Skip to main content

LDR-LLE: LLE with Low-Dimensional Neighborhood Representation

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

Abstract

The local linear embedding algorithm (LLE) is a non-linear dimension-reducing technique that is widely used for its computational simplicity and intuitive approach. LLE first linearly reconstructs each input point from its nearest neighbors and then preserves these neighborhood relations in a low-dimensional embedding. We show that the reconstruction weights computed by LLE capture the high-dimensional structure of the neighborhoods, and not the low-dimensional manifold structure. Consequently, the weight vectors are highly sensitive to noise. Moreover, this causes LLE to converge to a linear projection of the input, as opposed to its non-linear embedding goal. To resolve both of these problems, we propose to compute the weight vectors using a low-dimensional neighborhood representation. We call this technique LDR-LLE. We present numerical examples of the perturbation and linear projection problems, and of the improved outputs resulting from the low-dimensional neighborhood representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  2. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for dimensionality reduction and data representation. Neural. Comp. 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. U.S.A. 100, 5591–5596 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, Z.Y., Zha, H.Y.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comp. 26, 313–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision 70(1), 77–90 (2006)

    Article  Google Scholar 

  7. Xu, W., Lifang, X., Dan, Y., Zhiyan, H.: Speech visualization based on locally linear embedding (lle) for the hearing impaired. In: BMEI (2), pp. 502–505 (2008)

    Google Scholar 

  8. Shi, R., Shen, I.F., Chen, W.: Image denoising through locally linear embedding. In: CGIV 2005: Proceedings of the International Conference on Computer Graphics, Imaging and Visualization, pp. 147–152. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  9. Chen, J., Wang, R., Yan, S., Shan, S., Chen, X., Gao, W.: Enhancing human face detection by resampling examples through manifolds. IEEE Transactions on Systems, Man and Cybernetics, Part A 37, 1017–1028 (2007)

    Article  Google Scholar 

  10. L’Heureux, P., Carreau, J., Bengio, Y., Delalleau, O., Yue, S.: Locally linear embedding for dimensionality reduction in qsar. J. Comput. Aided Mol. Des. 18, 475–482 (2004)

    Article  Google Scholar 

  11. Wang, M., Yang, H., Xu, Z., Chou, K.: SLLE for predicting membrane protein types. J. Theor. Biol. 232, 7–15 (2005)

    Article  MathSciNet  Google Scholar 

  12. Xu, X., Wu, F., Hu, Z., Luo, A.: A novel method for the determination of redshifts of normal galaxies by non-linear dimensionality reduction. Spectroscopy and Spectral Analysis 26, 182–186 (2006)

    Google Scholar 

  13. Hadid, A., Pietikäinen, M.: Efficient locally linear embeddings of imperfect manifolds. Machine Learning and Data Mining in Pattern Recognition, 188–201 (2003)

    Google Scholar 

  14. Chang, H., Yeung, D.Y.: Robust locally linear embedding. Pattern Recognition 39, 1053–1065 (2006)

    Article  MATH  Google Scholar 

  15. Varini, C., Degenhard, A., Nattkemper, T.W.: ISOLLE: LLE with geodesic distance. Neurocomputing 69, 1768–1771 (2006)

    Article  Google Scholar 

  16. Wang, H., Zheng, J., Yao, Z., Li, L.: Improved locally linear embedding through new distance computing. In: Advances in Neural Networks - ISNN 2006, pp. 1326–1333 (2006)

    Google Scholar 

  17. Zhang, Z., Wang, J.: MLLE: Modified locally linear embedding using multiple weights. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 1593–1600. MIT Press, Cambridge (2007)

    Google Scholar 

  18. Saul, L.K., Roweis, S.T.: Think globally, fit locally: Unsupervised learning of low-dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  20. Saul, L.K., Roweis, S.T.: Locally linear embedding (LLE) website, http://www.cs.toronto.edu/~roweis/lle/

  21. Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1983)

    MATH  Google Scholar 

  22. Wu, F., Hu, Z.: The LLE and a linear mapping. Pattern Recognition 39, 1799–1804 (2006)

    Article  MATH  Google Scholar 

  23. Tenenbaum, J.B., de Silva, V., Langford, J.C.: Isomap website, http://isomap.stanford.edu/

  24. Goldberg, Y., Zakai, A., Kushnir, D., Ritov, Y.: Manifold learning: The price of normalization. J. Mach. Learn. Res. 9, 1909–1939 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, Y., Ritov, Y. (2008). LDR-LLE: LLE with Low-Dimensional Neighborhood Representation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics