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Abstract. Determining the least m such that one m×m bi-cubic macro-
patch per quadrilateral offers enough degrees of freedom to construct a
smooth surface by local operations regardless of the vertex valences is of
fundamental interest; and it is of interest for computer graphics due to
the impending ability of GPUs to adaptively evaluate polynomial patches
at animation speeds.
We constructively show that m = 3 suffices, show that m = 2 is un-
likely to always allow for a localized construction if each macro-patch
is internally parametrically C1 and that a single patch per quad is in-
compatible with a localized construction. We do not specify the GPU
implementation.

1 Introduction

Quad(rilateral) meshes are used in computer graphics and CAD because they
capture symmetries of natural and man-made objects. Smooth surfaces of degree
bi-3 can be generated by applying subdivision to the quad mesh [CC78] or,
alternatively, by joining a finite number of polynomial pieces [Pet00]. When
quads form a checkerboard arrangement, we can interpret 4× 4 grids of vertices
as B-spline control points of a bi-cubic tensor product patch. Then we call the
central quad ordinary and are guaranteed that adjacent ordinary quad patches
join C2.

The essential challenge comes from covering extraordinary quads, i.e. quads
that have one or more vertices of valence n 6= 4 as illustrated in Fig. 1,left. While
this can be addressed by recursive subdivision schemes, in many scenarios, for
example GPU acceleration, localized parallel constructions of a finite number
of patches are preferable [NYM+08]. Here localized, parallel means that each
construction step is parallel for all quads or vertices and only needs to access
a fixed, small neighborhood of the quad or vertex. Due to the size limitations,
this paper does not discuss GPU specifics, but addresses the fundamental lower
bound question: how to convert each extraordinary quad into a macro-patch,
consisting of m×m bi-cubic pieces, so as that a general quad mesh is converted
into a smooth surface.

Prompted by the impending ability of GPUs to tessellate and adaptively eval-
uate finitely patched polynomial surface at animation speeds, there have recently
been a number of publications close to this problem. Loop and Schaefer[LS08]
propose bi-cubic C0 surfaces with surrogate tangent patches to convey the im-
pression of smoothness via lighting. Myles et al. [MYP08] perturb a bi-cubic
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base patch near non-4-valent vertices by coefficients of a (5,5) patch to obtain a
smooth surface. PCCM [Pet00] generates smooth bi-cubic surfaces but requires
up to two steps of Catmull-Clark subdivision to separate non-4-valent vertices.
This proves that m = 4 suffices in principle. But bi-cubic PCCM can have poor
shape for certain higher-order saddles (e.g. the 6-valent monkey saddle Fig. 5,
row 3) as discussed in [Pet01]. Below we specify an algorithm that constructs
smoothly connected 3 × 3 C1 macro-patches without this shape problem; and
discuss why the approach fails when m < 3.
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Fig. 1. left: extraordinary vertex p0 with n0 direct neighbors p2k−1, k = 1 . . . n0. middle:
limit point g00, tangent points gk

10 and ‘twist’ coefficients gk
11. right: BB differences.

2 Notation, and why m = 1 need not be considered

We denote the kth bi-cubic Bernstein Bézier (BB) patch, k = 1 . . . n0, surround-
ing a vertex p0 of valence n0 (Fig. 1) by

bk,µ,ν(u, v) :=

3
∑

i=0

3
∑

j=0

bk,µ,ν
ij

(

3

i

)

ui(1 − u)3−i

(

3

j

)

vi(1 − v)3−j . (1)

Here µ, ν indicate a piece of the m × m macro-patch (see Fig. 2, left, for m =
3). The BB coefficients (control points) of the tensor-product patch bk,µ,ν are
therefore labeled by up to 5 indices when we need to be precise (Fig. 2):

bk,µ,ν
ij ∈ R

3, k = 1 . . . n0, µ, ν ∈ {0, . . . , m − 1}, i, j ∈ {0, 1, 2, 3}. (2)

For the two macro-patches meeting along the kth boundary curve bk,µ0(u, 0) =
bk−1,0µ(0, u), µ = 0, . . . , m−1, we want to enforce unbiased (logically symmetric)
G1 constraints

∂2b
k,µ0(u, 0) + ∂1b

k−1,0µ(0, u) = αk
i (u)∂1b

k,µ0(u, 0), i = 0 . . . , m − 1, (3)

where each αk
i is a rational, univariate scalar function and ∂ℓ means differen-

tiation with respect to the ℓth argument. If αk
i = 0, the constraints enforce
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(parametric) C1 continuity. The polynomial equalities (3) hold for the kth curve
exactly when all m × n0 polynomial coefficients are equal. The coefficients are
differences of the BB control points:

vk,µ
i := bk,µ0

i1 − bk,µ0
i0 , wk,µ

i := bk−1,0µ
1i − bk−1,0µ

0i , uk,µ
i := bk,µ0

i+1,0 − bk,µ0
i0 .

The differences need only have a single subscript since we consider curves (in
u) and a simpler superscript since ν = 0. For example, if we choose αk

i (u) :=
λk

i (1 − u) + λk
i+1u, then (3) formally yields 4m equations when µ = 0, . . . , m:

vk,µ
0 + wk,µ

0 = λk
µuk,µ

0 (4)

3(vk,µ
1 + wk,µ

1 ) = 2λk
µuk,µ

1 + λk
µ+1u

k,µ
0 (5)

3(vk,µ
2 + wk,µ

2 ) = λk
µuk,µ

2 + 2λk
µ+1u

k,µ
1 (6)

vk,µ
3 + wk,µ

3 = λk
µ+1u

k,µ
2 . (7)

By definition, (7)µ=i = (4)µ=i+1, i.e. constraint (7) when substituting µ = i is
identical to constraint (4) for µ = i + 1.

We need not consider m = 1, i.e. one bi-cubic patch per quad, since the
vertex-enclosure constraint [Pet02, p.205] implies, for even n0 > 4 that the nor-

mal curvatures and hence the coefficients bk,00
20 (• Fig. 1,right) of the n0 curves

emanating from p0 are related for k = 1, . . . , n0: the normal component of their
alternating sum

∑

k(−1)kbk,00
20 must vanish. Since, for a bi-cubic patch, the con-

trol point bk,00
20 lies in the tangent plane of the kth neighbor vertex (Fig. 1,right),

the vertex’s enclosure constraint constrains the neighboring tangent planes with
respect to its tangent plane. Therefore, if we fix the degree of the patches to
be bi-cubic and allow only one patch per quad then no localized construction is
possible.

For m > 1, the coefficients bk,00
20 no longer lie in the tangent plane of the

neighbor; so a local construction may be possible. We next give an explicit
construction when m = 3.

3 Localized smooth surface construction using a 3 × 3

macro-patch

We factor the algorithm into four localized stages. First, we define the central
point g00, the tangents g10 − g00 and the face coefficients g11 as an average (see
Fig. 1) of
– the extraordinary vertex p0 with valence n0, and
– its 1-ring neighbors p1, p2, . . . , p2n0

.
In a second stage, we partition the quad into a 3 × 3 arrangement (Fig. 2) and
establish its boundary; in the third, we determine the cross-boundary derivatives
so that pairs of macro-patches join G1 (Equation (3)) and in the final stage, we
determine the interior coefficients. By this construction, a macro-patch joins at
least parameterically C1 with an unpartitioned spline patch (see Fig. 5, row 2,
where the second entry displays each polynomial piece in a different color).
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1. [Initialization] It is convenient (and shown to be effective to approximate
the Catmull-Clark limit surface) to set gij according to [MYP08]. That is to
set g00 to the limit of p0 under Catmull-Clark subdivision (red circle in Fig. 1
middle) and place the gk

10 (blue circle in Fig. 1 middle) on the Catmull-Clark
tangent plane:

g00 = gk
00 :=

∑n0

l=1

(

n0p0 + 4p2l−1 + p2l

)

n0(n0 + 5)
, k = 1 . . . n0, (8)

gk
10 := gk

00 + e1c
k
n0 + e2s

k
n0 , ei :=

σn0

3(2 + ωn0)

n0

∑

j=1

(

αip
2j−1 + βip

2j
)

, (9)

gk
11 :=

1

9
(4p0 + 2(p2k+1 + p2k+3) + p2k+2), k = 1 . . . n0. (10)

where the scalar weights are defined as

ck
n0 := cos

2πk

n0
, sk

n0 := sin
2πk

n0
, cn0 := c1

n0 ,

ωn0 := 16λn0 − 4, λn0 :=
1

16
(cn0 + 5 +

√

(cn0 + 9)(cn0 + 1)), σn0 :=

{

0.53 if n0 = 3,
1

4λ
n0

if n0 > 3,

α1 := ωn0cj−1

n0 , β1 := cj−1

n0 + cj

n0 , α2 := ωn0sj−1

n0 , β2 := sj−1

n0 + sj

n0 .

Symmetric construction of the other three corners of the quad yields 4× 4 coef-
ficients gij that can be interpreted as the BB coefficients of one bi-cubic patch
g : [0, 1]2 → R

3 in the form (1).
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Fig. 2. left: Patches bk,µν and coefficients b
k,µν
ij . right: Coefficients shown as black

disks are determined by subdividing the initialization gij (see (11)), coefficients shown
as small squares are determined by (14) and (15), coefficients shown as big yellow
squares are determined by C2 continuity of the boundary curve (16), (17), (18).

2. [domain partition and boundary] We partition the domain into 3 × 3
pieces (see Fig. 2 left) and let the 3× 3 macro-patch inherit vertex position and
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tangents (black disks in Fig. 2 right) by subdividing g:

bk,00
00 := gk

00, bk,00
10 :=

2

3
gk
00 +

1

3
gk
10, bk,00

11 :=
4gk

00 + 2gk
10 + 2gk

01 + gk
11

9
. (11)

Each macro-patch will be parametrically C1 (and C2 in the interior). To enforce
the G1 constraints (3) between macro-patches, we need to distinguish two cases
when choosing αk

i depending on whether one of the vertices is regular, i.e. has
valence 4. Of course, if both valences are 4 then we simply subdivide g and set
αk

i = 0; and if all four corner points have valence 4, no partition is needed in
the first place since g is then part of a bi-cubic tensor-product B-spline patch
complex and therefore joins C2 with its spline neighbors and at least C1 with
macro-patches (Fig. 5, row 2, second entry).
2a. [boundary n0 6= 4 6= n1] We choose αk

i as simple as possible, namely linear

if n0 6= 4 6= n1 : αk
i (u) := λk

i (1 − u) + λk
i+1u, (12)

λk
0 := 2 cos(

2π

n0
), λk

3 := −2 cos(
2π

n1
), λk

1 :=
2λk

0 + λk
3

3
, λk

2 :=
λk

0 + 2λk
3

3
. (13)

The three cubic pieces of the boundary curve have enough free parameters to
enforce Equation (5) for µ = 0 and Equation (6) for µ = 2 and (small squares
in Fig. 2 right) by setting

bk,00
20 := bk,00

10 +
3(bk,00

11 + bk−1,00
11 − 2bk,00

10 ) − λk
1(bk,00

10 − bk,00
00 )

2λk
0

, (14)

bk,20
10 := bk,20

20 +
λk

2(bk,20
30 − bk,20

20 ) − 3(bk,20
21 + bk−1,02

12 − 2bk,20
20 )

2λk
3

(15)

and joining the three curve segments C2 (cf. large squares in Fig. 2 right)

for µ = 0, 1 : bk,µ0
30 := (bk,µ0

20 + bk,µ+1,0
10 )/2, (16)

bk,10
10 :=

4

3
bk,00
20 −

1

3
bk,20
20 +

2

3
bk,20
10 −

2

3
bk,00
10 , (17)

bk,10
20 :=

2

3
bk,00
20 −

2

3
bk,20
20 +

4

3
bk,20
10 −

1

3
bk,00
10 . (18)

2b. [boundary n0 6= 4 = n1] If n0 6= 4 = n1, Lemma 2 in the Appendix shows
that we cannot choose all αk

i to be linear. (If λk
1 = 0 in Lemma 2 then the

dependence appears at the next 4-valent crossing bk,10
00 .) We set λ := 2 cos(2π

n0 )
and

αk
0(u) := λk(1 − u) +

λk

2
u, αk

1(u) :=
λk

2
(1 − u)2, αk

2(u) = 0. (19)

Then bk,00
20 is defined by (5) and bk,20

10 by subdividing the cubic boundary of g:

bk,20
10 := −

2

9
bk,00
00 +

1

3
bk,00
10 +

4

3
bk,20
20 −

4

9
bk,20
30 . (20)
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From the remaining six G1 constraints across the macro-patch boundary,

3(vk,0
2 + wk,0

2 ) = λkuk,0
2 + λkuk,0

1 , 3(vk,1
2 + wk,1

2 ) = 0 (21)

3(vk,0
3 + wk,0

3 ) =
3

2
λk(bk,10

10 − bk,10
00 ), 3(vk,1

3 + wk,1
3 ) = 0 (22)

9(vk,1
1 + wk,1

1 ) =
3

2
λk(bk,10

30 − bk,10
20 ), 9(vk,2

1 + wk,2
1 ) = 0. (23)

the two listed as (22) are linked to the remaining four by the requirement that
the macro-patches be internally C1:

for µ = 0, 1 : bk,µ0
30 = (bk,µ0

20 + bµ+1,20
10 )/2 (24)

vk,µ
2 + vk,µ+1

1 = 2vk,µ
3 , wk,µ

2 + wk,µ+1
1 = 2wk,µ

3 . (25)

Thus, by adding 3 times (21) to (23) and subtracting 6 times (22) and observing
(25), we eliminate the left hand sides and obtain one constraint purely in the
boundary coefficients multiplied by λk 6= 0. A second constraint arises since
αk

1(u) being quadratic implies that the middle segment bk,10(u, 0) is quadratic,
i.e. its third derivative is zero:

bk,10
30 − 3bk,10

20 + 3bk,10
10 − bk,10

00 = 0. (26)

Both constraints are enforced by setting

bk,10
10 :=

41

25
bk,00
20 +

4

25
bk,20
10 −

4

5
bk,00
10 , bk,10

20 :=
36

25
bk,00
20 +

9

25
bk,20
10 −

4

5
bk,00
10 .

Together with (24), this fixes the macro-patch boundary (Fig. 2, right).

3. [First interior layer, G1 constraints] Enforcing the remaining four G1

constraints in terms of the red coefficients in Fig. 3 is straightforward and our
symmetric solution is written out below.
3a. [n0 6= 4 6= n1]

h1µ := bk,µ0
20 +

λk
µuk,µ

2 + 2λk
µ+1u

k,µ
1

6
, h2µ := bk,µ0

10 +
2λk

µuk,µ
1 + λk

µ+1u
k,µ
0

6

µ = 0, 1 : bk,µ0
21 := h1µ +

1

2
(b̃k,00

21 − b̃k−1,00
12 ), bk−1,0µ

12 := h1µ +
1

2
(b̃k−1,00

12 − b̃k,00
21 )

µ = 1, 2 : bk,µ0
11 := h2µ +

1

2
(b̃k,10

11 − b̃k−1,01
11 ), bk−1,0µ

11 := h2µ +
1

2
(b̃k−1,01

11 − b̃k,10
11 ).

3b.[n0 6= 4 = n1] h1 := bk,00
20 +

λk
0uk,0

2 + λk
0uk,0

1

6
, h2 : = bk,10

10 +
λk

0uk,1
2

12

bk,00
21 := h1 +

1

2
(b̃k,00

21 − b̃k−1,00
12 ), bk−1,0j

12 : = h1 +
1

2
(b̃k−1,00

12 − b̃k,00
21 )

bk,10
11 := h2 +

1

2
(b̃k,10

11 − b̃k−1,01
11 ), bk−1,01

11 : = h2 +
1

2
(b̃k−1,01

11 − b̃k,10
11 )

bk,10
21 := bk,10

20 +
1

2
(b̃k,10

21 − b̃k−1,01
12 ), bk−1,01

12 : = bk,10
20 +

1

2
(b̃k−1,01

12 − b̃k,10
21 )

bk,20
11 := bk,20

10 +
1

2
(b̃k,20

11 − b̃k−1,02
11 ), bk−1,02

11 : = bk,20
10 +

1

2
(b̃k−1,02

11 − b̃k,20
11 )
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where the coefficients b̃k,00
21 ,b̃k−1,00

12 , b̃k,10
11 and b̃k−1,01

11 are obtained by subdividing
the cubic Hermite interpolate to the transversal derivatives at the endpoints into
three parts:

b̃k,00
21 : = −

4

9
bk,00
01 +

4

3
bk,00
11 +

1

3
bk,20
21 −

2

9
bk,20
31 ,

b̃k−1,00
12 : = −

4

9
bk−1,00
10 +

4

3
bk−1,00
11 +

1

3
bk−1,02
12 −

2

9
bk−1,02
13 ,

b̃k,10
11 : = −

20

27
bk,00
01 +

4

3
bk,00
11 + bk,20

21 −
16

27
bk,20
31 ,

b̃k−1,01
11 : = −

20

27
bk−1,00
10 +

4

3
bk−1,00
11 + bk−1,02

12 −
16

27
bk−1,02
13 .

The coefficients b̃k,10
21 ,b̃k−1,01

12 ,b̃k,20
11 and b̃k−1,02

11 are defined analogously.

3
3

5
4

−
20

27

4

3
1 1

2

1

2
1 −

1

2

Fig. 3. left: Once the red BB-coefficients b
k,00
21 , b

k,10
11 , b

k,10
21 , b

k,20
11 of the first interior layer

are set, the green coefficients are C1 averages of their two red neighbor points. Blue,
pink and black coefficients are inner points computed by the rules on the right: (top)
by subdivision and (bottom) so that the pieces join C2: the coefficient indicated by the
large ◦ is a linear combination, with weights displayed, of the coefficients shown as •.

4. [macro-patch Interior] At the center (four black disks in Fig. 3, left) the
coefficients are computed according to 3,right-top,

bk,11
11 :=

(− 20
27

bk,01
01 + 4

3
bk,01
11 + bk,21

21 + 1
2
bk,21
31 ) + (− 20

27
bk,10
10 + 4

3
bk,10
11 + bk,12

12 + 1
2
bk,12
13 )

2
,

and symmetrically for the other three corners. Coefficients marked in blue and
pink are defined by the rules of Fig. 3 right-bottom and the remaining coefficients
on the internal boundaries are the C1 average of their neighbors, e.g. bk,11

10 :=

(bk,11
11 + bk,10

21 )/2 so that the patches join C1 everywhere and C2 with the central
subpatch.

This completes the local construction of C1 3×3 macro-patches, one per input
quad and so that neighbor macro-patches join G1. Before we show examples, we
discuss why we did not choose m = 2.
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4 Can m = 2 provide a construction?
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20 b
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Fig. 4. left: Coefficients initialized according to (28). right: Indexing.

We show that an analogous construction is not possible for a 2 × 2 macro-
patch. Since the degree of ∂2b

k,µ0(u, 0) and ∂1b
k−1,0µ(0, u) is 3, choosing αk

µ to

be quadratic implies that ∂1b
k,µ0(u, 0) must be linear, i.e. each boundary curve

segment is piecewise quadratic. If both n0 and n1 are even and not 4, then the
vertex enclosure constraint (see Section 2) implies that the shared endpoint of
the two quadratic segments is determined independently from both sides – so a
local construction is not possible just as in the case m = 1. We therefore choose
αk

µ(u) := λk
µ(1− u)+ λk

µ+1u, µ = 0, 1 with the unbiased choice (we do not prefer
one sector over another)

λk
0 := 2 cos

2π

n0
, λk

2 := −2 cos
2π

n1
. (27)

As in Section 3 (11), we enforce (4)µ=0 and (7)µ=1 of the eight G1 continuity
constraints by initializing position and tangents (black filled circles in Fig. 4 left)
by subdividing g:

bk,00
00 := gk

00, bk,00
10 :=

gk
00 + gk

10

2
, bk,00

11 :=
gk
00 + gk

10 + gk
01 + gk

11

4
. (28)

Lemma 1. If each macro-patch is parametrically C1, αk
0 and αk

1 are linear with
λk

0 and λk
2 unbiased then the G1 constraints can only be enforced for all local

initialization of bk,00
00 , bk,00

10 , bk,00
11 if n0 = n1.

Proof. Due to the internal C1 constraints, adding (6)µ=0 and (5)µ=1 and sub-

tracting six times (7)µ=0 yields 3(vk,0
2 +wk,0

2 )+3(vk,1
1 +wk,1

1 )−6(vk,0
3 +wk,0

3 ) = 0
and therefore the right hands sides satisfy

λk
0uk,0

2 + 2λk
1uk,0

1 + 2λk
1uk,1

1 + λk
2uk,1

0 = 6λk
1uk,0

2 . (29)

That is, for an internally C1 macro-patch, G1 constraints across the macro-
patch’s boundary imply a constraint exclusively in terms of uk,µ

i , i.e. derivatives
along the boundary! Since initialization fixes the local position, tangent and
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twist coefficients at each vertex, (5)µ=0 determines bk,00
20 and (6)µ=1 determines

bk,10
10 ; and C1 continuity determines bk,00

30 := (bk,00
20 + bk,10

10 )/2. Thus all vectors
of (29) are fixed and the remaining single free scalar λk

1 cannot always enforce

(29). But if n0 = n1 then λk
0 = −λk

2 and uk,0
2 = uk,1

0 ; and λk
1 = 0 solves (29).

5 Conclusion

Curvature distribution and highlight lines on the models of Fig. 5 illustrate the
geometric soundness of the m = 3 macro-patch construction. Choosing αk

1 and
hence the middle boundary curve segment to be quadratic, avoids the PCCM
shape problem which is due to αk

0 and hence the first segment being quadratic.
Conversely, Section 4 suggests that there is no obvious construction for m =

2; whether a more complex Ansatz can yield a localized construction for m = 2
remains the subject of research.
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Appendix: linear parameterization and valence 4

Lemma 2. If k = 4 curves meet at a vertex without singularity and αk0
i is linear

with λk
1 := ℓ cos 2π

nk , for fixed scalar ℓ > 0 and valence nk, then the G1 constraints

(3) can only be enforced if nk = nk+2 for k = 0, 1.

Proof. For k = 1, 2, 3, 4, λk
0 = 0 and therefore αk0

i := λk
1u. Equation (5)µ=0 then

simplifies to

3(bk,00
11 + bk−1,00

11 ) = 6bk,00
10 + λk

1uk,0
0 , k = 1 . . . 4.

Since
∑4

k=1(−1)k(bk,00
11 + bk−1,00

11 ) = 0 and
∑4

k=1(−1)kbk,00
00 = 0,

0 =

4
∑

k=1

(−1)k6(bk,00
10 − bk,00

00 ) + λk
1uk,0

0 =

4
∑

k=1

(−1)k(6 + λk
1)uk,0

0 (30)
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Fig. 5. 3 × 3 macro-patch construction. left: Quad mesh and surface; middle(top
four): Gauss curvature distribution on the surface, right: Highlight lines.
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implying λk
1 = λk+2

1 for k = 0, 2 since uk,0
0 = −uk+2,0

0 . Therefore nk = nk+2

must hold.
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