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Abstract. We examine hierarchical fuzzy control of the inverted pendulum over
the set of initial conditions. A new compositional method for the inverted pen-
dulum system is introduced. Three layered hierarchical fuzzy logic topology is
used to create a fuzzy rule base for the control system. Fuzzy rules are learnt by
evolutionary algorithm designed for the compositional method.

1 Introduction

In this paper we investigate the compositional method applied to a typical dynamical
system. The inverted pendulum system provides a good test platform used for the evalu-
ation and comparison of various control theories. The control of the inverted pendulum
has been undertaken using linear and nonlinear dynamics andinclude both classical and
fuzzy logic control techniques, to mention a few, [1],[3],[5]– [10].

The major advantage of compositional method is that once thefuzzy rule base is
determined it can control the dynamical system from a range of initial conditions with-
out additional computations. In other words, the controller is fixed and is expected to
successfully control the system from a large range of initial conditions.

A first step in the construction of a fuzzy logic system is to determine which vari-
ables are fundamentally important. In considering a singlelayered fuzzy system, with
all variables as input into this layer, the total number of rules in a system is an expo-
nential function of the number of system variables. This ‘curse of dimensionality’ can
be handled in a variety of ways, one being the grouping of fuzzy rules into prioritised
levels to design hierarchical structure.

In a hierarchical fuzzy logic structure (HFS), typically the most influential parame-
ters are chosen as the system variables in the first level, thenext most important param-
eters are chosen as the system variables in the second level,and so on. The number of
rules in a complete rule set is reduced to a linear function ofthe number of variables.
The decomposition into hierarchical fuzzy logic sub-systems reduces greatly the num-
ber of fuzzy rules to be defined and to be learnt. The task of finding the fuzzy rules in
hierarchical fuzzy structure is given to evolutionary algorithm (EA).

The paper has been divided into six sections. The backgroundof this research is
given in Section 1. Section 2 describes the dynamical systemunder investigation. Sec-
tion 3 introduces the concept of hierarchical fuzzy systemsand their application in



control problem of the inverted pendulum system. In section4 we give a detailed de-
scription of the evolutionary algorithm designed to find thefuzzy rule base. Details of
computer simulations are given in Section 5. Final conclusions are drawn in Section 6.

2 Inverted pendulum system

Fig. 1. Inverted Pendulum System.

The nonlinear system to be controlled consists of the cart and a rigid pole hinged to
the top of the cart. The cart is free to move left or right on a straight bounded track and
the pole can swing in the vertical plane determined by the track. It is modelled by [11]:

ẋ1 = x2

ẋ2 = u + mℓ(sin(x3)x
2
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ẋ3 = x4

ẋ4 =
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wherex1 is the position of the cart,x2 is the velocity of the cart,x3 is the angle of
the pole,x4 is the angular velocity of the pole,u is the control force on the cart,m
is the mass of the pole,M is the mass of the cart,ℓ is the length of the pole, andg is
gravitational acceleration. The control force is applied to the cart to prevent the pole
from falling while keeping the cart within the specified bounds on the track. We take
m = 0.1kg, M = 1kg, ℓ = 0.5m, g = 9.81ms−2, with state limits:−1.0 ≤ x1 ≤ 1.0
and−π/6 ≤ x3 ≤ π/6.

The goal is to determine fuzzy controllers necessary to stabilise the system about
the unstable reference position

∼

x =
∼

0 as quickly as possible, whilst maintaining the
system within the the target region (TR) defined by the following bounds:|x1| ≤ 0.1,
|x2| ≤ 0.1, |x3| ≤ π/24, |x4| ≤ 3.0. The desired fuzzy controller is required to control
the system such that the state variables converge to TR and are maintained within TR
for a prescribed time limitTf with Tf = 20.0.



3 Hierarchical fuzzy system

Our hierarchical fuzzy logic structure has two input variables in the first layer. Then
there is one input variable in second and third layer of 3-layered HFS. This input con-
figuration provides the minimal number of fuzzy rules in the knowledge base [12].

