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Abstract. We examine hierarchical fuzzy control of the inverted pendulum over
the set of initial conditions. A new compositional method for the inverted pen
dulum system is introduced. Three layered hierarchical fuzzy logidaggads
used to create a fuzzy rule base for the control system. Fuzzy redsaant by
evolutionary algorithm designed for the compositional method.

1 Introduction

In this paper we investigate the compositional method agpi a typical dynamical
system. The inverted pendulum system provides a good tébph used for the evalu-
ation and comparison of various control theories. The cbofrthe inverted pendulum
has been undertaken using linear and nonlinear dynamidselnde both classical and
fuzzy logic control techniques, to mention a few, [1],[3]:f [10].

The major advantage of compositional method is that oncduey rule base is
determined it can control the dynamical system from a rafig@tal conditions with-
out additional computations. In other words, the contrdefixed and is expected to
successfully control the system from a large range of initaditions.

A first step in the construction of a fuzzy logic system is ttedmine which vari-
ables are fundamentally important. In considering a sifatered fuzzy system, with
all variables as input into this layer, the total number désun a system is an expo-
nential function of the number of system variables. Thigseuof dimensionality’ can
be handled in a variety of ways, one being the grouping ofyfum#es into prioritised
levels to design hierarchical structure.

In a hierarchical fuzzy logic structure (HFS), typicallyetmost influential parame-
ters are chosen as the system variables in the first levelgtktenost important param-
eters are chosen as the system variables in the seconddededp on. The number of
rules in a complete rule set is reduced to a linear functioth@fmumber of variables.
The decomposition into hierarchical fuzzy logic sub-systeeduces greatly the num-
ber of fuzzy rules to be defined and to be learnt. The task oirfinthe fuzzy rules in
hierarchical fuzzy structure is given to evolutionary altfon (EA).

The paper has been divided into six sections. The backgrofititis research is
given in Section 1. Section 2 describes the dynamical syateher investigation. Sec-
tion 3 introduces the concept of hierarchical fuzzy systemd their application in



control problem of the inverted pendulum system. In secfiome give a detailed de-
scription of the evolutionary algorithm designed to find thezy rule base. Details of
computer simulations are given in Section 5. Final conolusiare drawn in Section 6.

2 Inverted pendulum system

Inverted Pendulum Problem

.
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Fig. 1. Inverted Pendulum System.

The nonlinear system to be controlled consists of the calbanigid pole hinged to
the top of the cart. The cart is free to move left or right onraight bounded track and
the pole can swing in the vertical plane determined by thektrih is modelled by [11]:

&2 = u+ ml(sin(zs)z] — @4 cos(xs)) /(M +m)
gsin(xs) + cos(zs) (u — mlaj sin(xs))/(M + m)
£(4/3 — mcos(z3)2/(M + m))

T4 =

wherez; is the position of the cartys is the velocity of the cartzs is the angle of
the pole,z4 is the angular velocity of the pole, is the control force on the cartp

is the mass of the poléy/ is the mass of the cart,is the length of the pole, angis
gravitational acceleration. The control force is appliedhe cart to prevent the pole
from falling while keeping the cart within the specified bdgron the track. We take
m = 0.1kg, M = 1kg, £ = 0.5m, ¢ = 9.81ms ™2, with state limits:—1.0 < z; < 1.0
and—7/6 < z3 < /6.

The goal is to determine fuzzy controllers necessary tadlsalthe system about
the unstable reference position= 0 as quickly as possible, whilst maintaining the
system within the the target region (TR) defined by the follmpbounds]z,| < 0.1,
|xo| < 0.1, |zs] < 7/24, |z4| < 3.0. The desired fuzzy controller is required to control
the system such that the state variables converge to TR andantained within TR
for a prescribed time limif’y with T'; = 20.0.



3 Hierarchical fuzzy system

Our hierarchical fuzzy logic structure has two input valéghin the first layer. Then
there is one input variable in second and third layer of &#tagl HFS. This input con-
figuration provides the minimal number of fuzzy rules in timwledge base [12].

Investigation of different topologies for the inverted dalum system showed that
3-layered topology with angular speed and angular position, as input variables
in the first layer, and then the cart’s speegas input in second layer and position
displacementz; as input variable in the third layer was a best choice for thatrol
system (in terms of state variables convergence and canaghitude) [13].

The output variable: is calculated using the Mamdani product inference engine
or minimum inference engine. Given a fuzzy rule base Witlrules and» antecedent
variables, a fuzzy controller as given in Equation 1 (withrviani inference engine) or
Equation 2 (with minimum inference engine) uses a singl&amnifier, Mamdani prod-
uct or minimum inference engine and centre average defarzdidetermine output
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Fig.2. Three Layer HFS

The architecture o8-layered HFS is shown in Figure 2. For this system the first
knowledge basd{ B; has the two inputsy; andz; to produce as output a first ap-
proximation to the control’. This«’ together withz;, are used as input in the second



knowledge basé Bs. Then the second layer produces another approximationref co
trol " which with z; is used as input to the third (and final) layer to produce tha fin
control output.

In the first layer there arg5 = (5)? rules in the knowledge base. In general, we
may write the/*" fuzzy rule has the form:

If (z; is AY) and @; is A%) Then @’ is BY).

whereA¢ k= 1,2, 3, 4 are normalised fuzzy sets for input variablesk = 1,2, 3, 4,
respectively, and wherB* are normalised fuzzy sets for output variable

For the second layer there &% = 7 x 5 rules in the knowledge base and we may
write the/*" fuzzy rule has the form:

If (v is C*) and @, is AL) ) Then ¢ is BY).

whereC* are normalised fuzzy sets for the input control variable
Similarly, there are35 rules in the third layer and thé” fuzzy rule has the form:

If (" is C*) and @; is AY) Then @ is BY).

There are a total 095 fuzzy rules in this hierarchical structure. The output for
each layer is obtained using the either Mamdani inferengéneror minimum infer-
ence engine as given in Equations 1 and 2, with the appremfange of variable and
associated membership functions for that variable.

Each domain region for; is divided into5 overlapping intervals and each assigned
membership setsi¥ k = 1,--- |5, which we encode numerically as integers from
to 5 respectively. We found that the set®fmembership functions provides relatively
small knowledge base while maintaining a good controllefgeiance. As the output
variable range was found larger (by experiments), we divithe output: into 7 over-
lapping regions witlt membership setB*, k = 1, -- - , 7, with integer encoding to 7.

All fuzzy membership functions are assumed to be Gaussitintteir centres evenly
spaced over the range of input and output variables.

4 Evolutionary algorithm for compositional method

The compositional method uses the evolutionary algoritbreegarch for a fuzzy rule
base capable of controlling the system over the whole setit@liconditions and fithess
of each individual in the EA population reflects the coneplberformance for every
initial condition in the set. In other words, every stringtive population is assigned
the fitness value which is a composite value representimg&performance for every
single initial condition.

The evolutionary algorithm is a heuristic search technitpa¢ maintains a popula-
tion of individuals P(t) at iterationt to the next iteratiort + 1 [14]. Each individual
represents a potential solution to a given problem. Eachithehl is assigned a mea-
sure of fitness which defines how accurate it is as a potemtiatien to the problem.
Depending on whether the problem is defined as a maximisatiorinimisation prob-
lem, the best solution may be that string with the highesbwekt fithess value. The
inverted pendulum problem is defined as minimisation proble



Each individual string in the evolutionary population isuniquely represent the
hierarchical structure. This is achieved as follows. Inkhewledge base of any layer,
assuming a complete and consistent knowledge base, eachriue is uniquely de-
fined by the consequent part.

This consequent part is identified by a particular outpuryuset, for exampleB*.
Such a fuzzy set can be identified by the integer [1, 7]. The three fuzzy rule base
structure can be represented as a linear individual stfing 6= 25 + 35 + 35 = 95
consequents, = [a1,- - ,ags], Wherea; is an integek [1,7] forj =1,---,95.

The fitneNssf;c of a given string for a single initial condition is evaluatad fol-
lows: given an initial condition of the system we can decodehestringp, into the
two or more components defining the fuzzy knowledge basedoh dayer, then use
the Mamdani or minimum inference formula to evaluate.”, andu to find the final
control to be applied at each value of the stat&iven an initial state the system state
equations are integrated by the Runge—KuttNa algorithm (Ridth step sizé).02 over a
sufficiently long time interval0, 7). The fitnessf,, to be minimised, is then calculated
based on some measures of the behaviour of the system otenéhaterval. These in-
clude, the accumulated sum of normalised absolute dem@btbzr; andz; from zero,
the average deviation from vertical, the average devidtiom the origin orT” — Ts
whereTy, the survival time, is taken to mean the total time beforepble and cart
break some bounds. A penalty 1§00 is added to the objective if the final state breaks
the following boundgz;| < 0.1, |x2| < 0.1, |a3| < 7/24, |z4] < 3.0, i.e., leaves the
designated TR (target region).

The fitness functiorf, has the general form:

fo = w1 F1 + woFo + w3F3 + wiFy + w5 F5 with
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wherez oz = 1.0, Oaar = /6, maz = 1.0, Orrqe = 3.0, N is the number of
iteration steps, survival tim&s = 0.02 * N, T" = 0.02 * N,,4, With the maximum
number of iterationsV,, .., = 1000, andwy, are selected positive weights. The first and
second terms determine the accumulated sum of normalisedudéd deviations of:4
andx, from zero, similarly for the third term and fourth terms itat®on toxs andxz,,
and the last term when minimised, maximises the survivattim

The essence of the compositional method lies in the methbohess function eval-
uation. The choice of evaluation method decides of effea@ss of the compositional
method and therefore plays a crucial role. In our approachee@led to define a very
simple evaluation method: the fithess function is evaluébecevery initial condition
and then averaged and assigned to a particular string imatientpopulation.

Fitness function can be modified in order to reward stringEkvbuccessfully con-
trol the system from a large number of initial conditions e@rfithe simplest methods is
to establish threshold values for the objective functiod penalize strings that exceed
those threshold values (for each init. condition). We setftilowing threshold values:



0.3 x avg, 0.5 x avg, and0.8 x avg with corresponding penalties &#0.0, 1000.0, and
2000.0, whereavg is a variable representing average fitness of the previousrggon:

Penal ty schedul e:

if Obj Fun >= 0. 3*avg and Obj Fun < 0. 5*avg

t hen Obj Fun = Obj Fun + 500. 0;

if Obj Fun >= 0.5+avg and Obj Fun < 0. 8*avg

then Obj Fun = Obj Fun + 1000.0

if Obj Fun >= 0.8+avg then Cbj Fun = oj Fun + 2000.0

Please note, that increasing penalty values might ‘detiad’ evolutionary algo-
rithm. Therefore penalties need to be fine-tuned to focu€Ethen selecting strings
that perform well for the large number of initial conditioria some simulations the
heavy penalties imposed on fithess function resulted in poatroller performance.
To test the impact of above penalty scheme the same simmgatiere run without any
penalties with mixed results that proved that usually net factor decides on the EA
performance but a combination of EA parameters.

The initial populationP(0) = {p, : k=1,---, M}, was determined by choosing
thea; as a random integer i, 7] where)M is the size of the evolutionary population.
Full replacement policy was used and for selection procesased tournament selec-
tion with sizenr = 4.

The new populatioP(¢ 4 1) is obtained from the old on€(t) by the use of ge-
netic operators such as: selection, crossover, and mutétidl replacement policy is
implemented and requires that the population size remainstant from one genera-
tion to the next. A selection process is used to obtain pafentmating in the current
generation. We chose tournament selection in which a nuwfgossible parents are
selected at random from the population. A tournament is tiedd to select the two
most fit strings and they are used as parents in the next [gro€esossover to generate
children to be passed into the next generation. We useddment selection with size
ny = 4. An elitism strategy is typically used to pass the fitteshiiaihals or copies of
the fittest individual to the new population, so that the infation encapsulated in the
best individual is not lost and the fittest individuals arsgel into the next generation.

In the crossover operation a number of ‘parent’ stringsicalty two, are recom-
bined to create ‘child’ strings. The children are then adedomplete the new popu-
lation. They also undergo mutation by a mutation operatackvperturbs or mutates
the string structures. With a given probability, usuallyadiithe mutation operator mu-
tates elements of the strings in the population. This essatisfactory diversity within
the population which is required for the EA to find better apgmate solutions to the
problem. Mutation was undertaken with probabifity whose value was determined by
a mutation schedule that decreases typically ffo®to 0.001 over 1000 generations.

With an appropriate selection of EA parameters and opeyatioe algorithm is al-
lowed to evolve. The most fit individual is then taken as th&t pessible solution learnt
by this algorithm. Alternatively, the best top ten indivadsiare amalgamated (averaged)
into the control system for the inverted pendulum. The desdrEA is used to learn
fuzzy rules in the HFS that constitutes a control systemtieritverted pendulum. A
schematic algorithm is given below:

1. Population is randomly initialised: every component of individual stisrgiven a randomly
selected value from intervdl, 7).



2. EAparameters are selected: type of inference engine, crossautetion schedule, selection
method, elitism, fitness function (with a penalty schedule), and numbemafrgtions.

3. EA algorithm starts:

(a) Fitness of the first generation is evaluated.

(b) Next generation is created using EA operators: selection, creissoutation.

(c) Individual from the population is selected.

(d) Initial condition is selected from the predefined list.

(e) Dynamical system is simulated from a given initial condition.

() Final state of state variables and survival time are determined.

(g) Based on values from 3f temporary fitness function value is evadaten individual.

(h) Penalties are added to the fithess value (if penalty schedule is defined)

(i) Steps 3d—3h are repeated until all system simulations for every initriton in the
list are performed.

() Average of all temporary fitness values is calculated and assignee fadlvidual as
its fitness.

(k) Steps 3c—3j are repeated until all individuals in the population havefitness evalu-
ated.

() Steps 3b—3k repeated until the final generation.

4. Final control system is determined by either selecting the top individua} averaging top
10 individuals from the final population. Its performance is evaluatadibging a simulation
of the dynamical system for all initial conditions and counting initial conditiforsivhich
the final state variables are within the target region.

5 Simulation results

Methodology described above was implemented in our exgenisn130 simulations
were run for different variants of fitness function and diffiet combinations of EA
parameters. We illustrate our results on a few selected gbesnthat represent typical
results.

The population size was set #10. Smaller population size is possible but below
300 itis difficult for the EA to maintain the required diversity population. The EA was
terminated at 000 generations as it was found that the algorithm either fintlgiso
in about300 — 800 generations or fails. Changing the weight# fitness function had
a significant impact on the EA performance. In fact, the fitlnponent of the fitness
functionws (survival time) implicitly contains all other componentsttby specifying
them separately we influence the EA process, i.e., we int®d@maller or bigger bias
towards one or another component. Full se2®$ initial conditions was defined for

By introducing strong elitist strategy we achieved the &vgence of the average
value of objective function across population close to theimum value of the ob-
jective function. This is desired as an indication of good fE&formance resulting in
majority of population being valid control systems. In sadesimulations the average
population fitness was on par with the minimal fitness indicathat almost all indi-
viduals in the last population represented the controkesysif the same or very similar
quality. In some simulations we amalgamated top ten costrivlgs from the final pop-
ulation into one final controller. The amalgamation regllite higher percentage of
initial conditions from which the controller was able to tanh the system towards the
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Fig. 3. Typical result: State variables;.

target area. The amalgamation of top control strings haéradveffect for the small
number of initial conditions for which the controller wentigkly out of range of nu-

merical values (‘blow-out’ effect). With the controller fiteed as a top string from the
final population control was always maintained, i.e, thgtiories converged if not in
the target region than relatively close to it. However, asitimaed earlier, the number
of initial conditions from which the controller succes$yutontrolled the system to TR
dropped. Typically, in most simulations the percentageniial conditions for which
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Fig. 4. Good convergence: State variables

controller successfully controlled the system to TR vafiedh aboutd0% to 60% with



a bulk of simulations achieving just aboi% success rate. In many simulations the
number of initial conditions from which the controller penfnance was satisfactory
oscillated around 00 (out of 255). This trend might reflect the nature of the inverted
pendulum dynamics. We observed that even though the ctartoften missed the tar-
get region the final state variables values were close to TR.

In simulation illustrated in Figure 3 minimum inference éregand penalty schedule
were used. Results are shown for initial condition= (—0.75, —1.0, —0.2618, —1.0)
and:w; = 3000, wy = 100, w3 = 100, ws = 0, ws = 2000. Another typical result is
illustrated in Figure 3 for init. conditionz = (—0.35, —0.5, —0.1309, 1.0) and:w; =
1000, wo = 0, ws = 1000, ws = 0, ws = 3000. In simulation illustrated in Figure 4 we
used product inference engine and no penalty scheduleltRsbiown are for initial
condition:z = (—0.75,—1.0, —0.2618, —1.0) and:w; = 3000, w2 = 100, w3 = 100,
ws = 0, ws = 2000. In this particular simulation a very good state variables/engence
was achieved but only f&19 out of 255 initial conditions. All state variables converged
very quickly to zero, except; with values remaining abolt04 from the origin.

6 Conclusions

In this paper we have examined the hierarchical fuzzy cbwefrthe simple inverted
pendulum and used evolutionary algorithms to learn a fuzmyjroller for a single hi-
erarchical topology over the whole set of initial condioiVe defined the set @b5
initial conditions in state space that is viable in termsroferted pendulum dynam-
ics. We excluded initial conditions that were in our opinimo extreme and would
make control process virtually impossible. This fact ra8eshysical reality of inverted
pendulum dynamics; if the system starts from completelieddht initial conditions it
is unlikely to find relatively small fuzzy rule base capabfehandling every possible
dynamics of the system. For the set of this size and rangdatikeof controlling the
inverted pendulum from every initial condition in the sedyed unrealistic. We set our
goal at achieving control to the target area for as manyairitinditions as possible.

We designed the compositional method for the inverted penadsystem and proved
that with the right combination of EA parameters the resglfuzzy control system is
capable to control the system from the wide range of init@iditions. Our results
show that with improvements in the EA parameters (espgdiatiess function defini-
tion) better results are possible.

Compositional method provides a control system (not jusethod for designing
a controller) that once developed is capable of controliirgdynamical system from
a wide range of initial conditions. In many practical apations this is a significant
advantage as computational time for designing controtherefvery initial condition
separately may render a method unfeasible.
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