Skip to main content

A Multi-resolution Mesh Representation for Deformable Objects in Collaborative Virtual Environments

  • Conference paper
Book cover Computer Vision and Computer Graphics. Theory and Applications (VISIGRAPP 2007)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 21))

Included in the following conference series:

Abstract

This paper presents a method for physical simulation of deformable closed surfaces over a network, which is suitable for realistic interactions between users and objects in a Collaborative Virtual Environment (CVE). To demonstrate a deformable object in a CVE, we employ a real-time physical simulation of a uniform-tension-membrane, based on linear finite-element-discretization of the surface. The proposed method introduces an architecture that distributes the computational load of physical simulation between each participant. Our approach requires a uniform-mesh representation of the simulated structure; therefore we designed and implemented a re-meshing algorithm that converts irregularly triangulated genus zero surfaces into a uniform triangular mesh with regular connectivity. The strength of our approach comes from the subdivision methodology that enables to use multi-resolution surfaces for graphical representation, physical simulation, and network transmission, without compromising simulation accuracy and visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jorissen, P., Wijnants, M., Lamotte, M.: Dynamic interactions in physically realistic collaborative virtual environments. IEEE Transactions on Visualization and Computer Graphics 11, 649–660 (2005)

    Article  Google Scholar 

  2. Hagsand, O.: Interactive multiuser VEs in the DIVE system. Multimedia 3, 30–39 (1996)

    Article  Google Scholar 

  3. Macedonia, M., Zyda, M., Pratt, D., Barham, P., Zeswitz, S.: NPSNET- A network software architecture for large-scale virtual environments. Presence- Teleoperators and Virtual Environments 3, 265–287 (1994)

    Google Scholar 

  4. Benford, S., Greenhalgh, C., Rodden, T., Pycock, J.: Collaborative virtual environments. Communications of the ACM 44, 79–85 (2001)

    Article  Google Scholar 

  5. Thalmann, D., Babski, C., Capin, T., Thalmann, N., Pandzic, I.: Sharing VLNET worlds on the Web. Computer Networks and ISDN Systems 29, 1601–1610 (1997)

    Article  Google Scholar 

  6. Dequidt, J., Grisoni, L., Chaillou, C.: Collaborative interactive physical simulation. In: Proceedings of the 3rd international conference on Computer graphics and interactive techniques in Australasia and South East Asia, pp. 147–150. ACM Press, New York (2005)

    Chapter  Google Scholar 

  7. Shen, X., Bogsanyi, F., Ni, L., Georganas, N.: A heterogeneous scalable architecture for collaborative haptics environments. In: Proceedings of the 2nd IEEE Internatioal Workshop on Haptic, Audio and Visual Environments and Their Applications (HAVE 2003), pp. 113–118 (2003)

    Google Scholar 

  8. Zhou, J., Shen, X., Georganas, N.: Haptic tele-surgery simulation. In: Proceedings of the 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications (HAVE 2004), pp. 99–104 (2004)

    Google Scholar 

  9. Goncharenko, I., Svinin, M., Matsumoto, S., Masui, Y., Kanou, Y., Hosoe, S.: Cooperative control with haptic visualization in shared virtual environments. In: Proceedings of Eighth International Conference on Information Visualisation (IV 2004), pp. 533–538 (2004)

    Google Scholar 

  10. Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. ACM SIGGRAPH Computer Graphics 20, 151–160 (1986)

    Article  Google Scholar 

  11. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM SIGGRAPH Computer Graphics 21, 205–214 (1987)

    Article  Google Scholar 

  12. Volino, P., Magnenat-Thalmann, N.: Resolving surface collisions through intersection contour minimization. ACM Transactions on Graphics (TOG) 25, 1154–1159 (2006)

    Article  Google Scholar 

  13. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 43–54 (1998)

    Google Scholar 

  14. Desbrun, M., Schroder, P., Barr, A.: Interactive animation of structured deformable objects. In: Graphics Interface 1999, vol. 1 (1999)

    Google Scholar 

  15. James, D., Pai, D.: ArtDefo: accurate real time deformable objects. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 65–72. ACM Press/Addison-Wesley Publishing Co., New York (1999)

    Google Scholar 

  16. Kang, Y., Cho, H.: Complex deformable objects in virtual reality. In: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 49–56. ACM Press, New York (2002)

    Google Scholar 

  17. Nikitin, I., Nikitina, L., Frolov, P., Goebbels, G., Göbel, M., Klimenko, S., Nielson, G.: Real-time simulation of elastic objects in virtual environments using finite element method and precomputed Green’s functions. In: Proceedings of the workshop on Virtual environments 2002, Eurographics Association Aire-la-Ville, Switzerland, pp. 47–52 (2002)

    Google Scholar 

  18. Choi, K., Sun, H., Heng, P.: An efficient and scalable deformable model for virtual reality-based medical applications. Artificial Intelligence In Medicine 32, 51–69 (2004)

    Article  Google Scholar 

  19. Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Transactions on Graphics 22, 340 (2003)

    Article  Google Scholar 

  20. Sander, P., Snyder, J., Gortler, S., Hoppe, H.: Texture mapping progressive meshes. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 409–416. ACM Press, New York (2001)

    Google Scholar 

  21. Fruchterman, T., Reingold, E.: Graph Drawing by Force-directed Placement. Software- Practice and Experience 21, 1129–1164 (1991)

    Article  Google Scholar 

  22. Alexa, M.: Recent Advances in Mesh Morphing. Computer Graphics Forum 21, 173–196 (2002)

    Article  Google Scholar 

  23. Zorin, D., Schröder, P., Sweldens, W.: Interpolating Subdivision for meshes with arbitrary topology. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 189–192. ACM Press, New York (1996)

    Google Scholar 

  24. Georgii, J., Westermann, R.: Mass-spring systems on the GPU. Simulation Modelling Practice and Theory 13, 693–702 (2005)

    Article  Google Scholar 

  25. Reddy, J.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  26. Baraff, D., Witkin, A.: Physically Based Modelling. ACM SIGGRAPH Course Notes (2003)

    Google Scholar 

  27. Bathe, K.: Finite element procedures in engineering analysis. Prentice-Hall, Englewood Cliffs (1982)

    Google Scholar 

  28. Hughes, T.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Dover Publications (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sumengen, S., Eren, M.T., Yesilyurt, S., Balcisoy, S. (2008). A Multi-resolution Mesh Representation for Deformable Objects in Collaborative Virtual Environments. In: Braz, J., Ranchordas, A., Araújo, H.J., Pereira, J.M. (eds) Computer Vision and Computer Graphics. Theory and Applications. VISIGRAPP 2007. Communications in Computer and Information Science, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89682-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89682-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89681-4

  • Online ISBN: 978-3-540-89682-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics