Skip to main content

Generation of Unit-Width Curve Skeletons Based on Valence Driven Spatial Median (VDSM)

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Included in the following conference series:

Abstract

3D medial axis (skeleton) extracted by a skeletonization algorithm is a compact representation of a 3D model. Among all connectivity-preservation skeletonization methods, 3D thinning algorithms are generally faster than the others. However, most 3D thinning algorithms cannot guarantee generating a unit-width curve skeleton, which is desirable in many applications, e.g. 3D object similarity match and retrieval. This paper presents a novel valence driven spatial median (VDSM) algorithm, which eliminates crowded regions and ensures that the output skeleton is unit-width. The proposed technique can be used to refine skeletons generated from 3D skeletonization algorithms to achieve unit-width. We tested the VDSM algorithm on 3D models with very different topologies. Experimental results demonstrate the feasibility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  2. Cornea, N.D.: Curve-Skeletons: Properties, Computation And Applications, Ph.D. Thesis, The State University of New Jersey (May 2007)

    Google Scholar 

  3. Ma, C.M., Sonka, M.: A fully parallel 3D thinning algorithm and its applications. Computer Vision and Image Understanding 64(3), 420–433 (1996)

    Article  Google Scholar 

  4. Palagyi, K., Kuba, A.: A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters 19(7), 613–627 (1998)

    Article  MATH  Google Scholar 

  5. Lohoua, C., Bertrand, G.: A 3D 6-subiteration curve thinning algorithm based on P-simple points. Discrete Applied Mathematics 151, 198–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pudney, C.: Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images. Computer Vision and Image Understanding 72(3), 404–413 (1998)

    Article  Google Scholar 

  7. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, New York (1982)

    MATH  Google Scholar 

  8. Arcelli, C., di Baja, G.S.: A width independent fast thinning algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 7, 463–474 (1985)

    Article  Google Scholar 

  9. Ogniewicz, R.L., Ilg, M.: Voronoi Skeletons Theory and Applications. CVPR 1992 (1992)

    Google Scholar 

  10. Ogniewicz, R.L., Kubler, O.: Hierarchic Voronoi Skeletons. Pat. Rec., 343–359 (1995)

    Google Scholar 

  11. Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An algorithm for the medial axis transform of 3d polyhedral solids. IEEE T. VCG 2(1), 44–61 (1996)

    Google Scholar 

  12. Giblin, P., Kimia, B.B.: A formal classification of 3D medial axis points and their local geometry. In: CVPR 2000 (2000)

    Google Scholar 

  13. Leymarie, F.F., Kimia, B.B.: The Shock Scaffold for Representing 3D Shape. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 216–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Leymarie, F.F., Kimia, B.B.: Computation of the Shock Scaffold for Unorganized Point Clouds in 3D. CVPR 2003 (2003)

    Google Scholar 

  15. Wang, T., Basu, A.: A note on A fully parallel 3D thinning algorithm and its applications. Pattern Recognition Letters 28(4), 501–506 (2007)

    Article  Google Scholar 

  16. Brunner, D., Brunnett, G.: An extended concept of voxel neighborhoods for correct thinning in mesh segmentation. In: Spring Conference on Computer Graphics, pp. 119–125 (2005)

    Google Scholar 

  17. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische Mathematik, pp. 269–271 (1959)

    Google Scholar 

  18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn., pp. 595–601. MIT Press and McGraw-Hill (2001)

    Google Scholar 

  19. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton Based Shape Matching and Retrieval. In: Shape Modeling International 2003, pp. 130–142 (2003)

    Google Scholar 

  20. http://www.cs.caltech.edu /~njlitke/meshes/toc.html (retrieved in April 2008)

  21. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark, Shape Modeling International, Genova, Italy (June 2004)

    Google Scholar 

  22. http://www.cs.princeton.edu /~min/binvox/ (retrieved in April 2008)

  23. Nooruddin, F., Turk, G.: Simplification and Repair of Polygonal Models Using Volumetric Techniques. IEEE Trans. on VCG 9(2), 191–205 (2003)

    Google Scholar 

  24. Attali, D., Montanvert, A.: Computing and Simplifying 2D and 3D Continuous Skeletons. Computer Vision And Image Understanding 67(3), 261–273 (1997)

    Article  Google Scholar 

  25. Svenssona, S., di Bajab, G.S.: Simplifying curve skeletons in volume images. Computer Vision and Image Understanding 90, 242–257 (2003)

    Article  Google Scholar 

  26. Masse, J.C., Plante, J.F.: A Monte Carlo study of the accuracy and robustness of ten bivariate location estimators. Comput. Statistics & Data Analysis 42, 1–26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Y.S., Lee, T.Y.: Curve-Skeleton Extraction Using Iterative Least Squares Optimization. IEEE T. VCG 14(4), 926–936 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, T., Cheng, I. (2008). Generation of Unit-Width Curve Skeletons Based on Valence Driven Spatial Median (VDSM). In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics