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Abstract. Automated intrusion prevention and self-healing softwane active
areas of security systems research. A major hurdle for tldespread deploy-
ment of these systems is that many system administratdectadidence in the
quality of the generated fixes. Thus, a key requirement farréuself-healing
software is that each automatically-generated fix must lidated before deploy-
ment. Under the response rates required by self-healinigrags we believe such
verification must proceed automatically. We call this pescAutomatic Repair
Validation (ARV). We describe the design and implementatié Bloodhound
a system that tags and tracks information between the kanakthe application
and correlates symptoms of exploits (such as memory emdttshigh-level data
(e.g, network flows). By doing so, Bloodhound can replay the fldwves triggered
the repair process against the newly healed applicatioelfshow that the re-
pair is accurateife., it defeats the exploit). We show through experimentation a
performance impact of as little as 2.6%.
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1 Introduction

Recent advances in self-healing software techniques renasighe way for autonomic

intrusion reaction, but real-world deployments of sucheays have lagged behind re-
search efforts. The limits of detection technology havéohisally mandated that re-

searchers address the shortcomings of intrusion detdogifime reaction mechanisms
(i.e.,self-healing mechanisms) are considered — an attack mukttbeted before a re-

sponse can be mounted. In addition, many system admimisgrate reluctant to allow

a defense system to make unsupervised changes to the compuatiironment, even

though (and precisely because) a machine can react mueh flagh a human.

1.1 Automatic Repair Validation

Automatically generated fixes must be subjected to rigotesting in an automated
fashion. This problem is the essence of Automatic Repaidsitibn (ARV), a new area

of intrusion defense research. ARV encompasses the eptidram of an automated
response system’s functionality: attack detection, meg@iuracy, repair precision, and
impact on normal behavior:



1. Validation of detection — The system must verify that the events causing an alert
actually produce a compromise. In the case where the sesmoainomaly detector,
the detector’s initial classification must be confirmed.

2. Validation of a repair’s accuracy — The system must test and verify that the repair
defeats at least the exploit input that triggered the dietecThe rest of the paper
discusses the challenges of this process and our solutibimtdetail.

3. Validation of a repair’s precision — The fix must be precise, in the sense that it
blocks malicious variants of the original attack. For exéamf the fix is an input
filter, the system must ensure that the signature generdtes not fall prey to
the allergy attack [1], whereby a signature generationesyss trained to corre-
late benign input with undesireable symptoms, therebyeimsing the rate of false
positives.

4. Validation of a repair’s impact on application behavior — Behavior exhibited by
the application after self-healing should be similar to pinevious behavior pro-
file of the application. Section 6 briefly discusses an apghdar addressing this
challenge.

Even though the other problems in this space remain impietaailenges, we con-
cern ourselves with a repair’s accuracy in this paper. Vemif accuracy requires the
identification and replay of the attack inputs. Identifythgse inputs is challenging, as
they may not have been captured correctly (or at all) by tHerde instrumentation.
The challenge is greater if the input is contained in netwoakic — data that most
humans find difficult to rapidly analyze by hand. Although tfeneral ARV problem
exists for many types of systems, we propose a solution &iesys that deal with net-
work traffic. These applications remain popular targetsafteick due to the relative
anonymity of an attacker and the ease with which input carehets the system.

1.2 Correlating Across Abstraction

ARV reveals the tension between the need for abstractiomglsystem design with
the need for anti-abstraction during system healing. Sitefense system components
may not operate at the same layer, the underlying challenttpési problem space is cor-
relating information across layers of abstraction. Fomepi®, a detection component
may perform binary supervision, but its defense may be tmeigdion of signatures
that match network packet content. The accuracy of suctagiges is suspect because
the data that trips the detector is no longer contained iralfkgts; rather, it resides in
a memory address and may have been repeatedly transforrioed detection. With-
out appropriate instrumentation, the detector has losti¢hails of how the data arrived
in the memory location. This paper presents a system thaaicsninstrumentation to
address this problem.

Abstraction is a powerful tool for system design. The keyiagstion is that a com-
ponent should be self-contained: it should not know (anckfieee have a hidden depen-
dency on) the implementation details of another comporigrs assumption greatly
eases design cost and increases the flexibility of the systamposition. It no longer



holds when a system must self-heal. Other components muastde of the details of
the malfunctioning component so that they can respond téathee®.

Self-healing systems must correlate events and data alergss of abstraction.
This correlation should remain flexible: if a component shits to a different imple-
mentation, the self-healing infrastructure should adaphé internal behavior of the
new component. We plan to identify a core set of anti-abStladesign patterns in
follow-on work to help support this capability.

This paper considers the design, architecture, and impitatien ofBloodhound
a system for recording and replaying attack input embeddetetwork flows. The
primary challenge involves correlating the form of inpuattriggers the self-healing
instrumentation with the input that originally enters tlygstem. As such, Bloodhound
correlates network flows with host-based events by markingpplication’s internal
data structures with the ID of the flow that “taints” that dateucture. Bloodhound
breaks the traditional abstraction between low-level petwdata and high-level ap-
plication data objects by placing sensors at multiple layerthe network stack and
application stack. Specifically, Bloodhound runs on the tB&D operating system,
and it uses a loadable kernel module for a pseudo-devicetkiihe user/kernel-space
abstraction.

2 Related Work

ARV is only meaningful if a system protects itself with a sk#aling mechanism. Ri-
nardet al.[2] have developed compiler extensions that insert code & with access

to unallocated memory. This technique is leverageddiure-oblivious computingA
related idea is that adrror virtualization[3], which creates a mapping between the set
of errors that could occur during a program'’s execution &editited set of errors that
are explicitly handled by the program code. The Rx systeningfoves on these ap-
proaches by performing only safe perturbations of appticadtate to execute through
a fault.

2.1 Signature Generation

Although we could leverage Bloodhound to generate explgitatures, such a task
is not our goal. In addition, recent work [5, 6] has calletiguestion the ultimate
utility of exploit-based signatures, and Gatfi al. [7] discuss using binary-level taint-
tracking to construct network or filesystem level “data pat to filter input instances
related to a particular vulnerability. Newsoraeal. suggest generating and distribut-
ing vulnerability-specific execution filters [8] based oe tHentification of a particular
control flow path derived from tainted dataflow analysis. lagstems aim at automat-
ically generating signatures of malicious traffic [9—-12). Jenerate a signature, most
of these systems either examine the content or charaateristnetwork traffic or in-
strument the host to identify malicious input.

3 Note that the problem domain we consider in relation to “beléling” isnot the more tra-
ditional fault-tolerant environment for distributed ajggltions, where transparent fail-over to
replicated components is the norm. In such cases, antiaakisn serves little purpose.



Other recent work takes a hybrid approach and performstiipstprocessing on
network data. Abstract Payload Execution (APE) [13] idiadi network traffic that
contains malicious code by treating the content of a packehachine instructions.
Instruction decoding of packets can identify the sequerfidestructions in an exploit
whose purpose is to guide the program counter to the expidit.cKruegekt al. [14]
detect polymorphic worms by learning a control flow graphtfee worm binary with
similar techniquesConvergent static analysfd5] also aims at revealing the control
flow of malcode.

DIRA [16] is a compiler extension that adds instrumentatmkeep track of mem-
ory operations and check the integrity of control flow tramsf It creates a string-based
signature for filtering further exploit instances. LiangdaBiekar [12] and Xuwet al.
[17] concurrently proposed using address space randdonizit drive the detection
of memory corruption vulnerabilities and create a sigratorblock further exploits.
These systems operate in a similar fashion to Bloodhourthitthey trace back from a
memory error to network data. The work of King and Chen [18iagts virtual machine
logging and replay to step back through checkpoints of agysb identify the ultimate
source of a compromise.

Newsomeet al. propose dynamic taint analysis [19] to detect exploitechgra-
bilities. The Vigilante [20] system uses similar analysis €fletection and defines an
architecture for production and verification of Self-Cigitig Alerts (SCAs), a data
structure for exchanging information about newly discedevulnerabilities. The ver-
ification step is an example of the form of ARV mentioned in tier1: Vigilante
verifies the control flow path that forms the basis for thetadetually causes an ex-
ploit to occur. While Bloodhound uses tainted dataflow asialyit is not a replacement
for such systems. Instead, it augments dataflow analysismgsby considering how
tainted data flows through the kernel as well as userspaceongem

2.2 Replaying Traffic

Bloodhound archives all flows consumed by an applicatiorraplys only those flows
that were related to the exploit in question. Replaying igptibn protocol dialogs is a
crucial aspect of an ARV system, and it proves useful in a remob situations €.g.,
application or protocol debugging). Traffic can be repradlio two major ways. First,
the raw packets can be recorded and replayed, but this agfproay require a large
amount of storage and further packet processing. The semurdach builds an ana-
lytical model of traffic and then generates traffic matchimegse characteristics.

TCPopera [21] can interactively replay network traffic.dthroadly applicable to
problems that require producing large amounts of realistovork data. Roleplayer by
Cui et al.[22] and the ScriptGen system by Le#aal. [23] attempt to reconstruct and
replay application-level messages from network flows witlelcontextual data and a
few guiding heuristics.

The Replayer system [24] formalizes the problem of appbcateplay. Replayer
describes a sound approach (thatis, one not based on le)tisigenerate and issue an
input that directs Host Bob to reach the same state as Has fes determined by some
post-condition test). Although our replay problem is soratdifferent, the Replayer
system is the most closely related research effort to Bloadd, and we found the



syntax of Replayer’s formal model of application protocgplay useful to help frame
Bloodhound’s task.

The most significant difference between Bloodhound and &eplis that Blood-
hound focuses on identifying whether a particular netwank fh the database of stored
flows contains malicious input. In addition, the underlyprgblem differs; Replayer is
designed to suitably transform a traffic trace or input sa ¢ghaecond host reaches a
state equivalent to the first host. Replayer does this byexample, changing parts
of the input to reflect the appropriate hostname or cookieesélased on the post-
condition constraint. In contrast, Bloodhound leveragé# analysis to identify the set
of network packets involved in an exploit. We designed Blomahd to work with a
self-healing system. Since the host is modified via selfihgathe target state explic-
itly differs from the initial observed state €., the application reaches a new “healed”
state rather than the same corrupted state).

One interesting avenue of research would be to combine Repdend Bloodhound
so that stored flows that Bloodhound has selected for repiaycansistent with the
state of the application and external world. The major emagje with this approach is
to ensure that fields critical to the exploit are not changea Wway that interferes with
the exploit’s efficacy, thus introducing a false negative ithe validation process.¢.,
the systems believes the exploit was defeated by the salfrigewhen it was simply
broken by the replay engine).

3 Design Space

ARV consists of automatically validating each step in thegess toward a repair. We
focus our discussion here on how to determine the accuraayeyair for network ap-
plications. Bloodhound’s tasks include) preferentially recording network traffi¢h)
searching through these flows after the application has bealed, andc) replaying
the relevant flows to test this repair. Bloodhound providadence that an automated
response protects against the input that triggered théealfing mechanism.

3.1 ARV Replay Definition

ARV replay involves selecting a series of packets to trahsomé modified version of
an application to test whether it survives the act of consgrtiiose packets. An ARV
replay system, in effect, reprises the role of the attadRensider a progran® and a
set of network flows’. Some subset of those network flows are exploit flews

{ev,€1,...,en} CF Q)

When P runs and receives input containing exploit flows, it enters an exploited
or error stater (according to some detection mechanism).

RunP, F) — o (2)

After P consumeg’ and reaches the exploited or error stat@ self-healing func-
tion H operates o ands to produce a “healed” prograif’, optionally replacingr
or other states with correct or healed versions accorditiggoepair strategy in use.



H(Po)— P 3)
The ARV accuracy test is to identify the subsgtes, . . ., e, of F' and verify that:

Run(P’ {eg,e1,...,en}) = o 4)

that is, to determine whether the healed version of the egipdn enters an error or
exploit state on replay of the attack traffic.

During normal operation oP, (i.e.,when it has not enteredl), the system records
a database of flows' where each flowf; consists of incoming and outgoing packets.
Each packet of; causes changes in user and kernel memory and expressesalaart
control flow path inP. Instrumenting memory accesses to observe changes derived
from eachf; results in a directed graph. Each node inD is a memory address, and
each edge irD indicates that the source node “taints” the destinatioren¥de label
each edge with the instruction responsible for propagatiagaint.

While creatingD seems fairly straightforward) — as described — does not con-
tain enough information to support precise traceback. &fvack becomes imprecise
when the OS or application reuses a memory location to hdl dierived from both
malicious and non-malicious flows. At such “common point’meey locations (like
a buffer that stores incoming request®)does not prevent the traceback routine from
mistakenly expanding its scope. Common points have a fémin multiple flows that
becomes a fan-out during traceback.

Table 1. Forward-Marking Supports Precise Flow Tracebadke routine adds a node 0,
labels the transition, and labels the new (or existing)dargpde. Traceback iterates ov@rto
collect the malicious flow subsets from the correspondindes®fD.

ROUTINE PROPAGATEMEM SRC, MEM DST, FLOW F)
create new edge iy from srcto dst
addFl ow( dst, f)

ROUTINE TRACEBACK(EXPLOITMEM E, TAINTGRAPH D)
f or each memory address in £
f or each nodey in D
ifx=y
maliciousFlows— get FI ows ( y)
return maliciousFlows

Our solution adopts a simplified traceback approach baseaiforward marking
scheme that labels each node (memory addres$) imith the flow ID responsible
for the current change in the node’s data. Oitenterso, the detector generates a
set of memory addressds that are involved in the exploite(g.,an address whose



contents enters the instruction register). Forward markiontinuously maintains the
information necessary to quickly derifey, e1, . .., e, } (the flows responsible for the
exploit) givenE. At that point, Bloodhound performs the accuracy test of &iqun 4
to determine ifP’ represents a viable candidate to repl&tie production service.

3.2 Traffic Recording

Many options exist for preferentially recording flows. Theglest approach archives
all network traffic and replays the entire archive on demdainis approach seems un-
tenable; a system can only store a finite volume of traffic, repdaying or searching

an arbitrarily large archive is infeasible in a timing-degent domain like self-healing

software. The flow archive’s size must result in a reasondinlation for searching and
replaying flows. We consider some heuristics for choosinglflows to store:

— Save a sliding window of the lastdays worth of trafficThis heuristic is simple
to implement, and it is simple to tune the size of the archiveptimize storage or
replay duration. To test a patch against the archive, simgglay all stored flows.
The obvious downside to this heuristic is that it fails agaattacks that last longer
than, or started before, thedays stored in the archive.

— Save a probabilistic windowRather than using a window with a fixed horizon,
probabilistically eject flows from the archive as they agginy policies can range
from FIFO to LRU to random ejection. Regardless of the agiolicp chosen, the
self-healing software can only make probabilistic statet:i@bout its confidence
in a particular patch, based on the likelihood that the ergkploit was contained
in the archive.

— Archive flows flagged by a signature-based misuse detectpr &mort) This heuris-
tic has the advantage of simplicity, but it is a poor matchef@elf-healing system
that can patch against new 6rday attacks. The self-healing system can patch
against never-before-seen attacks, but the testing frankemould could only re-
play flows for which a signature already exists.

— Archive those flows identified by a payload-based anomabctieh system such
as Anagram [25].This heuristic supports the detection of suspect flows thaeh
never been seen before, unlike the previous example. Théiwiaf this heuristic
depends entirely on the abilities of the anomaly detectistesn. If the anomaly
detection system has a low false negative rate, then théhldleal that the entire
exploit package is archived is very high.

— Archive flows based on tainted dataflow analy§hss heuristic focuses on reducing
the duration of testing, rather than reducing storage specan application and the
OS handle each flow, the flow will taint various user and kedag structures. If
each flow is indexed based on the data structures it tairgs,dhring testing only
those flows which taint the data structures involved in thielpainder question
require replay.

These heuristics may also be combined to achieve variougspon the trade-
off curve between archive size, replay duration, and confideWhile the choices of
recording strategies listed above all involve tradeoffs,clioose to employ a solution



that does not admit false negatives during detection. Bhaturing replay, we prefer
to replay flows weknowto be malicious. Thus, Bloodhound uses a form of host-based
taint analysis to help identify flows that are involved in atjzaular exploit.

3.3 Classes of Attack

We classify attacks into several broad categories to madasier to illustrate the po-
tential complexity of the recording and replay task. Thepest scenario occurs when
a single TCP flow or UDP packet encompasses the entire agagkyorms like Slam-
mer or Code Red). The attacker initiates a connection, tméaghe exploit code, and
then closes the connection. Testing must replay the entire kh a slightly more com-
plex version, the attack may be a subset of a larger, inndtmmt Consider an SSH
connection where the attacker behaves innocently for aeheurs and then runs an
exploit. We differentiate this attack class from the presiscenario because it may not
be desirable to store all of a long-duration flow if only a jpmrtis suspicious.

An attack can be distributed across multiple TCP flows, edethich taken alone
appears innocent. Consider a hypothetical attack wherdl@meorrupts a buffer and
a second one delivers the rest of the exploit. To complicaéers, an attack may
take advantage of the timing relationship between mulfipies or the timing relation-
ship between packets of a single flow. Attacks of this forml@xpace conditions in
multi-threaded code, and recreating the circumstancescefconditions is notoriously
difficult. At the very least, the timing relationship betwethe packets or flows must
be preserved for testing. This requirement presents diffisifor arapid automatic re-
sponse, as deployment time is constrained by charactsrisdtthe attack — parameters
that the attacker controls. An attacker can potentialliridigte exploits from both these
scenarios over arbitrarily many flows.

The attack may depend on innocent user action. Consider@aiewhere the ad-
versary sends an attack packet, followedMyinnocent requests, the combination of
which triggers the exploit. Any replay of the flows must induthe attack packetnd
all N innocentrequests. This class is particularly difficultdngse, to the untrained eye,
the N*" packet is highly suspect, while the true attack packet doesecessarily stand
out. Worst of all, regardless of the validity of a particytetch, testing against thg*”
packet almost always succeeds because it is an innocemstequ

Finally, an attack may be polymorphic. That is, the algaritfor generating the
exploit code may use cryptographic or other heuristics tnge the form of the attack
over time. As a result, searching a flow or flows for particbiapatterns cannot neces-
sarily identify attacks of this form. In the most patholaglicase, an attack may consist
of any combination of the above attack classes: an attackbmaolymorphic, spread
across multiple TCP flowsinddepend on innocent user action. While we do not expect
this situation to dominate, it is useful to illustrate theemt of the design space.

4 Bloodhound Implementation

Based on the constraints we presentin Section 3, we covngiementation of Blood-
hound’s major components, including the structure of oua déorage component as



well as the implementation of a pseudo-device and its conication protocol with the
user space data management framework. We discuss waysrtozeptraffic recording
through the use of a network content anomaly detector in@e6t

Analyzer

Abolicati libwdig
PPlCAtION  fusssessersesessossersesse Daemon Database
A
User space M
Kernel space v
socket () ?2)
read () P /dev/bloodhound
write ()
A
A 4
TCP/IP stack

I

Network flows

Fig. 1. Bloodhound Architectureln order to track network flows from the operating system to
user applications, Bloodhound must break the user spacelkabstraction. When an applica-

tion issues a network 1/0O system céll), Bloodhound copies the network flow information to a
pseudo-devicé dev/ bl oodhound (2). A daemon(3) regularly polls the pseudo-device and

then stores the network flow data in a datab@geAfter a self-healing repair has been effected,
the analyzer can issue queries to the databaswo discover which flow caused the exploit. The

flow can then be replayed against the newly healed applitétitest the efficacy of the repair.

4.1 Architecture & Operation

Bloodhound must store flow information and enough structfweensic information to
link flows with kernel and application data items, so Bloodhd’s core components
are distributed across the kernel and user space as shovguire .

The/ dev/ bl oodhound pseudo-device is implemented as an OpenBSD Load-
able Kernel Module. The pseudo-device supports ant | () call BH.PI D which
indicates the process ID number of specific process to obs&mw loading, the mod-
ule hooks into the I/O system calls to intercept network thetfare it is copied to user
space. Each flow associated with the observed process iscctipan in-kernel buffer
which is read through standar@ad() calls on/ dev/ bl oodhound.



Data is read out of dev/ bl oodhound by a simple daemon process which uses
a Berkeley DB 4.5 database to store flows and related infeomafhe database main-
tains two primary relationships: a mapping from flow IDs tavflobjects (a data struture
that we define), and a mapping from tainted memory addresg$ksit IDs. We created
alibrary ( i bwdi g) to provide access to the data store and define our “flow” gaa t
The library contains the following core procedures:

— Register Flow— This procedure creates a message that encodes a flow arsd send
it via the protocol described below to the daemon. The dagmacses the message
and inserts the flow into the database indexed by the flow ID.

— Register Binding— This procedure creates a message that contains a memory ad-
dress and a flow ID. The daemon inserts this mapping into ttabeae.

— Retrieve Flow— This procedure provides a physical memory address to tee da
mon. If the address points to a flow, the daemon returns tlueiassd flow ID.

— Retrieve Location— This procedure supplies the daemon with a flow ID. As a
result, the daemon traverses the bindings of memory adelrdesflow IDs and
returns a list of memory addresses that are associatedheithiven flow ID.

The user space daemon emplbydwdi g to mediate an application’s access to the
database. User applications can also kalbwdi g’s functions directly to “manually”
store trace information. We plan to investigate methodsubbraatically performing
this dataflow analysis using binary rewriting to inject sathl i bwdi g functions.

The daemon serves as the hub of the system. It manages cooatiomiwith
three different components. First, it intercepts any upacs applications that use the
I i bwdi g library directly. The daemon receives requests for flows emory binding
insertions into the database and invokes the appropritabalse functions to handle the
request. Second, the daemon communicates with the kernaebththebl oodhound
device. The daemon periodically polls the bloodhound defac messages. The dae-
mon retrieves the messages and checks to see whether th®#8@gsociated with the
messages have been entered in the database. If they haiteregisters new flows in
the database with the new flow IDs. Finally, the daemon hdipsAtnalyzer perform
forensic operations by receiving requests for memory aidoe flow 1D lookups and
passing them to the database. The daemon uses a TCP-bakembpiaocommunicate
with the Analyzer, as described in Table 2.

5 Evaluation

We evaluate Bloodhound by examining three aspects of thersy$-irst, we discover
what impact Bloodhound has on the norma,, non-repair-time, performance of an
application by characterizing the slowdown due to systelfirdarposition of network
I/O related calls. Second, we employ an end-to-end test@ftistem to show how
Bloodhound’s forensic capability works for a syntheticnverability. Finally, we con-
sider the utility of a possible optimization that employther signature or statistical
content anomaly approaches to pre-classify (and thus)liimit number of flows that
Bloodhound would have to store for any given process.
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Table 2. Message Structure for Daemon Communicatidnmessage consists of two control
bytes: the first indicates either que§yor responseR, and the second distinguishes between
a memory locatiorL, a flow F, or a flow ID | . The rest of the message encodes a serialized
representation of the memory location or flow.

Direction Message Format Meaning
TodaemonQ, |, flowid, flowRegisteff| ow
Q L, loc, flow.id |Registera binding
Q L, loc Retrievef | ow.i d at locationl oc
Q I, flowid Retrievef | ow.i d
To client R F, flow Response to retrievid ow
R I, flowid Response to registét ow | D

5.1 Performance

To understand the performance impact of Bloodhound, weliattd thebl oodhound
device to observe a single-process instance of the Apachesamer. The web server
was running on a Dell PowerEdge 2650 with a 2.8GHz Intel Xeorcgssor and
1GB of RAM. We used a second, identical, Dell PowerEdge 2660nected to the
first over Gigabit Ethernet to download a collection of fil@e collection of files
we chose was the Apache web server manual, as distributédtivétOpenBSD op-
erating system. It consists of 163 text and graphics fileslliogy 2.1M of data. The
manual was downloaded 25 times witdev/ bl codhound inactive, followed by an-
other 25 downloads withdev/ bl oodhound activated. On average a download with
/ dev/ bl oodhound inactivate took 4.19s, while a download witdev/ bl oodhound
active took 4.31s, for a general performance impact of 2.6%.

5.2 Efficacy

The purpose of our end-to-end efficacy test is to illustrate Bloodhound can work
back from a memory error or other indication of a detecteachtto the network flow
that contained the exploitinput. Memory errors manifegtesignals like SIGSEGV are
common symptoms of detected exploits, especially whereptioh mechanisms like
Stackguard, address space layout randomizationm or atistnuset randomization are
employed. In any case, Bloodhound assumes that such a sighaé raised, and that
the Analyzer can obtain a memory address to start workingvsaa from. In future
work, we plan to use a binary rewriting tool to track taintedadbetween application-
level data structures.

We test the traceback process for a synthetic vulneraliity hypothesis is that we
can use Bloodhound’s kernel instrumentation to track aacktback from a memory
error to the flow causing the error. Our experiment is based fimction containing
a stack-based buffer overflow in an echo server. The echerserads user input into
a small buffer and echos it back to the user. An exploit s@@ds a long string of
input characters to the server, causing an overwrite of theksEach time the ead
system call is used, it uséslev/ bl oodhound to notify the database of the contents
boundaries of the data transfer.
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When an overflow occurs and the function returns, the Open&8E&k-smash pro-
tection is triggered and causes the program to crash, dgngoire. A script loads the
core and determines the location of the RET value on the sfddk value is used as
the search value in the database, identifying the datasetrigered the overflow.

6 Discussion

Automatically validating a repair is a rich field for futurevk, especially for techniques
to ensure that the behavior of an application after repatches a profile of behavior
known to be “good” or clean of malicious influence. A numbeconhsiderations exist
in this space that parallel the challenges that Bloodhoaoeld. In particular, the choice
of behavior aspects to record and analyze is a key to balgnba tradeoff between
the amount of information retained and the ability to confimith enough specificity
that the system can automatically distinguish between kingaod tested behaviors and
anomalous or malicious behaviors. We believe that a promiapproach would start
with the rich set of techniques previously proposed foreystall anomaly detection
[26—28]. Capturing aspects of both data and control flow,[R&]Juding library, appli-
cation, and system calls as well as function return valudsaguments [30] seems like
it would provide a solid profile with enough information tcstihnguish between these
behaviors.

6.1 Limitations

Bloodhound’s implementation can be improved along thneesli First, we do not deal
with taint-tracking through the application itself. Sudint-tracking can be accom-
plished by a programmer making direct calls into our taiatking library. We can
also explore the combination of our kernel-level taintkiag with existing binary-
level tainted dataflow analysis. Second, we plan to incatgobehavior profiling (as
described above) into Bloodhound so that it can verify arliegiion’s post-healing
profile. We are currently porting our OpenBSD implementatio Linux to support
these capabilities.

A third area of future work deals with improving Bloodhousdgilayback capa-
bilities to handle some of the more advanced classes ofkattadist in Section 3.3.
For example, while other “innocent” user packets may hatvegehe attack€.g, by
causing some limit to be exceeded), Bloodhound does noseatly identify them as
involved in the exploit. We defer research on these typedtatks; the goal of our
current research and development is to provide an infretstret — currently absent
— for addressing them. We believe, however, that repaidatibn can proceed in the
presence of these types of attacks, and we offer a sketchegbassible way forward:
the use of continuous hypothesis testing that proceedsghreach level of attack. If
the cost of applying the fix to a production system can be kelptively low, Blood-
hound can validate the repair in stages, where each stagmesshat the attack was
more sophisiticated and constructs appropriate playbeehasios as needed. This in-
cremental process of generating and validating fixes alBlasdhound to both quickly
validate a fix for a specific version of the exploit and continsly ensure that the fix

12



works against more advanced attack scenarios. The explormeatt this type of intru-
sion defense system seems valuable, and Bloodhound'sdg®ai framework so that
researchers can implement more intelligent playback astohtestrategies.

One potential criticism of Bloodhound is that it appears ¢oelploit-specific and
therefore does not provide protection that vulnerabgipecific systems might. While
Bloodhound focuses on identifying a particular exploitihpts task does not conflict
with the goals of vulnerability-specific defense system$[&0, 7] and related analy-
sis [5, 31]. Instead, Bloodhound can provide these systeitlismore confidence that
the fix is correct and blockat the very leasthe malicious input that triggered the
instrumentation. Future work can use the input traffic aseptate to generate other
semantically correct instances of the flow so that the fix camelsted against a vari-
ety of inputs that exploit the same vulnerability. Systeinslar to RolePlayer [22] or
Replayer [24] seem well suited to this task. @uial. [7] illustrate the process of de-
riving practical signatures of previously unknown vulrgligies. These “data patches”
are generated in part by binary-level taint-tracking arig fiker related exploit inputs.

6.2 Further Optimizations

We have performed several preliminary experiments to deter the feasibility of re-

ducing the amount of traffic that ARV systems like Bloodhomegd to store. ARV is
essentially a problem of search; performing an online $gawen of an indexed cor-
pus, can be sped up if the size of the corpus is reduced. Arsytbigt only considers
packets relevant to the current vulnerability or exploitaebprove useful. Bloodhound
uses taint propagation to achieve this measure. HoweveARdM system can com-
plement this dataflow analysis with packet classificatidmestes, including payload
anomaly detection. We refer the interested reader to obinteal report, which has the
details [32].

7 Conclusions

Most attacks occur rapidly enough to frustrate manual defem repair. It appears that
defense systems must include some degree of autonomy. tReseances have led
to an emerging interest in self-healing software as a soiub this problem. System
owners, however, are understandably reluctant to perniitn@ated changes to their
environment and applications in response to attacks.nigeat automatic repair helps
raise the confidence level in self-healing systems. Onieakjpart of such testing is the
verification that the changes made by the self-healing meshmactually defeat the
original attack or close variations thereof.

This paper identifies the important challenge of Automagp&ir Validation (ARV):
using audit information to test the resilience and efficaicy gelf-healing repair. We
presentBloodhounda system for recording and replaying network flows related to
the exercise of a particular vulnerability. The design psscreveals a number of chal-
lenging problems that the research community needs to sslitre@rder to make self-
securing systems a reality. Our implementation and exparigillustrate that the prob-
lem is surmountable; the performance impact on normal diperdue to monitoring

13



seems reasonable, and the system can trace back to the flaultatri the future, we
plan to deploy Bloodhound in a testbed like DETER to test hall Bloodhound can
provide an audit service to other nodes.
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