Skip to main content

Methodological Steps and Issues When Deriving Individual Based-Models from Equation-Based Models: A Case Study in Population Dynamics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5357))

Abstract

An important question in the simulation of complex systems concerns the emergence of global behaviours and how to model them. Individual-based models (IBM), on one hand, are designed precisely for exploring emergent phenomena, but they must be simulated (sometimes extensively) in order to detect the behaviours that could emerge at the global level. Moreover, there are no “theories of IBM” that would allow modellers to make predictions about the long-term emerging behaviours they can observe. On the other hand, equation-based models (EBM), while not exploring the same causes of emergence, represent a useful tool for making predictions about global emerging behaviours of a system, especially in the long term. In this paper, we will explore the methodological issues that arise when attempting to derive an IBM from an existing EBM model in population dynamics, dedicated to exploring the dynamics of two competing populations in a “two-patch” environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubreuil, E., Auger, P., Gaillard, J.M., Khaladi, M.: Effects of aggressive behaviour on age structured population dynamics. Ecological Modelling 193, 777–786 (2006)

    Article  Google Scholar 

  2. Edelstein-Keshet, L.: Mathematical models in biology. Random house, New York (1989)

    MATH  Google Scholar 

  3. Fahse, L., Wissel, C., Grimm, V.: Reconciling classical and individual-based approaches in theoretical population ecology: a protocol for extracting population parameters from individual-based models. American Naturalist 152, 838–852 (1998)

    Google Scholar 

  4. Georiy, V.B., Goedecke, M.D., Yu, J.F., Epstein, S.M.: A hybrid epidemic model: Combining the advantages of agent-based and equation-based approaches. In: Proceeding of the 2007 Winter Simulation Conference (2007)

    Google Scholar 

  5. Murray, J.: Mathematical Biology. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  6. Nguyen, N.D., Auger, P., de la Parra, R.B.: Effects of fast migrations on competitive coexistence (2008)

    Google Scholar 

  7. Auger, P., Pontier, D.: Fast Game Theory Coupled to Slow Population Dynamics: The case of Domestic Cat Populations. Mathematical Biosciences 148, 65–82 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Auger, P., Bravo de la Parra, R., Morand, S., Sanchez, E.: A predator-prey model with predators using hawk and dove tactics. Mathematical Biosciences 177, 185–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Auger, P., Bravo de la Parra, R., Poggiale, J.C., Sánchez, E., Nguyen Huu, T.: Aggregation of variables and applications to population dynamics. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology. Springer, Heidelberg (2008)

    Google Scholar 

  10. Auger, P., Kooi, B., Bravo de la Parra, R., Poggiale, J.-C.: Bifurcation Analysis of a Predator-prey Model with Predators using Hawk and Dove Tactics. Journal of Theoretical Biology 238, 597–607 (2006)

    Article  MathSciNet  Google Scholar 

  11. Amarasekare, N.R.M.: Spatical heternogeneity Source-Sink Dynamics and the Local coexistence of competing species. American Naturalist 158(6) (2001)

    Google Scholar 

  12. Amarasekare, P.: The role of density-dependent dispersal in source-sink dynamics. Journal of Theoretical Biology 226, 159–168 (2004)

    Article  MathSciNet  Google Scholar 

  13. Laubenbacher, R., Jarrah, A.S., Mortveit, H., Ravi, S.S.: A mathematical formalism for agent-based modeling, arXiv:08.01.0249v1 [cs. MA] (2007)

    Google Scholar 

  14. Law, R., Dieckmann, U.: Moment approximations of individual-based models (1999), http://www.iiasa.ac.at/Admin/PUB/Documents/IR-99-043.pdf

  15. Hinckley, S., Hermann, A.J., Megrey, B.A.: Development of a spatially explicit, individual-based model of marine fish early life history. Marine Ecology Progress Series 139, 47–68 (1996)

    Article  Google Scholar 

  16. Tilman, D.: Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994)

    Article  Google Scholar 

  17. Grimm, V., Steven, R.F.: Individual-based Modeling and Ecology. Princeton University Press, Princeton (2005)

    Book  MATH  Google Scholar 

  18. Grim, V.: A standard protocol for describing individual-based and agents-based model. Ecological Modelling 198, 115–126 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, N.D., Drogoul, A., Auger, P. (2008). Methodological Steps and Issues When Deriving Individual Based-Models from Equation-Based Models: A Case Study in Population Dynamics. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds) Intelligent Agents and Multi-Agent Systems. PRIMA 2008. Lecture Notes in Computer Science(), vol 5357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89674-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89674-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89673-9

  • Online ISBN: 978-3-540-89674-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics