–healing repair. Inthis paper, we show how to
build profiles that contain this information at the binary level — that is, without making
changes to the application’s source, the OS, or the compiler.



1.1 Observing Program Behavior

A popular approach to observing program behavior utilizes anomaly detection on a pro-
file derived from system call sequences [1–5]. Relatively little attention has been paid
to the question of building profiles — in a non-invasive fashion — at a level of detail
that includes the application’sinternal behavior. In contrast, typical system call pro-
filing techniques characterize the application’s interaction with the operating system.
Because these approaches treat the application as a black box, they are generally sus-
ceptible4 to mimicry attacks [7]. Furthermore, the increasing sophistication of software
attacks [8] calls into question the ability to protect an application while remaining at this
level of abstraction (i.e.,system call interface). Finally, most other previous approaches
instrument the application’s source code or perform staticanalysis. In contrast, we con-
structed a non–invasive return value collector tool using the Pin [9] dynamic binary
rewriting framework to gather profile information.

1.2 Self–Healing

Various approaches to software self–healing [10–13] concentrate on a transactional ap-
proach in which the current sequence of functions is rolled back to some known safe
point in execution [14, 11, 15], and the calculations done bythe aborted “transactions”
are undone. Such approaches require a profiling mechanism toboth guide the selection
of “known safe points” and set appropriate state at those points.

For example, the concepts oferror virtualization [12] and failure–oblivious com-
puting[10] are representative of approaches that attempt to execute through faults (e.g.,
memory corruption due to an exploit) by manufacturing information that helps control
subsequent execution. Failure–oblivious computing manufactures values for read op-
erations and silently expands or truncates memory overwrites. In error virtualization,
a heuristic helps determine the return value for an aborted function; the hope is that
the rest of the software will gracefully handle this manufactured error return value and
continue executing, albeit without the influence of the attacker.

Determining these return values employs source code analysis on the return type
of the function in question. This approach is somewhat unsatisfactory; it seems as if
it should be possible to dynamically and automatically collect enough information to
determine appropriate error virtualization values. This paper addresses the problem of
how to automatically extract enough information from program execution to accurately
characterize program behavior in terms of return values to support self–healing.

Behavior profiling has been used to create policies for detection [16, 17]. In contrast,
we suggest using this information to help automatically generate templates for repair
policies [18]. In addition, this information can drive the selection of “rescue points” for
the ASSURE system [15]. One goal of this paper is to provide systems like SEAD and
ASSURE with a profiling mechanism.

4 Gaoet al. [6] discuss a measure of behavioral distance where sequences of system calls across
heterogeneous hosts are correlated to help avoid mimicry attacks.

2



1.3 Caveats and Limitations

Binary-level function profiling proves more difficult than may initially be expected.
Functions are source level artifacts that have only rough analogues at the machine level.
Since a compiler can arbitrarily transform the source–level representation of a function
or signal handling can interrupt control flow, it is difficultto cover all cases of function
entry and exit. We rely on Pin [9] to detect these events, although it can fail to do so in
the presence of tail recursion or aggressive function inlining by the compiler. Finally,
because the profile is dependent on a particular binary, our system must recognize when
an older profile is no longer applicablee.g.,as a result of a new version of the applica-
tion being rolled out, or due a patch. We can detect this in several ways, including the
modification time of the program image on disk.

1.4 Contributions

Overall, we demonstrate the utility of fine-grained application modeling to support self–
healing repairs. Our work differs from related work (Section 2) on anomaly detection
and self–healing software in two important respects:(1) the structure and granularity
of our profiles, and(2) the focus on repair rather than detection.

We create a new model of program behavior extracteddynamicallyfrom the ex-
ecution of the program binary without instrumenting the source code, modifying the
compiler, or altering the OS. We condition this model based on a feature set that in-
cludes a mixture of parent functions and previous sibling functions. Prior approaches
look at the call stack, thus ignoring previous siblings, which have already completed
execution and so are no longer part of the call stack. This model can help select ap-
propriate error virtualization values, inform the choice of rescue points, or drive the
creation of repair policy templates. In addition, we provide a survey of return values
used in real software. Finally, we proposerelative scaled k-means clusters, a new way
to simultaneously visualize both the micro and macro structure of feature-frequency
behavior models. Details on our profiling experiments and results can be found in Sec-
tion 4. Section 5 characterizes the return value content of the profiles.

2 Related Work

Our work provides a mechanism to describe application behavior. Thus, our modeling
algorithm draws from a rich literature on host–based anomaly detection schemes. While
this area is well–mined, we believe it is worthwhile to revisit previous efforts to validate
and potentially improve on them. Most significantly, we focus on the utility of behavior
profiles for post-attack repair rather than pre-attack detection.

Anomaly DetectionHost-based anomaly detection is not a new topic. The seminalwork
of Hofmeyr, Somayaji, and Forrest [19, 3] helped initiate application behavior profiling
at the system call level. Fenget al.[4] and Bhatkaret al.[20] contain good overviews of
the literature in this space. Most approaches to host-basedintrusion detection perform
anomaly detection [2, 16, 5, 21] on sequences of system callsand their arguments [22]

3



because the system call interface represents the services that user–level malcode, once
activated, must use to effect persistent state changes and other forms of I/O. System
call information is easy to collect; thestrace(1) andltrace(1) tools for Linux
are built to do exactly that. The closest work to our buildingof behavior profiles is the
work by Mutzet al.[1] and Fenget al.[4]; the most significant differences in our model
building is that we employ sibling functions when building profiles, and we examine the
return values (rather than arguments). The most significantoverall differences between
our current work and the general space of system call AD is that we consider how to
use this profile in the process of self–healing repairs.

Profiling for Self–HealingThe key assumption underlying error virtualization [12] is
that a mapping can be created between the set of errors thatcouldoccur during a pro-
gram’s execution and the limited set of errors that are explicitly handled by the existing
program code. By virtualizing the errors, an application can continue execution through
a fault or exploited vulnerability by nullifying the effects of such a fault or exploit and
using a manufactured return value for the function where thefault occurred.

ASSURE [15] attempts to minimize the likelihood of a semantically incorrect re-
sponse to a fault or attack by identifyingerror virtualization rescue points: program
locations that are known (or at least conjectured, according to a behavior profile) to
successfully propagate errors and recover execution. The key insight is that a program
should respond to malformed input differently than benign input; locations in the code
that successfully handle these sorts of anticipated input “faults” are good candidates
for recovering to a safe execution flow. We view our behavior profiling as a service
provider to ASSURE’s rescue point selection; ASSURE provides an input training set
and handles the details of “teleporting” a failure to the appropriate rescue point.

3 Profile Structure

We define a profile structure that allows us to predict function return values based on the
preceding context [23, 1] (functions that have just finishedexecuting). Our system is a
hybrid that captures aspects of both control flow (via the execution context) and portions
of the data flow (via function return values). We construct an“execution context” for
each function based on the application’s behavior in terms of both control (predecessor
function calls) and data (return values) flow. This context helps collapseoccurrencesof
a function into aninstanceof a function to avoid under-fitting or over-fitting the model.

A behavior profile is a graph of execution history records. Each record contains
an identifier, a return value, a set of arguments, and a context. Function names serve
as identifiers (although callsite addresses are sometimes substituted). Parent and pre-
vious sibling functions compose the context. Argument and return values correspond
to the values at function entrance and exit, respectively. The purpose of each item is
to help identify an instance of a function. For example, considering every occurrence
of printf() as thesameinstance reduces our ability to make predictions about its
behavior. Likewise, considering all occurrences ofprintf() to bedistinct instances
reduces our ability to make predictions in a reasonable amount of time.

We adopt a mixture of parents and siblings to define a context for two reasons. First,
a flat or nil context contains very little information to basea return value prediction on.

4



Fig. 1. Drop in Average Valid Window Context. This graph shows that the amount of unique
execution contexts we need to store to detect changes in control flow decreases as window size
increases.xterm is a special case because it executes a number of other applications. If we
consider the ratio of valid context windows to all possible permutations of functions, then we
would see an even sharper decrease.

Second, previous work focuses on the state of a call stack, which consists solely of
parent functions. As our results in Section 4 demonstrate, the combination of parents
and siblings is a powerful predictor of return values. The window size determines, for
each function whose profile is being constructed, the numberof functions preceding it
in the execution trace that will be used in constructing thatprofile. Figure 1 provides
insight: it shows that the amount of unique execution contexts drops as the window
size increases. In contrast, if there were a large amount of valid windows, our detection
ability would be diminished.

4 Evaluating Profile Generation

We start by assessing the feasibility of generating profilesthat can predict the return
values of functions. This section considers how to generatereliable profiles of appli-
cation execution behavior for both server programs and command line utilities. These
profiles are based on the binary call graph features combinedwith the return values of
each function instance. We test and analyze applications that are representative of the
software that runs on current server and desktop Unix environments, including:xterm
(X.Org 6.7.0),gcc (GNU v3.4.4),md5sum (v5.2.1),wget (GNU v1.10.2), thessh
client (OpenSSH 3.9p1) andhttpd (Apache/2.0.53). We also employ some crafted
test applications to verify that both the data and the methods used to process them are
correct. We include only one of these applications (bigo) here because it is relatively
small, simple to understand, and can easily be compared against profiles obtained from

5



the other applications. The number of unique functions for all these applications is:
xterm, 2111; gcc, 294; md5sum, 239; wget, 846; ssh, 1362; httpd, 1123; and bigo, 129.

Fig. 2. Average Predictability of Return Values. Return value prediction for various applications
against a varying context window size. Window sizes of 15 or more achieve an average prediction
of 97% or more for all applications other thanhttpd (with a rate of about 90%).

Return Value PredictionFinding a suitable repair for a function, in the context of the
self–healing systems we have been discussing, entails examining the range of return
values that the function produces. As Section 3 explains, the notion of return value
“predictability” is defined as a value from0..1 for a specific context window size. A
predictability value of1 indicates that we can fully predict the function’s return value
for a given context window.

Figure 2 shows the average predictability for the set of examined applications. It
presents a snapshot of our ability to predict the return value for various applications
when we vary the context window size (i.e., the history of execution). Using window
sizes of more than 15 can achieve an average prediction rate of more than 97% for all
applications other thanhttpd. Forhttpd, prediction rates are around 90%. This rate
is mainly caused by Apache’s use of a large number of custom functions that duplicate
the behavior of standard library functions. Moreover, Apache is larger and more com-
plex than the other applications and has the potential for more divergent behavior. Of
course, this first data set is only a bird’s eye view of an overall trend since it is based on
the behavior of the average of our ability to predict function return values.

To better understand how our predictions perform, we need tomore closely exam-
ine the measurements for different runs of the same application. In Figure 3(b) and
Figure 3(a) we present results for different runs ofhttpd andwget. Thewget utility
was executed using different command line arguments and target sites. Apache was used
as a daemon with the default configuration file but exposed to adifferent set of requests

6



(a) Average Predictability of Return Values
for Different Runs ofwget. Although there
are 11 runs forwget, each individual run
is both highly predictable (>98%) and very
similar to the others’ behavior for different
window sizes.

(b) Average Predictability of Return Values
for httpd and for Different Runs. Although
return value prediction remains high (>90%)
for httpd, some variations are observable
between the different runs. This phenomena
is encouraging because it suggests that the
profile can be specialized to an application’s
use at a particular site.

Fig. 3.Return Value Predictability for bothwget andhttpd with Different Window Sizes

for each of the runs. As we expected,wget has similar behavior between different runs:
both the function call graph and the generated return valuesare almost identical. On the
other hand, Apache has runs that appear to have small but noticeable differences. As
reflected in the average plots, however, all runs still have high predictability.

Some questions remain, including how effective our method is at predicting return
values of individual functions. Also, if there are any function that we cannot predict
well, how many functions of this type are there, and is there some common feature
of these functions that defies prediction? Answering these questions requires measure-
ments for individual function predictability. To visuallyclarify these measurements, in
Figures 4(a) and 4(b), we remove functions that have a prediction of two or more stan-
dard deviations from the average. The evolution of predictability for wget andhttpd
is illustrated in Figure 4(a) and Figure 4(b). This evolution is consistent with what we
observe in Figure 2: most functions are predictable — and forsmall context windows.

Table 1.Percentage of Unpredictable (Outlier) Functions. We illustrate the nature of the overlap
in behavior profiles by examining which functions are outliers both within and across programs.

Application % outliers % common outliers % common functions
gcc 5 53 51
md5sum 5 87 84
wget 6 62 56
xterm 6 39 17
ssh 5 35 33
httpd 10 10 28

7



(a) Predictability of Return Values forwget
Functions. Each line represents a function and
its predictability evolution as context window
size increases. Most functions stabilize after a
window size of ten. This graph excludes a small
set (Table 1) of outlier functions (functions that
are two standard deviations from the average).

(b) Predictability of Return Values forhttpd
Functions. Each line represents a function and its
predictability evolution as context window size
increases. As expected,httpd has more func-
tions that diverge from the average. It also has
more outliers, as shown by Table 1.

Fig. 4. Per-Function Return Value Predictability for bothwget andhttpd

A small percentage of the functions, however, produce return values which are
highly unpredictable. This situation is completely natural: we cannot expect to predict
return values that depend on runtime information such as memory addresses. Addi-
tionally, there are some functions that weexpectto return a non-predictable value: a
random number generator is a simple example. In practice, aswe can deduce from our
experiments (see Table 1), the number of such “outlier” functions is rather small in
comparison to the total number of well–behaved, predictable functions.

In Table 1, each column represents the percentage (out of allfunctions in each pro-
gram) of common or outlier functions. The first column presents the percentage of func-
tions that are outlierswithin a program: that is, functions that deviate from the average
profile by more than two standard deviations for all windows of size >10. For each
program, there are relatively few “outlier” functions. Thesecond column examines the
percentage of common outliers: outliers that appear in two or more applications. We
can see that the functions that are unpredictable are consistent and can be accounted for
when creating profiles. The third column displays non-outlier functions that are com-
mon across applications. These common and predictable functions help show that some
aspects of program behavior are consistent across programs.

5 Return Value Characteristics

While Section 4 shows how well we can predict return values, this section focuses on
whatreturn values actually form part of the execution profile of real software, and how
those values are embedded throughout the model structure. We wrote a Pin tool to cap-
ture the frequency distribution of return values occurringin a selection of real software,

8



and we created distributions of these values. These distributions provide insight into
both the micro and macro structure of a return value behaviorprofile. Our data visual-
ization technique scales the height and width of each cluster to simultaneously display
both the intra- and inter-cluster structure. Our analysis aims to show that return values
can reliably classify similar runs of a program as the same program as well as distin-
guish between execution models of different programs.

Return Value Frequency ModelsOur Pin tool intercepts the execution of the monitored
process to record each function’s return value. The tool builds a table of return value
frequencies. After the run of the program completes, we feedthis data to MATLAB
for a further evaluation that leads to a final return value frequency model. As a proof
of concept, a model for a particular monitored process is simple, consisting of the av-
erage frequency distribution over multiple runs of the sameprogram. Intuitively, we
expect several types of clusters to emerge out of the averagefrequency distribution. We
anticipate clusters that contain very high frequency return values, such as -1, 0, and 1
(standard error or success values as well as standard outputhandles). We expect a larger,
more dispersed cluster that records pointer values as well as a cluster containing more
“data” values such as ASCII data processed by character or string handling routines.

Table 2. Manhattan Distance Within and Between Models.The diagonal (shown in italics) dis-
plays the average distance between each trace and the behavior profile derived from each trace
of that program. All other entries display the distance between the execution models for each
program. We omit the lower entries because the table is symmetric. Note the difference between
gzip and gunzip as well as the similarity of gzip to itself.

date echo gzip gunzip md5sum sha1sum sort
date 3.03e+033.72e+031.61e+071.87e+066.46e+046.47e+045.45e+03
echo - 548 1.61e+071.87e+066.41e+046.42e+045.43e+03
gzip - - 212.4 1.79e+071.61e+071.61e+071.61e+07
gunzip - - - 1.91e+041.92e+061.92e+061.87e+06
md5sum - - - - 3.03e+043.38e+046.56e+04
sha1sum - - - - - 1.67e+046.57e+04
sort - - - - - - 4.24e+03

We examine three hypothesis dealing with the efficacy of execution behavior pro-
files based on return value frequency:

1. traces of the same program under the same input conditionswill be correlated with
their model

2. the model of all traces of one program can be distinguishedfrom the model of all
traces of another program

3. we can make the structure of the return value frequency models apparent using
k-means clustering

For the first hypothesis, we use Manhattan distance as a similarity metric in order
to compare each trace of the same process with the return value model of that process.

9



In effect, we compare each return value frequency to the corresponding average fre-
quency among all traces of that program. To evaluate the second hypothesis, we use
the Manhattan distance between each process model. The baseset for the return values
consists of all return values exhibited by all processes that are analyzed over all their
runs. Table 2 shows how each model for a variety of program types (we include a va-
riety of programs, like sorting, hashing, simple I/O, and compression) stays consistent
with itself under the same input conditions (smaller Manhattan distance) and different
from models for each other program (larger Manhattan distance).

−1.24 −1.22 −1.2

x 10
9

0

1

2
sort−cluster1

RVA
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−1.09−1.08−1.07

x 10
9

0

5

10

15

20

25
sort−cluster2

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−1 −0.5 0 0.5 1

x 10
8

0

100

200

300

400

500

600

700

800

900
sort−cluster3

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

0 2 4 6 8 10 12

x 10
8

0

5

10

15

20
sort−cluster4

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

Fig. 5. Relatively Scaled k-means Clusters forsort. Note how each component of the model is
scaled relative to the others while displaying the distribution of similar-frequency values inter-
nally; this technique clearly displays the differences between the high frequency return values
(cluster 3) and the frequent but more widespread parts of themodel (cluster 4) as well as the
behavior of values within each component. Both the verticaland horizontal dimensions of each
cluster are scaled. We display the clusters in increasing order from left to right determined by the
lower end of the horizontal axis range.

Each process has a particular variance with each trace quantified in the similarity
value between its model and the trace itself, but when compared against the rest of the
processes it can be easily distinguished. We ran each program ten times under the same

10



input profile to collect the traces and generate the model foreach program. We used as
input profiles generic files/strings that can be easily replicated (in some cases no input
was needed): date - N/A, echo - “Hello World!”, gzip -httpd-2.2.8.tar, gunzip -httpd-
2.2.8.tar.gz, md5sumhttpd-2.2.8.tar, sha1sum -httpd-2.2.8.tarand sort -httpd.conf(the
unmodified config file for httpd-2.2.8).

Clustering with k-meansSection 4 shows how to build profiles that are useful in pre-
dicting return values. The analysis here aims to achieve a better idea of what those actual
return values are and how frequently real applications use them. We cluster the return
values into frequency classes, and we chose the k-means method to accomplish the
clustering. The large disparity in the magnitude of return value frequencies can reduce
our ability to convey information about the overall structure of the model if displayed in
a simple histogram. Accordingly, we found a new way to simultaneously display both
the internal structure of each cluster as well as the external relationships between the
clusters. Our clustering method captures the localized view of return value frequency
per RV region and our visualization method provides insightinto the relative coverage
of a particular RV region. Figures 5, 6(a), 6(b), 7(a), 7(b),8(a), and 8(b) present the
clusters obtained for each of the analyzed processes. Each model has a predominant
cluster (e.g., cluster2 for data, cluster2 for gzip,etc.) which contains the discriminative
return value frequencies and has coverage. The remaining clusters contain the lower
frequency return values. We conjecture that by increasing the number of cluster we can
achieve better granularity that can distinguish between different types of return values
and classify them accordingly.

6 Conclusion

We propose a novel approach to dynamically profiling application execution behavior:
modeling the return values of internal functions. Our return value sniffer is available
under the GNU GPL at our website5. We show that using a window of return values,
including values returned by sibling and parent functions,can make return value predic-
tion as accurate as 97%. We also introduce a novel visualization method for conveying
both the micro and macro structure of the return value frequency model components.
We intend to investigate models that operate independentlyof the input profile. We in-
tend to investigate how our behavior profiling mechanism canbe used to create repair
policy and assist other self–healing systems select an appropriate response.

Acknowledgments

This paper reports on work that was supported in part by ARO/DHS contract DA
W911NF-04-1-0442, USAF/AFRL contract FA9550-07-1-0527,and NSF Grant 06-
27473. The content of this work is the responsibility of the authors and should not be
taken to represent the views or practices of the U.S. Government or its agencies.

5 http://www.cs.dartmouth.edu/∼locasto/research/rval/

11



References

1. Mutz, D., Robertson, W., Vigna, G., Kemmerer, R.: Exploiting Execution Context for the
Detection of Anomalous System Calls. In: Proceedings of theInternational Symposium on
Recent Advances in Intrusion Detection (RAID). (2007)

2. Chari, S.N., Cheng, P.C.: BlueBoX: A Policy–driven, Host–Based Intrusion Detection Sys-
tem. In: Proceedings of the9th Symposium on Network and Distributed Systems Security
(NDSS 2002). (2002)

3. Somayaji, A., Forrest, S.: Automated Response Using System-Call Delays. In: Proceedings
of the9

th USENIX Security Symposium. (August 2000)
4. Feng, H.H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly Detection Using Call

Stack Information. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy.
(May 2003)

5. Gao, D., Reiter, M.K., Song, D.: Gray-Box Extraction of Execution Graphs for Anomaly
Detection. In: Proceedings of the ACM Conference on Computer and Communications Se-
curity (CCS). (2004)

6. Gao, D., Reiter, M.K., Song, D.: Behavioral Distance for Intrusion Detection. In: Proceed-
ings of the8th International Symposium on Recent Advances in Intrusion Detection (RAID).
(September 2005) 63–81

7. Wagner, D., Soto, P.: Mimicry Attacks on Host-Based Intrusion Detection Systems. In:
Proceedings of the ACM Conference on Computer and Communications Security (CCS).
(November 2002)

8. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-Control-Data Attacks Are Realistic
Threats. In: Proceedings of the14

th USENIX Security Symposium. (August 2005) 177–191
9. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,

Hazelwood., K.: Pin: Building Customized Program AnalysisTools with Dynamic Instru-
mentation. In: Proceedings of Programming Language Designand Implementation (PLDI).
(June 2005)

10. Rinard, M., Cadar, C., Dumitran, D., Roy, D., Leu, T., W Beebee, J.: Enhancing Server Avail-
ability and Security Through Failure-Oblivious Computing. In: Proceedings6th Symposium
on Operating Systems Design and Implementation (OSDI). (December 2004)

11. Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: Treating Bugs as Allergies – A Safe Method
to Survive Software Failures. In: Proceedings of the Symposium on Systems and Operating
Systems Principles (SOSP). (2005)

12. Sidiroglou, S., Locasto, M.E., Boyd, S.W., Keromytis, A.D.: Building a Reactive Immune
System for Software Services. In: Proceedings of the USENIXAnnual Technical Confer-
ence. (April 2005) 149–161

13. Smirnov, A., Chiueh, T.: DIRA: Automatic Detection, Identification, and Repair of Control-
Hijacking Attacks. In: Proceedings of the12

th Symposium on Network and Distributed
System Security (NDSS). (February 2005)

14. Brown, A., Patterson, D.A.: Rewind, Repair, Replay: Three R’s to dependability. In:10
th

ACM SIGOPS European Workshop, Saint-Emilion, France (September 2002)
15. Sidiroglou, S., Laadan, O., Keromytis, A.D., Nieh, J.: Using Rescue Points to Navigate

Software Recovery (Short Paper). In: Proceedings of the IEEE Symposium on Security and
Privacy. (May 2007)

16. Provos, N.: Improving Host Security with System Call Policies. In: Proceedings of the12
th

USENIX Security Symposium. (August 2003) 207–225
17. Lam, L.C., cker Chiueh, T.: Automatic Extraction of Accurate Application-Specific Sand-

boxing Policy. In: Proceedings of the7th International Symposium on Recent Advances in
Intrusion Detection. (September 2004)

12



18. Locasto, M.E., Stavrou, A., Cretu, G.F., Keromytis, A.D.: From STEM to SEAD: Specula-
tive Execution for Automatic Defense. In: Proceedings of the USENIX Annual Technical
Conference. (June 2007) 219–232

19. Hofmeyr, S.A., Somayaji, A., Forrest, S.: Intrusion Detection System Using Sequences of
System Calls. Journal of Computer Security6(3) (1998) 151–180

20. Bhatkar, S., Chaturvedi, A., Sekar., R.: Improving Attack Detection in Host-Based IDS by
Learning Properties of System Call Arguments. In: Proceedings of the IEEE Symposium on
Security and Privacy. (2006)

21. Giffin, J.T., Dagon, D., Jha, S., Lee, W., Miller, B.P.: Environment-Sensitive Intrusion Detec-
tion. In: Proceedings of the8th International Symposium on Recent Advances in Intrusion
Detection (RAID). (September 2005)

22. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous System Call Detection. ACM
Transactions on Information and System Security9(1) (February 2006) 61–93

23. Eskin, E., Lee, W., Stolfo, S.J.: Modeling System Calls for Intrusion Detection with Dy-
namic Window Sizes. In: Proceedings of DARPA Information Survivabilty Conference and
Exposition II (DISCEX II). (June 2001)

13



−2.5 −2 −1.5 −1 −0.5

x 10
9

0

10

20

30

40

50
gunzip−cluster1

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−1 0 1

x 10
9

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
gunzip−cluster2

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

0.5 1 1.5

x 10
9

0

0.5

1
gunzip−cluster3

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

1 2 3

x 10
9

0

0.5

1
gunzip−cluster4

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

(a) k-means cluster forgunzip return values.

−2.5 −2 −1.5 −1 −0.5

x 10
9

0

0.5

1

1.5

2

2.5
gzip−cluster1

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−10 −5 0

x 10
8

0

0.5

1
gzip−cluster2

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−5 0 5 10

x 10
8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6 gzip−cluster3

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

0 1 2 3

x 10
9

0

0.5

1
gzip−cluster4

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

(b) k-means cluster forgzip return values.

Fig. 6.Return Value Frequency Distributions for a Compression Program

14



1.5 1.6 1.7

x 10
8

0

5

10
date−cluster4

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−1.25 −1.2 −1.15 −1.1 −1.05

x 10
9

0

5

10

15

20

25
date−cluster1

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−1 0 1

x 10
8

0

100

200

300

400

500

600

700
date−cluster2

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

1.2 1.4 1.6

x 10
8

0

5

10

15
date−cluster3

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

(a) k-means cluster fordate return values.

−1.24−1.239−1.238

x 10
9

0

0.1

0.2

0.3

0.4
echo−cluster1

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−1.24 −1.22 −1.2

x 10
9

0

0.5

1

1.5

2

2.5
echo−cluster2

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−1.09 −1.08 −1.07

x 10
9

0

0.5

1

1.5
echo−cluster3

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−5 0 5 10 15 20

x 10
7

0

50

100

150

200

250
echo−cluster4

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

(b) k-means cluster forecho return values.

Fig. 7. Return Value Frequency Distributions for Output Programs

15



−2.5 −2 −1.5 −1 −0.5

x 10
9

0

100

200

300

400

500

600

700

800
sha1sum−cluster1

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−10 −5 0

x 10
8

0

0.5

1
sha1sum−cluster2

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−5 0 5 10

x 10
8

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4sha1sum−cluster3

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

0.5 1 1.5 2 2.5

x 10
9

0

0.5

1

1.5

2
sha1sum−cluster4

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

(a) k-means cluster forsha1sum return values.

−1.25 −1.2 −1.15 −1.1 −1.05

x 10
9

0

100

200

300

400

500

600

700

800
md5sum−cluster1

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

−10 −5 0 5

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4md5sum−cluster2

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

1.3 1.4 1.5

x 10
8

0

5

10

15

20
md5sum−cluster3

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

1.5 1.6 1.7

x 10
8

0

2

4

6

8

10
md5sum−cluster4

RV

A
ve

ra
ge

 R
V

 fr
eq

ue
nc

y

(b) k-means cluster formd5sum return values.

Fig. 8. Return Value Frequency Distributions for Hash Programs

16


