
A fast and simple heuristic for metro map path simplification

Tim Dwyer∗
Monash University

Nathan Hurst†

Monash University

Damian Merrick‡

University of Sydney and National ICT Australia§

ABSTRACT

We give a heuristic for simplifying a path defined by a given se-
quence of points. The heuristic seeks to fit the points with a set
of line segments aligned with a limited set of possible directions.
Such “schematic path simplification” has application in automat-
ically drawing simplified metro maps from geographic data. We
show that a simple version of our algorithm produces reasonable
results against real-world data and runs in linear time with respect
to the number of points (assuming a small fixed number of possible
directions). We then give some refinements to the algorithm which
may improve the quality of the results but which significantly in-
crease the worst-case time complexity.

Keywords: Metro map layout, Optimisation.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and Curve Generation; I.3.3 [Computer Graph-
ics]: Picture/Image Generation—Display Algorithms

1 INTRODUCTION

In recent years there has been considerable interest from the infor-
mation visualisation and graph drawing communities in the prob-
lem of automatically generating schematic metro maps from geo-
graphic railway maps [5, 9, 10]. As well as the obvious application
of dynamically generating useful maps for commuters, metro map
style drawing of abstract relational network data may be useful in
a number of information visualisation applications. Examples of
applications that have already been explored are project plans [2],
molecular pathways [4] and visualisation of abstract “trains of
thought” [7].

A number of aesthetic criteria have been generally accepted by
researchers in the field as useful drawing conventions for metro
map layout — mostly from observation of metro maps created by
graphic designers. Of particular interest for this paper is the re-
quirement that line segments in each railway line’s path should be
aligned with a limited set of directions. For example, all lines might
be drawn strictly parallel to the horizontal or vertical axis and45◦
and 135◦ diagonals. This “schematic path” requirement may be
treated as a constraint in the overall layout problem, that is, as part
of the process of placing nodes (stations) to satisfy other criteria
such as regular spacing. However, attempts at such a combined
approach have met with mixed success. For example, Hong et
al. [5] tried a modified force-directed approach with extra forces
to align the paths. This approach gives a roughly correct solution
but constraint optimisation techniques are required to obtain strictly
aligned paths. N̈ollenberg and Wolff [9] were able to generate high
quality solutions to small metro maps using mixed-integer program-
ming techniques. The running time of this method makes it unsuit-

∗e-mail: Tim.Dwyer@infotech.monash.edu.au
†e-mail: Nathan.Hurst@infotech.monash.edu.au
‡e-mail: dmerrick@it.usyd.edu.au
§National ICT Australia is funded through the Australian Government’s

Backing Australia’s Ability initiative, in part through the Australian Re-
search Council.

able for interactive applications or large networks, however. Stott
and Rodgers [10] also generated maps of reasonable quality, by us-
ing a hill-climbing optimiser to minimise a multicriteria objective
function. This approach has similarly prohibitive running time.

Recently, Merrick and Gudmundsson [6] proposed a path simpli-
fication approach, which can either be applied directly to the geo-
graphic layout or used as a post-processing step after placing nodes
roughly to improve other aesthetic criteria. A relatively simple, fast
method may then be adequate for obtaining the initial layout, for ex-
ample, the force-directed approach of Hong et al. or the constrained
stress-majorization approach of Dwyer et al. [3]. The Merrick and
Gudmundsson path simplification algorithm finds, for each path, a
minimal number of linked line segments of constrained alignment
such that a line segment passes within a disc of some constant ra-
dius ε around each input point, and these discs are encountered
in order. The algorithm produces reasonable results and runs in
O(|C|3n2) time, whereC is the (typically small) set of directions
against which lines must be aligned andn is the number of points
in the input path.

Neyer [8] also presented an algorithm that minimises the number
of links in a path given a restricted number of directions and an
ε error bound. This algorithm runs in timeO(nk2 logn), wherek
is the number of links in the output. The output is a path which
remains within a given distance of the original path according to
the Fŕechet distance metric [1]. Utilising Fréchet distance in this
respect, however, can produce undesirable “zig-zags” in some paths
when the set of allowed orientations is small. In addition, Neyer
requiredε to be chosen such that if a circle of radiusε is drawn
around every input point, no two of these circles intersect.

A significant drawback to the approaches of Neyer and of Mer-
rick and Gudmundsson is that the quality of the results is sensitive
to the input choice ofε. It is possible that a value ofε that produces
good results for one part of the path may not be the best choice
for another part. For example, in many metro maps there may be
a great deal of detail near the centre of the map, where a smallε
may be appropriate, but it may be desirable to allow a largerε—
and hence greater straightening—in outlying paths. In Section 3,
we present a new algorithm that tries to fit line segments close to
node centres based on a least-squares regression approach. The al-
gorithm generates good results on real-world input data and runs in
worst-case time linear in the size of the input, i.e.O(|C|n).

In Section 4 we present some refinements to the basic algo-
rithm that may improve the quality of results, particularly for more
chaotic input data, but which increase the worst case run-time to
O(|C|nlogn).

2 DEFINITIONS

A metro map is defined as a set of stations (nodes)V where each
nodev∈V has a position in the real planepos(v), and a set of paths
connecting the stations into railway lines. Every pathP⊆ V is a
chain of nodes. We wish to find a line to represent the path. The
line for the path can have bends but each segment of the line should
be straight and parallel to one of the directions given by the set of
unit vectorsC. A line segments is represented by a pair of end
points (s1,s2) and a direction vector~s where~s· c = 1 for exactly
onec∈C. If C contains two orthogonal vectors (|C| = 2) then the
resulting line is said to be rectilinear, four vectors at0◦, 45◦, 90◦

Figure 1: The Sydney Cityrail map with schematic paths produced
using |C| = 2 and simple merging of sequential line segments that
are parallel.

and135◦ (|C|= 4) gives an octilinear line and so on1.
Ideally, we would like the distance between each pointpos(v) in

the pathP (v∈ P) and the line representing that path to be minimal.
Preferably, the closest points on the line to each point in the path
should be in the same order (encountered in the same order if the
line is traversed) as the order defined over the path. In practice
we do not enforce this last constraint on the assumption that node
markers can be drawn in the correct order along the line regardless.

We call the process of fitting such a simplified line to a pathpath
schematisation.

3 PATH SCHEMATISATION ALGORITHM

The basic strategy of our algorithm is to partition the path intom
blocks of points and use least-squares regression to find a line of
best fit to the set of points in each block. A blockB is a set of
consecutive points in a path, and each block corresponds to a line
segment fitting those points. Given three consecutive blocksBi−1,
Bi andBi+1 (1 < i < m) the first point ofBi will also be the last
point of Bi−1 and the last point ofBi will be the first point ofBi+1.
Clearly, the first point of the first block in a pathB1 and the last
point of the last blockBm are not shared with any neighbour.

The line segment for a particular blockBi(1 < i < m) is deter-
mined by the line of best fit for its constituent points, as described
below, and the end points of the line segment are simply the inter-
sections between the lines forBi andBi−1 andBi andBi + 1. For
B1 we take the start of the line to be the closest point on the line
to the first point of the path. The end of the line forBm is deduced
similarly from the last point in the path.

The algorithm begins with a partitioning of the path into blocks
of two points and proceeds to merge adjacent blocks if doing so
results in an improved fit of the line to the points according to some
metric. The first metric we consider is the least-squares regression
of a line at a fixed orientation. Using the following theorem we can
test all the possible orientations for lines for a particular block in
O(|C|) time.

Theorem 3.1 Given a block incorporating a set of pointsV, a set
of simple statisticsS can be computed as the block is constructed

1Note that our definition of the setC differs from that of Merrick and
Gudmundsson [6], who use|C| = 4 for rectilinear drawings,|C| = 8 for
octilinear, and so on.

Figure 2: The Sydney Cityrail map with schematic paths produced
using |C| = 3 and simple merging of sequential line segments that
are parallel.

such that the cost of fitting a line of any orientation toV can be
calculated in constant time.

Specifically, the cost of fitting a line of least-squares best fit, or-
thogonal to the unit vectorn = (nx,ny) to V is:

2|V|(b ·n)2−2(b ·n)(nxSy +nySy)+2nxnySxy+nx
2Sxx+ny

2Syy

where:

S = (Sx,Sxx,Sxy,Sy,Syy)

= (∑
a∈V

ax, ∑
a∈V

a2
x, ∑

a∈V
axay,etc. . .)

andb = 1
|V| (Sx,Sy).

Proof The vectorb gives us the barycenter ofV through which any
line of best fit must pass. For a particular pointa∈V, the distance
from that point to the line of best fit orthogonal ton is |a·n−b ·n|.
The total cost of the fit of this line for all points inV is then:

regressioncost(V) = ∑
a∈V

(a ·n−b ·n)2 (1)

This equation can be expanded in a straightforward manner to
the cost equation of Theorem 3.1 through application of the dot-
product rule for 2-dimensional vectors.

Suppose two blocksB1 and B2 incorporating respective point
setsV1 andV2 are to be merged into a new blockB′. The line of best
fit needs to be recalculated for the combined point setV ′ = V1

⋃
V2.

To do this, we calculate the statistics forB′, which are simply the
sums of the statistics forB1 andB2. Thus, each merge operation,
including computing the statistics for the new block and the line of
best fit, takesO(|C|) time.

So when do we merge? We discuss more sophisticated strategies
for reducing an overall cost function in Section 4, but at the very
least we must merge two adjacent blocks if their lines of best fit are
parallel. Otherwise, additional linkages are required to connect all
line segments into a continuous path. Results of using this simple
merge strategy on real-world railway data from the Sydney Cityrail
network with|C|= 2 (rectilinear),|C|= 3 (hexilinear) and|C|= 4
(octilinear) are shown in Figures 1, 2 and 3 respectively. Figure 4

Figure 5: An example where simple merging of adjacent parallel lines
leads to a poor fit

Figure 6: Merging the third and fourth line segments from Figure 5
may be considered a better schematisation.

shows a drawing of the Greater London rail map with|C| = 4. In
these drawings, the positions of stations in the original geography
are shown with small circles. The larger map, London, has 29 paths,
each with up to 43 nodes; 747 nodes in total (a station has one node
for each path in which it appears). Each map was schematised in
less than 0.01 seconds on a standard Pentium 4 laptop.

We can eliminate all adjacent blocks with parallel lines by re-
peated merging inO(|C||V|) time (whereV is the set of vertices in
the path). This is done by placing the sequence of blocks in a dou-
bly linked list. Pairs of adjacent blocks are checked and merged if
their line segments are parallel. Merging means removing the orig-
inal blocks from the list and inserting the new block at the same
position. Any block preceding the new block must then be checked
against the new block to see if it is now parallel to the line of the new
block, and so on. A backtrack (checking the preceding block) only
occurs after a merge and at most|V|merges are possible. Thus, the
O(|C||V|) time complexity is clear.

4 REFINING THE ALGORITHM

The simple strategy of merging adjacent blocks if their lines are par-
allel produces reasonable results, as shown by the examples. How-
ever, there are situations where a user may want more aggressive
simplification. For example, Figure 5 shows an example that may
be considered suboptimal. Although each of the lines is a good fit
to the data points according to the cost function defined in Eq. 1,
the distance between the actual end points of the line segment and
the data points in a block is not considered. Thus, the third line
segment (from the left) could be considered too short to actually
improve the fit of the line. Figure 6 shows the result of merging the
third and fourth blocks. The net distance between the points and
the actual line segments is not greatly increased yet the drawing is
simpler.

We want to emphasise at this point that, in practice, we have
found that the simple heuristic of merging subsequent parallel line
segments is sufficient for real geographical railway data. How-
ever, the block structure affords a degree of flexibility in optimising
against more complicated goal functions. To address the situation
described above we may define an overall cost function with, in ad-
dition to the basic regression cost for each block from Eq. 1, a term

Figure 7: The path schematisation from Figure 5 shown again with
bounding boxes (oriented with fit line) for the points in each block and
the new error terms (shown by arrows).

to penalise solutions with more line segments, and another to pe-
nalise line segments which are not actually long enough to be close
to their points. The following expression gives such a cost function
for a pathP with n points, partitioned into blocksB1,B2, . . . ,Bm.

cost(P) =
αm
n

+
m

∑
i=1

(β regressioncost(Bi)+ γbb cost(Bi)) (2)

The parametersα, β andγ are user defined weights that may be
used to control the simplification. Thebb cost(B) function returns
the squared distance between the first and last points in blockB
and closest edges of the bounding box around the points, aligned
with the line. The error terms returned by thebb cost function are
illustrated in Figure 7.

Polynomial time optimal methods such as dynamic program-
ming are inappropriate for minimising Eq. 2 because the problem
is not decomposable into independent subproblems. The first term,
which captures the total number of line segments, requires knowl-
edge about the global situation. The bounding box term requires
knowledge of the length of the line segment, which is based on
the intersection points of the ends of the line with the neighbouring
line segments; so we require information about the current situation
of those neighbouring segments as well. Luckily, the block-merge
process described in Section 3 gives us a useful framework for a
local search to minimise Eq. 2.

The resulting optimisation process is simple. We place each of
them−1 pairs of adjacent blocks into a priority queue keyed by the
change to the cost function (Eq. 2) if the blocks were merged. Us-
ing fibonnacci or pairing heaps [11], this queue can be built in lin-
ear time. We then merge the pair of blocks at the top of the priority
queue (the pair for which merging would result in the most signifi-
cant improvement), removing the entry in the queue. Theremove-
maxoperation takesO(logn) time in a fibonnacci heap. The pairs
preceding and succeeding the old blocks are updated in the priority
queue (using constant timeincrease-key, decrease-keyoperations).
This process is repeated until no further improvement is possible.
Note that pairs of blocks with parallel lines should be assigned in-
finite cost so that they are processed immediately.

The optimisation process resulting from this simple greedy
heuristic isO(nlogn) time and it should be noted that the result
is by no means optimal. Further refinement is possible by search-
ing blocks for potential split points. That is, points across which the
block may be split into two new blocks in order to further reduce
the total cost. Such a search would probably take at least time linear
in the number of points in the block and there is no way to know
how many splits would be required in order to converge to a local
minimum.

5 CONCLUSION AND FURTHER WORK

In Figures 1 to 4, no effort was made to force sections of different
paths that share common points to be in any way aligned. A clear

Figure 3: The Sydney Cityrail map with schematic paths produced using |C|= 4 and simple merging of sequential line segments that are parallel.
The original geographic positions of stations are shown with small circles.

Figure 4: The Greater London rail map with schematic paths produced using |C| = 4 and simple merging of sequential line segments that are
parallel. The map has 29 paths, each with up to 43 nodes; 747 nodes in total (a station has one node for each path in which it appears). It took
less than 0.01 seconds to schematise the map on a standard Pentium 4 laptop.

improvement for these examples would be to somehow share the
block structures between paths. However, it is not entirely clear
what is required in this case. At the very least there should probably
be some guarantee of topology preservation. That is, paths which
do not cross in the geographic map should not be allowed to cross
in the simplified map.

Clearly, the refinements suggested in the previous section should
be implemented and tested in some empirical evaluation. Also,
the algorithms outlined in this paper should be tested against the
bounded error approach of Merrick and Gudmundsson. However,
it is not clear at this stage exactly what constitutes a “good” path
simplification. In this paper we have shown that altering the def-
inition of quality of fit is one way to create simpler and faster al-
gorithms. Perhaps before any in-depth empirical evaluation is con-
ducted some more concrete requirements need to be harvested from
experts in graphic design, or even from users of metro maps.

REFERENCES

[1] H. Alt and M. Godau. Computing the fréchet distance between two
polygonal curves.International Journal of Computational Geometry
and Applications, 5:75–91, 1995.

[2] R. Burkhard, M. Meier, P. Rodgers, M. Smis, and J. Stott. Knowl-
edge visualization: a comparative study between project tube maps
and gantt charts. In K. Tochtermann and H. Maurer, editors,Proceed-
ings of the 5th International Conference on Knowledge Management,
pages 388–395. Know-Center, Austria, June 2005.

[3] T. Dwyer, Y. Koren, and K. Marriott. Stress majorization with orthog-
onal ordering constraints. InProceedings of the 13th International
Symposium on Graph Drawing (GD’05), volume 3843 ofLNCS,
pages 141–152. Springer, 2006.

[4] W. C. Hahn and R. A. Weinberg. A subway map of cancer pathways.
Nature Reviews Cancer, 2(5), May 2002.

[5] S. H. Hong, D. Merrick, and H. A. D. do Nascimento. The metro map
layout problem. InProceedings of the 12th International Symposium
on Graph Drawing (GD’04), volume 2912 ofLNCS, pages 482–491.
Springer, 2005.

[6] D. Merrick and J. Gudmunsson. Path simplification for metro map
layout. InProceedings of the 14th International Symposium on Graph
Drawing (GD’06), LNCS. Springer, (to appear) 2006.

[7] K. V. Nesbitt. Getting to more abstract places using the metro map
metaphor. InProceedings of the 8th International Conference on In-
formation Visualisation, pages 488–493, July 2004.

[8] G. Neyer. Line simplification with restricted orientations. InPro-
ceedings of the 6th International Workshop on Algorithms and Data
Structures, pages 13–24, 1999.

[9] M. Nöllenburg and A. Wolff. A mixed-integer program for drawing
high-quality metro maps. InProceedings of the 13th International
Symposium on Graph Drawing (GD’05), volume 3843 ofLNCS,
pages 321–333. Springer, 2005.

[10] J. Stott and P. Rodgers. Metro map layout using multicriteria optimiza-
tion. In Proceedings of the 8th International Conference on Informa-
tion Visualisation (IV’04), pages 355–362. IEEE Computer Society,
2004.

[11] M. A. Weiss. Data Structures and Algorithm Analysis in Java. Addi-
son Wesley Longman, 1999.