Investigation of different topologies for the inverted pendulum system showed that
3-layered topology with angular speedx3 and angular positionx4 as input variables
in the first layer, and then the cart’s speedx2 as input in second layer and position
displacementx1 as input variable in the third layer was a best choice for the control
system (in terms of state variables convergence and controlmagnitude) [13].

The output variableu is calculated using the Mamdani product inference engine
or minimum inference engine. Given a fuzzy rule base withM rules andn antecedent
variables, a fuzzy controller as given in Equation 1 (with Mamdani inference engine) or
Equation 2 (with minimum inference engine) uses a singletonfuzzifier, Mamdani prod-
uct or minimum inference engine and centre average defuzzifier to determine output
variables.
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whereuℓ are centres of the output setsBℓ.
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Fig. 2. Three Layer HFS

The architecture of3-layered HFS is shown in Figure 2. For this system the first
knowledge baseKB1 has the two inputs,xi andxj to produce as output a first ap-
proximation to the controlu′. Thisu′ together withxk are used as input in the second



knowledge baseKB2. Then the second layer produces another approximation of con-
trol u′′ which with xl is used as input to the third (and final) layer to produce the final
control outputu.

In the first layer there are25 = (5)2 rules in the knowledge base. In general, we
may write theℓth fuzzy rule has the form:

If (xi is Aℓ
i ) and (xj is Aℓ

j) Then (u′ is Bℓ).

whereAℓ
k, k = 1, 2, 3, 4 are normalised fuzzy sets for input variablesxk, k = 1, 2, 3, 4,

respectively, and whereBℓ are normalised fuzzy sets for output variableu′.
For the second layer there are35 = 7 × 5 rules in the knowledge base and we may

write theℓth fuzzy rule has the form:

If (u′ is Cℓ) and (xk is Aℓ
k) ) Then (u′′ is Bℓ).

whereCℓ are normalised fuzzy sets for the input control variableu.
Similarly, there are35 rules in the third layer and theℓth fuzzy rule has the form:

If (u′′ is Cℓ) and (xl is Aℓ
l ) Then (u is Bℓ).

There are a total of95 fuzzy rules in this hierarchical structure. The output for
each layer is obtained using the either Mamdani inference engine or minimum infer-
ence engine as given in Equations 1 and 2, with the appropriate change of variable and
associated membership functions for that variable.

Each domain region forxi is divided into5 overlapping intervals and each assigned
membership sets:Ak

i , k = 1, · · · , 5, which we encode numerically as integers from1
to 5 respectively. We found that the set of5 membership functions provides relatively
small knowledge base while maintaining a good controller performance. As the output
variable range was found larger (by experiments), we divided the outputu into 7 over-
lapping regions with7 membership setsBk, k = 1, · · · , 7, with integer encoding1 to 7.
All fuzzy membership functions are assumed to be Gaussian with their centres evenly
spaced over the range of input and output variables.

4 Evolutionary algorithm for compositional method

The compositional method uses the evolutionary algorithm to search for a fuzzy rule
base capable of controlling the system over the whole set of initial conditions and fitness
of each individual in the EA population reflects the controller performance for every
initial condition in the set. In other words, every string inthe population is assigned
the fitness value which is a composite value representing string’s performance for every
single initial condition.

The evolutionary algorithm is a heuristic search techniquethat maintains a popula-
tion of individualsP (t) at iterationt to the next iterationt + 1 [14]. Each individual
represents a potential solution to a given problem. Each individual is assigned a mea-
sure of fitness which defines how accurate it is as a potential solution to the problem.
Depending on whether the problem is defined as a maximisationor minimisation prob-
lem, the best solution may be that string with the highest or lowest fitness value. The
inverted pendulum problem is defined as minimisation problem.



Each individual string in the evolutionary population is touniquely represent the
hierarchical structure. This is achieved as follows. In theknowledge base of any layer,
assuming a complete and consistent knowledge base, each fuzzy rule is uniquely de-
fined by the consequent part.

This consequent part is identified by a particular output fuzzy set, for example,Bk.
Such a fuzzy set can be identified by the integerk ∈ [1, 7]. The three fuzzy rule base
structure can be represented as a linear individual string of M = 25 + 35 + 35 = 95
consequents,

∼

p
k
= [a1, · · · , a95], whereaj is an integer∈ [1, 7] for j = 1, · · · , 95.

The fitnessfk of a given string for a single initial condition is evaluatedas fol-
lows: given an initial condition of the system we can decode each string

∼

p
k

into the
two or more components defining the fuzzy knowledge base for each layer, then use
the Mamdani or minimum inference formula to evaluateu′,u′′, andu to find the final
control to be applied at each value of the state

∼

x. Given an initial state the system state
equations are integrated by the Runge-Kutta algorithm (RK4) with step size0.02 over a
sufficiently long time interval[0, T ]. The fitnessfk to be minimised, is then calculated
based on some measures of the behaviour of the system over thetime interval. These in-
clude, the accumulated sum of normalised absolute deviations ofx1 andx3 from zero,
the average deviation from vertical, the average deviationfrom the origin orT − TS

whereTS , the survival time, is taken to mean the total time before thepole and cart
break some bounds. A penalty of1000 is added to the objective if the final state breaks
the following bounds|x1| ≤ 0.1, |x2| ≤ 0.1, |x3| ≤ π/24, |x4| ≤ 3.0, i.e., leaves the
designated TR (target region).

The fitness functionfk has the general form:

fk = ω1F1 + ω2F2 + ω3F3 + ω4F4 + ω5F5 with
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ẋmax

, F3 =
1

N

N∑

1

|x3|

θmax

,

F4 =
1

N

N∑

1

|x4|

θ̇max

, and F5 =
1

T
(T − TS),

wherexmax = 1.0, θMax = π/6, ẋmax = 1.0, θ̇Max = 3.0, N is the number of
iteration steps, survival timeTS = 0.02 ∗ N , T = 0.02 ∗ Nmax with the maximum
number of iterationsNmax = 1000, andωk are selected positive weights. The first and
second terms determine the accumulated sum of normalised absolute deviations ofx1

andx2 from zero, similarly for the third term and fourth terms in relation tox3 andx4,
and the last term when minimised, maximises the survival time.

The essence of the compositional method lies in the method offitness function eval-
uation. The choice of evaluation method decides of effectiveness of the compositional
method and therefore plays a crucial role. In our approach wedecided to define a very
simple evaluation method: the fitness function is evaluatedfor every initial condition
and then averaged and assigned to a particular string in controller population.

Fitness function can be modified in order to reward strings which successfully con-
trol the system from a large number of initial conditions. One of the simplest methods is
to establish threshold values for the objective function and penalize strings that exceed
those threshold values (for each init. condition). We set the following threshold values:



0.3 ∗ avg, 0.5 ∗ avg, and0.8 ∗ avg with corresponding penalties as:500.0, 1000.0, and
2000.0, whereavg is a variable representing average fitness of the previous generation:

Penalty schedule:
if ObjFun >= 0.3*avg and ObjFun < 0.5*avg
then ObjFun = ObjFun + 500.0;
if ObjFun >= 0.5*avg and ObjFun < 0.8*avg
then ObjFun = ObjFun + 1000.0
if ObjFun >= 0.8*avg then ObjFun = ObjFun + 2000.0

Please note, that increasing penalty values might ‘derail’the evolutionary algo-
rithm. Therefore penalties need to be fine-tuned to focus theEA on selecting strings
that perform well for the large number of initial conditions. In some simulations the
heavy penalties imposed on fitness function resulted in poorcontroller performance.
To test the impact of above penalty scheme the same simulations were run without any
penalties with mixed results that proved that usually not one factor decides on the EA
performance but a combination of EA parameters.

The initial population,P (0) = {
∼

p
k

: k = 1, · · · ,M}, was determined by choosing
theaj as a random integer in[1, 7] whereM is the size of the evolutionary population.
Full replacement policy was used and for selection process we used tournament selec-
tion with sizenT = 4.

The new populationP (t + 1) is obtained from the old oneP (t) by the use of ge-
netic operators such as: selection, crossover, and mutation. Full replacement policy is
implemented and requires that the population size remains constant from one genera-
tion to the next. A selection process is used to obtain parents for mating in the current
generation. We chose tournament selection in which a numberof possible parents are
selected at random from the population. A tournament is thenheld to select the two
most fit strings and they are used as parents in the next process of crossover to generate
children to be passed into the next generation. We used tournament selection with size
nT = 4. An elitism strategy is typically used to pass the fittest individuals or copies of
the fittest individual to the new population, so that the information encapsulated in the
best individual is not lost and the fittest individuals are passed into the next generation.

In the crossover operation a number of ‘parent’ strings, typically two, are recom-
bined to create ‘child’ strings. The children are then addedto complete the new popu-
lation. They also undergo mutation by a mutation operator which perturbs or mutates
the string structures. With a given probability, usually small, the mutation operator mu-
tates elements of the strings in the population. This ensures satisfactory diversity within
the population which is required for the EA to find better approximate solutions to the
problem. Mutation was undertaken with probabilitypm whose value was determined by
a mutation schedule that decreases typically from0.8 to 0.001 over1000 generations.

With an appropriate selection of EA parameters and operators, the algorithm is al-
lowed to evolve. The most fit individual is then taken as the best possible solution learnt
by this algorithm. Alternatively, the best top ten individuals are amalgamated (averaged)
into the control system for the inverted pendulum. The described EA is used to learn
fuzzy rules in the HFS that constitutes a control system for the inverted pendulum. A
schematic algorithm is given below:

1. Population is randomly initialised: every component of individual stringis given a randomly
selected value from interval[1, 7].



2. EA parameters are selected: type of inference engine, crossover, mutation schedule, selection
method, elitism, fitness function (with a penalty schedule), and number of generations.

3. EA algorithm starts:
(a) Fitness of the first generation is evaluated.
(b) Next generation is created using EA operators: selection, crossover, mutation.
(c) Individual from the population is selected.
(d) Initial condition is selected from the predefined list.
(e) Dynamical system is simulated from a given initial condition.
(f) Final state of state variables and survival time are determined.
(g) Based on values from 3f temporary fitness function value is evaluated for an individual.
(h) Penalties are added to the fitness value (if penalty schedule is defined).
(i) Steps 3d–3h are repeated until all system simulations for every initial condition in the

list are performed.
(j) Average of all temporary fitness values is calculated and assigned to the individual as

its fitness.
(k) Steps 3c–3j are repeated until all individuals in the population have their fitness evalu-

ated.
(l) Steps 3b–3k repeated until the final generation.

4. Final control system is determined by either selecting the top individual or by averaging top
10 individuals from the final population. Its performance is evaluated byrunning a simulation
of the dynamical system for all initial conditions and counting initial conditionsfor which
the final state variables are within the target region.

5 Simulation results

Methodology described above was implemented in our experiments:130 simulations
were run for different variants of fitness function and different combinations of EA
parameters. We illustrate our results on a few selected examples that represent typical
results.

The population size was set at500. Smaller population size is possible but below
300 it is difficult for the EA to maintain the required diversity in population. The EA was
terminated at1000 generations as it was found that the algorithm either finds solution
in about300− 800 generations or fails. Changing the weightsω in fitness function had
a significant impact on the EA performance. In fact, the fifth component of the fitness
functionω5 (survival time) implicitly contains all other components but by specifying
them separately we influence the EA process, i.e., we introduce smaller or bigger bias
towards one or another component. Full set of255 initial conditions was defined for
|x1| ≤ 0.75, |x2| ≤ 1.0, |x3| ≤ π/12, |x4| ≤ 1.0.

By introducing strong elitist strategy we achieved the convergence of the average
value of objective function across population close to the minimum value of the ob-
jective function. This is desired as an indication of good EAperformance resulting in
majority of population being valid control systems. In several simulations the average
population fitness was on par with the minimal fitness indicating that almost all indi-
viduals in the last population represented the control system of the same or very similar
quality. In some simulations we amalgamated top ten controlstrings from the final pop-
ulation into one final controller. The amalgamation resulted in higher percentage of
initial conditions from which the controller was able to control the system towards the



Fig. 3. Typical result: State variablesxk.

target area. The amalgamation of top control strings had adverse effect for the small
number of initial conditions for which the controller went quickly out of range of nu-
merical values (‘blow-out’ effect). With the controller defined as a top string from the
final population control was always maintained, i.e, the trajectories converged if not in
the target region than relatively close to it. However, as mentioned earlier, the number
of initial conditions from which the controller successfully controlled the system to TR
dropped. Typically, in most simulations the percentage of initial conditions for which

Fig. 4. Good convergence: State variablesxk.

controller successfully controlled the system to TR variedfrom about40% to 60% with



a bulk of simulations achieving just about50% success rate. In many simulations the
number of initial conditions from which the controller performance was satisfactory
oscillated around100 (out of 255). This trend might reflect the nature of the inverted
pendulum dynamics. We observed that even though the controller often missed the tar-
get region the final state variables values were close to TR.

In simulation illustrated in Figure 3 minimum inference engine and penalty schedule
were used. Results are shown for initial condition:

∼

x = (−0.75,−1.0,−0.2618,−1.0)
and:ω1 = 3000, ω2 = 100, ω3 = 100, ω4 = 0, ω5 = 2000. Another typical result is
illustrated in Figure 3 for init. condition:

∼

x = (−0.35,−0.5,−0.1309, 1.0) and:ω1 =

1000, ω2 = 0, ω3 = 1000, ω4 = 0, ω5 = 3000. In simulation illustrated in Figure 4 we
used product inference engine and no penalty schedule. Results shown are for initial
condition:

∼

x = (−0.75,−1.0,−0.2618,−1.0) and:ω1 = 3000, ω2 = 100, ω3 = 100,
ω4 = 0, ω5 = 2000. In this particular simulation a very good state variables convergence
was achieved but only for99 out of255 initial conditions. All state variables converged
very quickly to zero, exceptx1 with values remaining about0.04 from the origin.

6 Conclusions

In this paper we have examined the hierarchical fuzzy control of the simple inverted
pendulum and used evolutionary algorithms to learn a fuzzy controller for a single hi-
erarchical topology over the whole set of initial conditions. We defined the set of255
initial conditions in state space that is viable in terms of inverted pendulum dynam-
ics. We excluded initial conditions that were in our opiniontoo extreme and would
make control process virtually impossible. This fact reflects physical reality of inverted
pendulum dynamics; if the system starts from completely different initial conditions it
is unlikely to find relatively small fuzzy rule base capable of handling every possible
dynamics of the system. For the set of this size and range, thetask of controlling the
inverted pendulum from every initial condition in the set proved unrealistic. We set our
goal at achieving control to the target area for as many initial conditions as possible.

We designed the compositional method for the inverted pendulum system and proved
that with the right combination of EA parameters the resulting fuzzy control system is
capable to control the system from the wide range of initial conditions. Our results
show that with improvements in the EA parameters (especially fitness function defini-
tion) better results are possible.

Compositional method provides a control system (not just a method for designing
a controller) that once developed is capable of controllingthe dynamical system from
a wide range of initial conditions. In many practical applications this is a significant
advantage as computational time for designing controller for every initial condition
separately may render a method unfeasible.
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