
Simple Steps for Simply Stepping

Chun-Chih Wu, Jose Medina, and Victor B. Zordan

University of California, Riverside
{ccwu,medinaj,vbz}@cs.ucr.edu

Abstract. We introduce a general method for animating controlled
stepping motion for use in combining motion capture sequences. Our
stepping algorithm is characterized by two simple models which ideal-
ize the movement of the stepping foot and the projected center of mass
based on observations from a database of step motions. We draw a par-
allel between stepping and point-to-point reaching to motivate our foot
model and employ an inverted pendulum model common in robotics for
the center of mass. Our system computes path and speed profiles from
each model and then adapts an interpolation to follow the synthesized
trajectories in the final motion. We show that our animations can be
enriched through the use of step examples, but also that we can syn-
thesize stepping to create transitions between existing segments without
the need for a motion example. We demonstrate that our system can
generate precise, realistic stepping for a number of scenarios.

1 Introduction

Motion capture playback, blending, and modification have become the standard
suite of motion synthesis tools used for animating video games and increasing
number of feature animations. A standard practice associated with such appli-
cations is the generation of ‘transitions’ which combine two motion sequences
together to create one longer sequence. Transitions also play important role in
increasing responsiveness of character in interactive applications. However, the
quality of the resulting motion depends on the choice of method(s) for creating
the transition. Tell-tale artifacts of a poor transition in general include unnat-
ural foot sliding and physically implausible motion. Groups of researchers have
addressed these issues by explicitly removing so-called ‘foot skate’ [1, 2] and by
enforcing various physical characteristics during motion transition [3, 4].

In video games especially, foot skate often appears when a character tran-
sitions from standing in one configuration to another. Unless the feet are per-
fectly aligned, naive transition techniques will induce unnatural foot sliding as
the character goes from the initial to the ending stance. A difficult problem in
this scenario is to create a transition which accounts for the differences in the
placements of the feet while also accounting for the movement of the body in a
realistic manner. We observe that a human actor would tackle similar scenarios
by shifting the weight of the body and taking a step to re-position the feet. We



2 Chun-Chih Wu, Jose Medina, and Victor B. Zordan

propose that a similar mechanism for stepping is necessary to generate a plau-
sible transition. Based on this insight, a new problem arises during the special
conditions of transitions where a character begins and ends standing.

This paper introduces a general method for synthesizing stepping actions
in humanoid characters. While the technique is showcased in conjunction with
a motion database of examples which enrich the final motion, the power of the
approach comes from our models which drive the character using idealized, para-
metric trajectories for the stepping foot and projected center of mass. We show
that these trajectories can be simple mathematical functions built empirically
from observations of example stepping movements and parameterized to be con-
trolled by key features of the desired action. The result is a stepping system
that allows a character to ‘transition’ from one double-stance pose to another
automatically by stepping. The simplicity of the approach lends itself to being
adopted easily and immediately by game developers and technical animators
alike. To show the generalness of the results, we demonstrate example anima-
tions for a variety of scenarios.

2 Related work

Editing motion capture data has been the focus of an immense number of publi-
cations in the past two decades, too many to mention here individually. However,
we focus our discussion of the related work on the domain of motion transitions
and previous research related to balanced stepping.

Since the introduction of automatic data re-use using motion graphs [5–7],
the concept of generating transitions has become increasingly popular. Some
contributions highlight ideal lengths for transitions [8], use of multiple frames
to generate high quality transitions [9] and ways to generate transitions with
constraints [10]. Transitions are typically performed by blending the root and
joint angles over time. Cleaning up transitions is usually done with an algorithm
for correcting foot motion [1, 2] and inverse kinematics (IK). Tools for correcting
balance ensure that motion transitions remain physically plausible by control-
ling the center of mass (COM) or zero moment point [11, 12]. Closely related
research includes balance maintenance for stepping activities [13, 14]. However,
these projects are focused on choosing how to step in response to a disturbance
as opposed to our goal which is to generate a specific step based on a desired
foot placement. In this manner, we are more aligned with researchers interested
in driving animation with footprints, as in [15].

Researchers in robotics have also proposed techniques for automatically gen-
erating stepping motion for use in control of humanoid robots. Similar challenges
in this area include choosing step location and maintaining balance. Various nu-
merical values have been introduced to define balance (for a summary see [16])
and many balance control papers have appeared. One big difference between
our goals and those of roboticists is that we care more about the simplicity of
the solution than on precise control as long as our technique does not sacrifice
visual quality. One simplifying model is to treat the dynamics as an inverted



Lecture Notes in Computer Science 3

pendulum [17] and to control the robot to perform stepping based on a point
mass and massless leg. We use such a conceptual model to dictate the motion
of the COM for a stepping action. Another group of researchers introduce the
concept of the “capture point” which is the step placement (point) which yields
a single step to recover from a perturbation [18]. We feel a similar model could
be used in conjunction with our technique to choose the position of the foot and
the timing, which are the two required inputs to our system.

3 Stepping Algorithm

The algorithm we employ has two particular foci. First, we control the stepping
foot, both its path and its speed along that path. And second, we control the
COM, again both position and velocity. We choose to control the COM in order
to make the visible weight shift that corresponds to stepping actions in humans.
We propose that these two factors alone encapsulate many of the physical at-
tributes of a single step. While we also include motion examples of stepping
to enrich the upper-body movement of the final motion, our hypothesis is that
by moving the stepping foot and COM realistically we can generate believable
stepping simply.

Our technique incorporates these two components into an animation tran-
sition using optimization. In particular, we employ a frame-by-frame optimizer
which takes a frame from starting blend as input and produces a modified pos-
ture that enforces the desired stepping foot and COM trajectories. We expect
the choice of timing and position for the final stepping foot be provided as input
to our system. Along with the character’s current motion, we extract an example
motion from our database and use the sequence to compute the initial paths for
the foot and COM.

We break the description of our algorithm into two phases, preprocessing and
step generation. In the preprocessing stage, we determine the necessary inputs
to the stepping algorithm, specifically:

1. Input (from the user) the final stepping foot position and step duration

2. Identify the closest example from the step database

3. Adjust the ending pose from example using IK to place foot

4. Extract the COM ending place from the (adjusted) end pose

Steps 3 and 4 are used solely to determine the final position of the COM based on
the motion sequence selected. Alternatively, we can force the system to transition
to a specific motion sequence. In this case, Steps 2 and 3 can be skipped. Motion
generation follows a straightforward sequence:

1. Compute the stepping foot path, Pf , and speed profile, Vf

2. Compute the COM path, Pc and speed profile, Vc

3. Blend to example with support foot as root

4. Modify blend with optimizer to meet COM/foot trajectories



4 Chun-Chih Wu, Jose Medina, and Victor B. Zordan

The starting blend from Step 3 is treated as the input to the optimizer. To
keep the support foot from moving during transition, the blend is performed by
treating the chosen support foot as the fixed root of the branching chain for the
body. All other parts of the body move by smoothly interpolating the included
joint angles. More details about each part of our algorithm are described in the
following sections.

4 Stepping foot control

To define the stepping foot motion appropriate for the desired step/transition,
we determine the foot’s path and its speed along that path. We assume that the
path and speed profile are related by the distance covered from start to finish.
That is, the total path displacement must equal the integral of the function
chosen for the speed. We also assume that distance covered is monotonically
increasing along the path. We follow a similar set of definitions and assumptions
for COM control.

Fig. 1. Foot speed, Vf . The black, dashed curve is the idealized normal speed fit using
a Gaussian centered at 0.5. The rest are normalized sample profiles taken from various
examples in our step database.

We model stepping as if it is a point-to-point reach. Upon inspection
of our database of examples, we found remarkable uniformity - nearly-linear,
point-to-point paths for each stepping foot. There has been in-depth investiga-
tion performed on hand point-to-point movement for reaching tasks (see [19, 20])
and, in this body of work, it is commonly accepted that the hand traverses an
approximately straight-line path with a bell-shaped speed profile. For our foot
model, we adopt a similar estimate for the foot trajectory, Pf , by forcing the
foot to traverse the line segment formed by its starting and ending position while
using a normal Gaussian to serve as the bell-shaped speed curve. That is

Vf = ae
−(x−0.5)2

2w
2 (1)



Lecture Notes in Computer Science 5

defines the speed along Pf . This idealized speed curve is plotted in comparison
to several speed profiles taken from our database in Figure 1. When the recorded
curves are normalized in both time and amplitude, they show remarkable similar-
ity, independent of the stepping direction, the length of the step, or the duration.

We adjusted the shape (width) of our normalized Gaussian shown by manually
setting the constant, w, to be 0.08. This value is used for all our results using
stepping examples. To align the speed profile with the path, we must control the
area under the curve to be equal to the distance from the start to the end of
the footstep. We automatically tune the Gaussian by scaling amplitude, a, after
integrating the curve for the normalized amplitude shown in the figure. Note
this integration need only be done once and can then be scaled by a to match
the specific (known) distance covered in the to-be-synthesized motion.

5 Center of mass control

As with the foot, to control the COM we will define a simplified model which
captures the features of the human examples. Again our path and speed are
both idealized from observations about the stepping examples recorded in our
database. The COM path follows a parabola-like trajectory starting and ending
at known points and moving toward and away from the pivot foot. For Pc, we
found empirically that a simple quadratic Bezier curve which uses the start, end,
and pivot as control points reasonably maps out the path of the COM found in
examples in our database. Comparisons appear in the results section.

For the speed, we observe in the recorded motions consistent trends in the
trajectory of the COM velocity broken down into three phases. 1) Push off. In
this phase, before the foot is lifted, the COM begins to accelerate at a fairly
constant rate toward the support foot. 2) Free fall. The second stage has the
foot off the ground and we see a trajectory that mimics an unactuated inverted
pendulum with the center of mass accelerating uniformly away from the support
foot (now out of static balance.) 3) Landing. The stepping foot reaches the
ground and the motion induced in the second stage is dissipated with a slow
changing acceleration back toward the (original) support foot. What we infer
from these observations is that three stages with constant acceleration reasonably
describe the observed velocity profiles. Note, these phenomena are described in
the coordinate frame oriented toward the support foot.

An idealized inverted pendulum which pivots about the support

foot models both our path and speed observations reasonably. Based
on a pendulum model, our choice of path trajectory, Pc, is sensible since an
idealized pendulum moves its body on a ballistic, quadratic path. To fit the
velocity characteristics for the COM, we could approximate the effects of the
stepping leg as applying a uniform ‘push-off’ and ‘landing’ force before and
after the step. (The minimum jerk theory for reaching partially supports this
proposition [20].) An idealized constant force would yield a constant acceleration
for push-off and landing. Constant acceleration is also reasonable for the middle
phase when the body feels only the effects of gravity. Thus, for the model of



6 Chun-Chih Wu, Jose Medina, and Victor B. Zordan

our COM speed profile, Vc, we choose the piecewise linear function shown in
Figure 2. We derive the terms of the velocity segments shown from known (or
approximate) values for timing, t0 − t3, and the COM displacement, D, which
is extracted from the Bezier curve, Pc.

Fig. 2. COM speed, Vc. Ideal and actual speed profiles in the direction of the support
foot. That is, only motion toward and away from the pivot foot contribute to the data
plotted, plus signs are derived from a real example. The timing information, t0 − t3,
which delimit the stages (push off, free fall, and landing, respectively) can be estimated
from the motion example by detecting when the stepping foot leaves and reaches the
ground. Based on the pendulum model, m2 is set to gsin(θ) where θ is the lean angle
between vertical plane and support leg and g is gravity. Areas, A0 and A1, link D, the
displacement of the COM derived from Pc, to the slopes m1 and m3.

6 Synthesis for Stepping

To generate the starting blend given the stepping action parameters, we propose
a simple, but effective interpolation synthesis technique. The problem here is to
concatenate the motion the character is currently following with the stepping
motion in the example. To be successful, the transition should not introduce any
unwanted artifacts. The most straightforward solution is to align the transition-
to motion globally to the character’s current position and facing direction and
to blend the root position and orientation as well as the joint angles. However, in
general, this approach introduces undesirable foot sliding. Instead, we align the



Lecture Notes in Computer Science 7

support foot of the before and after motion and use this as the fixed root for the
blend. The system then performs the blend by interpolating over the errors for
the root orientation and the joint angles across the transition sequence. Note we
do allow the support foot to rotate across the transition. This rotation is usually
small if the facing direction of the two motions are closely aligned and acts to
pivot the foot if there is a larger discrepancy. We show that such rotations appear
natural looking in our results. In our implementation, our system interpolates
by ‘slerp’-ing quaternions, with a simple ease-in/ease-out (EIEO) time-based
weighting across the transition.

Once we have the starting blend, we modify it to uphold the stepping foot
and COM trajectories determined for the transition. We accomplish this goal
on a frame-by-frame basis, first applying IK to place the stepping foot at the
desired position and then using an optimization to reach the desired COM. The
optimizer works by moving the pelvis position in the horizontal plane and using
an IK sub-routine [21] to generate adjustments for each leg which enforce the
proper foot placement. A similar approach is described here [22]. Further, our
solver constrains the height of the pelvis to maintain a set maximum length for
each leg, lowering the pelvis automatically to avoid stretching either leg beyond
its limit. The beauty of this optimization routine is that it chooses only the
placement of the pelvis in the horizontal plane, but shifts the entire body and
subsequently controls the projected COM.

Our implementation uses Numerical Recipes’ BFGS routine [23] which em-
ploys a quasi-Newton, gradient-based search to determine the pelvis location.
The initial location is taken from the starting blend. The performance index is
simply the error between the desired and current projected COM. The position
of the desired COM is extracted from Pc by moving along the Bezier curve until
the path displacement satisfies Vc. Likewise, the stepping foot location is set
each frame to follow Pf while also satisfying the rate determined from Vf .

7 Implementation and Results

Our final implementation includes additional details that need to be described.
Our stepping database was recorded by systematically creating a series of normal
steps taken in various directions. We include twenty stepping examples which
begin and end with double-stance. We use our system in two modes: starting from
a known stance and transitioning to a modification of one of the step examples;
or by combining two existing clips, i.e. without using a step example. When
generating a step animation that includes an example, we select the example in
the database which is closest based on the (relative) desired step location. For
results without using examples, we found that adjusting the width of Equation 1
is sometimes necessary to avoid abrupt movement of the stepping foot. The
running time of our system is amply fast to be used at interactive rates.

Results. We show two types of results in the accompanying video to demon-
strate the range of animations that are possible using the technique. First, we
include examples which use our stepping database. We show an animation of a



8 Chun-Chih Wu, Jose Medina, and Victor B. Zordan

Fig. 3. Careful stepping. Navigating an extreme environment by precisely placing steps
shows off a series of four steps completely synthesized by our system.

Fig. 4. Animation of a series of steps pivoting on the left foot. The red X marks the
consecutive end locations of the steps synthesized, the X values were taken from the
motion capture sequence shown in the lefthand plot of Figure 5.

Fig. 5. Comparisons for stepping. Cartesian plots for the foot and COM paths shown in
red and green lines respectively over three consecutive steps. On the left is a contiguous
motion capture example held out of the database but used as target input for foot
placement and timing. In the middle is motion resulting from our model (also shown
in Figure 4). On the right is the starting blend, as described in the text.



Lecture Notes in Computer Science 9

series of steps using left and right feet alternately to create a careful navigation
(see Figure 3.) We compare the quality of a second synthesized series with a con-
tinuous motion sequence of three steps held out of the database (see Figures 4
and 5). Next, we include two animation examples that are generated without
the step database. The goal here is to breakdown the contributions of each com-
ponent of our system and to show off the power of our technique for creating
seamless transitions by stepping. In the video, we show a turning task which
is derived from simply by rotating a contiguous motion of a “ready-stance” in
martial arts. We contrast the optimized result with the starting blend. Next,
we modify a series of fighting attacks to control the direction of one kick by
changing the stepping motion preceeding the attack.

8 Discussion and conclusions

We have demonstrated the power of our simple method for generating controlled
stepping movement. The underlying assumptions in our system are motivated by
motor theorists and are supported by comparisons with motion capture examples
of stepping. While the technique is very simple, used in combination with a
stepping motion database we can generate rich motion that is comparable to
unmodified motion captured stepping.

Our approach does include certain limitations. First, the system does not
make any modifications to the upper body. While we know the upper body will
respond to the movement of the lower body during stepping, we rely on the
upper-body response embedded in the stepping example. When we remove this
example, the motion of the upper body is computed solely from the interpolants
and their blend. There is no guarantee that this will result in realistic motion.
Likewise, the pivoting of the support foot is derived solely from the starting blend
and we feel it is acceptable but not truly reflective of what we see in the motion
database. The piecewise linear model for the velocity of the COM is likely too
over-simplified to match human motion tightly, although we found it acceptable
for our purposes. And finally, if user inputs a final stepping foot position where
the distance is farther than the reaching limitation of single step for current
subject, our system currently is unable to automatically generate multiple steps
to achieve the final destination since this requires motion planning which is
beyond the scope of this paper.

Motion generation from a system like the one proposed is useful for directly
animating a character. However, we believe it is also potentially valuable for in-
forming a control system when employed in the activation of a physical character
or robot. We see this as a promising direction for future work. As is, the system
we describe is easy to implement and fast to run, and so we hope it is adopted
by game developers and animators who need to take steps toward stepping.

References

1. Kovar, L., Schreiner, J., Gleicher, M.: Footskate cleanup for motion capture editing.
Symposium on Computer animation (2002) 97–104



10 Chun-Chih Wu, Jose Medina, and Victor B. Zordan

2. Ikemoto, L., Arikan, O., Forsyth, D.: Knowing when to put your foot down. In-
teractive 3D graphics and games (2006) 49–53

3. Rose, C., Guenter, B., Bodenheimer, B., Cohen, M.F.: Efficient generation of
motion transitions using spacetime constraints. In: ACM Siggraph. (1996) 147–
154

4. Shin, H., Kovar, L., Gleicher, M.: Physical touch-up of human motions. Proceedings
of the 11th Pacific Conference on Computer Graphics and Applications (2003) 194

5. Arikan, O., Forsyth, D.: Interactive motion generation from examples. ACM
Siggraph (2002) 483–490

6. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Siggraph (2002) 473–482
7. Lee, J., Chai, J., Reitsma, P., Hodgins, J., Pollard, N.: Interactive control of avatars

animated with human motion data. ACM Siggraph (2002) 491–500
8. Wang, J., Bodenheimer, B.: Computing the duration of motion transitions: an

empirical approach. Symposium on Computer animation (2004) 335–344
9. Ikemoto, L., Arikan, O., Forsyth, D.: Quick transitions with cached multi-way

blends. Interactive 3D graphics and games (2007) 145–151
10. Gleicher, M., Shin, H., Kovar, L., Jepsen, A.: Snap-together motion: assembling

run-time animations. Interactive 3D graphics (2003) 181–188
11. Boulic, R., Mas, R., Thalmann, D.: Position control of the center of mass for

articulated figures in multiple support. Eurographics Workshop on Animation and
Simulation (1995) 130–143

12. Tak, S., Song, O., Ko, H.: Motion Balance Filtering. Computer Graphics Forum
19 (2000) 437–446

13. Yin, K., Pai, D., van de Panne, M.: Data-driven interactive balancing behaviors.
Pacific Graphics (2005)

14. Kudoh, S., Komura, T., Ikeuchi, K.: Stepping motion for a humanlike character
to maintain balance against large perturbations. Proc. of Intl Conf. on Robotics
and Automation (2006)

15. van de Panne, M.: From footprints to animation. Computer Graphics Forum 16

(1997) 211–223
16. Popovic, M., Goswami, A., Herr, H.: Ground Reference Points in Legged Locomo-

tion: Definitions, Biological Trajectories and Control Implications. The Interna-
tional Journal of Robotics Research 24 (2005) 1013

17. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear
inverted pendulum mode: a simple modeling for a bipedwalking pattern generation.
Intelligent Robots and Systems (2001)

18. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture Point: A Step toward
Humanoid Push Recovery. Proceedings of the IEEE-RAS/RSJ International Con-
ference on Humanoid Robots (2006)

19. Abend, W., Bizzi, E., Morasso, P.: Human arm trajectory formation. Brain 105

(1982) 331–348
20. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally

confirmed mathematical model. Journal of Neuroscience 5 (1985) 1688
21. Tolani, D., Goswami, A., Badler, N.I.: Real-time inverse kinematics techniques for

anthropomorphic limbs. Graph. Models Image Process. 62 (2000) 353–388
22. Metoyer, R., Zordan, V.B., Hermens, B., Wu, C.C., Soriano, M.: Psychologically

inspired anticipation and dynamic response for impacts to the head and upper
body. IEEE Transactions on Visualization and Computer Graphics (TVCG) (2008)

23. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C.
Cambridge University Press, New York (1994)


