Skip to main content

Discussion of Search Strategy for Multi-objective Genetic Algorithm with Consideration of Accuracy and Broadness of Pareto Optimal Solutions

  • Conference paper
Simulated Evolution and Learning (SEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5361))

Included in the following conference series:

Abstract

In multi-objective optimization, it is important that the obtained solutions are high quality regarding accuracy, uniform distribution, and broadness. Of these qualities, we focused on accuracy and broadness of the solutions and proposed a search strategy. Since it is difficult to improve both convergence and broadness of the solutions at the same time in a multi-objective GA search, we considered to converge the solutions first and then broaden them in the proposed search strategy by dividing the search into two search stages. The first stage is to improve convergence of the solutions, and a reference point specified by a decision maker is adopted in this search. In the second stage, the solutions are broadened using the Distributed Cooperation Scheme. From the results of the numerical experiment, we found that the proposed search strategy is capable of deriving broader solutions than conventional multi-objective GA with equivalent accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesly (1989)

    Google Scholar 

  2. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proceedings of the 5th international conference on genetic algorithms, pp. 416–423 (1993)

    Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  4. Deb, K., Agarwal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: KanGAL report 200001, Indian Institute of Technology, Kanpur (2000)

    Google Scholar 

  5. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Performance of the Strength Pareto Evolutionary Algorithm. In Technical Report 103, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich (2001)

    Google Scholar 

  6. Okuda, T., Hiroyasu, T., Miki, M., Watanabe, S.: DCMOGA: Distributed Cooperation model of Multi-Objective Genetic Algorithm. In: Advances in Nature-Inspired Computation: The PPSN VII Workshops, pp. 25–26 (2002)

    Google Scholar 

  7. Watanabe, S., Hiroyasu, T., Miki, M.: NCGA: Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 458–465 (2002)

    Google Scholar 

  8. Ishibuchi, H., Shibata, Y.: Mating Scheme for Controlling the Diversity-Convergence Balance for Multiobjective Optimization. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1259–1271. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Deb, K., Sundar, J.: Reference Point Based Multi-Objective Optimization Using Evolutionary Algorithms. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 635–642 (2006)

    Google Scholar 

  10. Tanese, R.: Distributed Genetic Algorithms. In: Proc. 3rd ICGA, pp. 434–439 (1989)

    Google Scholar 

  11. Jaimes, A.L., Coello, C.A.C.: MRMOGA: Parallel Evolutionary Multiobjective Optimization using Multiple Resolutions. In: 2005 IEEE Congress on Evolutionary Computation (CEC 2005), pp. 2294–2301 (2005)

    Google Scholar 

  12. Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Parallel Problem Solving from Nature. 1st Workshop, PPSN I, pp. 193–197 (1991)

    Google Scholar 

  13. Ishibuchi, H., Kaige, S., Narukawa, K.: Comparison between Lamarckian and Baldwinian Repair on Multiobjective 0/1 Knapsack Problems. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 370–385. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Sato, H., Aguirre, H., Tanaka, K.: Local Dominance Using Polar Coordinates to Enhance Multi-objective Evolutionary Algorithms. In: Proc. 2004 IEEE Congress on Evolutionary Computation, pp. 188–195 (2004)

    Google Scholar 

  15. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. In TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hiroyasu, T., Nishioka, M., Miki, M., Yokouchi, H. (2008). Discussion of Search Strategy for Multi-objective Genetic Algorithm with Consideration of Accuracy and Broadness of Pareto Optimal Solutions. In: Li, X., et al. Simulated Evolution and Learning. SEAL 2008. Lecture Notes in Computer Science, vol 5361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89694-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89694-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89693-7

  • Online ISBN: 978-3-540-89694-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics