Skip to main content

Computing Fundamental Group of General 3-Manifold

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Included in the following conference series:

Abstract

Fundamental group is one of the most important topological invariants for general manifolds, which can be directly used as manifolds classification. In this work, we provide a series of practical and efficient algorithms to compute fundamental groups for general 3-manifolds based on CW cell decomposition. The input is a tetrahedral mesh, while the output is symbolic representation of its first fundamental group. We further simplify the fundamental group representation using computational algebraic method. We present the theoretical arguments of our algorithms, elaborate the algorithms with a number of examples, and give the analysis of their computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edelsbrunner, H.: Biological applications of computational topology. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 1395–1412. CRC Press, Boca Raton (2004)

    Google Scholar 

  2. Moore, E.L.F., Peters, T.J.: Computational topology for geometric design and molecular design. In: Ferguson, D., Peters, T. (eds.) Mathematics for Industry: Challenges and Frontiers, pp. 125–137. SIAM, Philadelphia (2005)

    Google Scholar 

  3. Hart, J.C.: Using the CW-complex to represent the topological structure of implicit surfaces and solids. In: Proc. Implicit Surfaces 1999, pp. 107–112 (1999)

    Google Scholar 

  4. Amenta, N., Peters, T.J., Russell, A.: Computational topology: Ambient isotopic approximation of 2-manifolds. Theoretical Computer Science 305, 3–15 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abe, K., Bisceglio, J., Peters, T., Russell, A., Ferguson, D., Sakkalis, T.: Computational topology for reconstruction of surfaces with boundary: integrating experiments and theory. In: Shape Modeling and Applications, 2005 International Conference, pp. 288–297 (2005)

    Google Scholar 

  6. Abe, K., Bisceglio, J., Ferguson, D., Peters, T., Russell, A., Sakkalis, T.: Computational topology for isotopic surface reconstruction. Theoretical Computer Science 365, 184–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dey, T.K., Li, K., Sun, J.: On computing handle and tunnel loops. In: 2007 International Conference on Cyberworlds, pp. 357–366 (2007)

    Google Scholar 

  8. DiCarlo, A., Milicchio, F., Paoluzzi, A., Shapiro, V.: Chain-based representations for solid and physical modeling. IEEE Trans. Automation Science and Engineering 5 (to appear, 2008)

    Google Scholar 

  9. Vegter, G., Yap, C.K.: Computational complexity of combinatorial surfaces. ACM SoCG 1990, 102–111 (1990)

    Google Scholar 

  10. Dey, T.K., Schipper, H.: A new technique to compute polygonal schema for 2-manifold with application to null-homotopy detection. Discrete & Computational Geometry 14, 93–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaczyński, T., Mrozek, M., Ślusarek, M.: Homology computation by reduction of chain complexes. Computer & Mathematics with Applications 35, 59–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dey, T.K., Guha, S.: Computing homology groups of simplicial complexes in R 3. Journal of ACM 45, 266–287 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lazarus, F., Vegterz, G., Pocchiola, M., Verroust, A.: Computing a canonical polygonal schema of an orientable triangulated surface. ACM SoCG 2001, 80–89 (2001)

    Google Scholar 

  14. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discrete & Computational Geometry 31, 37–59 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Verdière, É.C., Lazarus, F.: Optimal system of loops on an orientable surface. Discrete & Computational Geometry 33(3), 507–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yin, X., Jin, M., Gu, X.: Computing shortest cycles using universal covering space. The Visual Computer 23, 999–1004 (2007)

    Article  Google Scholar 

  17. Hempel, J.: 3-Manifolds. AMS Chelsea Publishing (1935)

    Google Scholar 

  18. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  19. Dey, T.K., Edelsbrunner, H., Guha, S.: Computational topology. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics 223, pp. 109–143. AMS (1999)

    Google Scholar 

  20. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1038–1046 (2005)

    Google Scholar 

  21. Dey, T.K., Guha, S.: Transforming curves on surfaces. Journal of Computer and System Sciences 58, 297–325 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Munkres, J.R.: Elements of Algebraic Topology. Benjamin Cummings (1984)

    Google Scholar 

  23. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  24. GAP: Groups, Algorithms, Programming - a System for Computational Discrete Algebra, http://www-gap.dcs.st-and.ac.uk/

  25. Robertson, E.F.: Tietze transformations with weighted substring search. Journal of Symbolic Computation 6, 59–64 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, J., Jin, M., Zhou, QY., Luo, F., Gu, X. (2008). Computing Fundamental Group of General 3-Manifold. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics