
Noname manuscript No.
(will be inserted by the editor)

Particle Swarm Optimisation Based AdaBoost for Object Detection

Ammar Mohemmed1, Mark Johnston2, Mengjie Zhang1⋆

1 School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
2 School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, PO Box 600, Wellington,

New Zealand

xxx

Abstract This paper proposes a new approach to us-
ing particle swarm optimisation (PSO) within an Ad-
aBoost framework for object detection. Instead of using
exhaustive search for finding good features to be used
for constructing weak classifiers in AdaBoost, we pro-
pose two methods based on PSO. The first uses PSO
to evolve and select good features only and the weak
classifiers use a simple decision stump. The second uses
PSO for both selecting good features and evolving weak
classifiers in parallel. These two methods are examined
and compared on two challenging object detection tasks
in images: detection of individual pasta pieces and de-
tection of a face. The experimental results suggest that
both approaches perform quite well for these object de-
tection problems, and that using PSO for selecting good
individual features and evolving associated weak clas-
sifiers in AdaBoost is more effective than for selecting
features only. We also show that PSO can evolve and
select meaningful features in the face detection task.

Key words Particle swarm optimisation, AdaBoost,
object classification, object recognition

1 Introduction

Object detection attempts to determine the existence of
specific objects in a set of images and, if present, to de-
termine the locations, sizes and shapes of these objects.
It is a challenging problem because objects can occur
under different orientations, lighting conditions, back-
grounds and clutter. It often utilises a trained binary
classifier that can distinguish the objects of interest from
the background (including objects of other classes).

One of the methods that was intensively investigated
to improve the performance of object classification is
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to use an ensemble of classifiers. Instead of attempting
to build a single (strong) classifier, a bundle of classi-
fiers that individually are not necessarily powerful, are
grouped to share the burden of the classification task.
Studies have shown that the performance of the ensem-
ble is better than any of its components acting alone [1].
A large number of combination schemes and ensemble
methods have been proposed in literature (for a survey
see [2]), which can be categorised into two approaches.
The first approach is the use of an ensemble of accurate,
well trained classifier members. The effectiveness of this
approach depends on the accuracy and diversity of the
members [3,4]. To achieve good performance, the indi-
vidual members in the ensemble should exhibit low error
rates and produce uncorrelated errors.

The second approach to ensemble classification is to
allow more tolerance to the accuracy of the individual
classifiers, i.e., weak classifiers [5]. Two popular meth-
ods are Bagging and Boosting, which both rely on re-
sampling the features to obtain different training sets
for each of the classifiers. Bagging [6] combines classi-
fiers each individually trained on a bootstrap replica of
the original training set. Boosting refers to a general and
provably effective method of producing an accurate en-
semble by combining rough and moderately inaccurate
rules of thumb. Kearns and Valiant [7] proved the fact
that learners, each performing only slightly better than
random, can be combined to form an arbitrarily good
ensemble hypothesis [8].

One fast, robust detection system, based on learning,
is AdaBoost (“adaptive boost”) for object detection by
Viola and Jones [9]. This system has three main charac-
teristics: using the AdaBoost boosting algorithm to com-
bine simple weak classifiers into a more effective strong

classifier; use of an integral image to rapidly compute
simple features; and using a cascade of AdaBoost clas-
sifiers to quickly eliminate most negative images from
consideration. Due to its robustness, it has been used in
different applications including face and pedestrian de-
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tection [10], gender classification [11], text detection [12]
and others.

Basically, a weak classifier for image recognition and
processing tasks consists of a Haar-like feature and a
decision threshold. Haar-like features are rectangular re-
gions developed by gray and white halves (see Figure
2), where the value of the feature is the difference be-
tween the pixel intensities in these halves. If the value
of the feature is smaller (larger) than a decision thresh-
old, the detection sub-window is classified to be positive
or negative. The training algorithm consists of a num-
ber of rounds, where in each round a weak classifier is
constructed by selecting the feature among the available
ones that best minimizes the weighted classification er-
ror. Selecting the feature is done in an exhaustive search
mechanism over every possible feature. It is this exhaus-
tive search that prolongs the training time. That is be-
cause even in a small image of 24×24 pixels, there might
be more than 180 000 possible features available to com-
pute their responses on thousands of training examples
to evaluate their classification error and then to select
the best. In fact, the complete face detection cascade of
Viola and Jones has over 6000 features, trained on 20 000
images, a total of 6000 × 180000 × 20000 = 2.16 × 1013

feature evaluations.

Introduced by Kennedy and Eberhart in 1995 [13],
particle swarm optimization (PSO) is a population-based
evolutionary algorithm for problem solving, based on
social-psychological principles and provides insights into
social behaviour. At the beginning of evolution, an initial
population of individual particles are defined as random
guesses at the problem as candidate solutions. An it-
erative process to improve these candidate solutions is
set in motion. The particles iteratively evaluate the fit-
ness of the candidate solutions and remember the loca-
tions where they had their best success. The individual’s
best solution is called the local best. Each particle makes
this information available to their neighbours. They are
also able to see where their neighbours have had suc-
cess. Movements through the search space are guided by
these successes, with the population usually converging,
by the end of a trial, on a global best solution. Compared
with other main evolutionary paradigms such as genetic
algorithms [14] and genetic programming [15], PSO is a
relatively new paradigm, but is considered particularly
suitable to optimising a large number of parameter val-
ues efficiently. PSO has been applied to a variety of op-
timisation and image recognition tasks and achieved a
certain level of success [16,17]. As the above AdaBoost
approach to object detection needs a large number of
features/weak classifiers, PSO has the potential to au-
tomatically evolving a good set of features and weak
classifiers for AdaBoost and improve the system perfor-
mance.

1.1 Goals

To avoid these limitations of the above AdaBoost ap-
proach, the goal of this paper is to investigate a new ap-
proach using Particle Swarm Optimization (PSO) within
an AdaBoost framework for object detection. Instead of
using an exhaustive search, we aim to use PSO to auto-
matically search for good features to reduce the compu-
tational cost. We will consider two PSO approaches for
this purpose. The first one (PSOAdaBoost1) considers
using PSO to evolve and select the good features only
and the weak classifiers use a simple decision stump. The
second (PSOAdaBoost2) considers using PSO for both
selecting the good features and evolving weak classifiers.
These approaches will be examined and compared on two
challenging object detection tasks in images. The first is
a pasta detection task derived from the competition at
GECCO 2006 [18] which requires the detector to iden-
tify the location of all pieces of pasta (of various shapes,
sizes and orientations) in an image. The second is a face
detection task [19] where we are specifically interested
in which features are selected by the method.

It is important to note that the goal of this paper
is not to find an existing method (or develop a new
method) that can achieve the best results for a specific
task, or investigate general guidelines for which learning
or evolutionary method is good for specific tasks [20]. In-
stead, the goal here is focused on investigating whether
PSO can improve the performance of AdaBoost for ob-
ject detection. Specifically, we investigate: (1) whether
the two PSO approaches can achieve acceptable results
on these tasks in comparison with the standard Ad-
aBoost with exhaustive search (ExAdaBoost); (2) whether
selecting good features only (as in PSOAdaBoost1) or
good weak classifiers (as in PSOAdaBoost2) is most ef-
fective; and (3) whether PSO can evolve meaningful or
interpretable features or combinations of features.

1.2 Organisation

In the remainder of the paper, Section 2 briefly describes
the background about AdaBoost for object detection,
PSO, face detection and related work. Section 3 de-
scribes the new PSO approaches for selecting good fea-
tures and evolving weak classifiers. We then consider two
experimental case studies: pasta detection in Section 4,
and face detection in Section 5. Finally, Section 6 offers
some conclusions and recommendations for future work.

2 Background

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population based
stochastic optimization tool inspired by social behaviour
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of flocks of birds (and schools of fish, etc.), as devel-
oped by Kennedy and Eberhart [13]. PSO starts with a
population of particles whose positions represent the po-
tential solutions for the studied problem and velocities
are randomly initialized in the search space. The search
for optimal position (solution) is performed by updating
the velocity and position of particle i according to the
following two equations for i = 1, 2, . . . , Ns.

Vi(t + 1) = Vi(t) + φ1r1(Bi(t) − Xi(t)) +

φ2r2(B
g
i (t) − Xi(t)) (1)

Xi(t + 1) = Xi(t) + Vi(t + 1) (2)

where φ1 and φ2 are positive constants, called acceler-

ation coefficients, Ns is the total number of particles
in the swarm, r1 and r2 are two independently gen-
erated random numbers in the range [0, 1] and g rep-
resents the index of the best particle in the neighbor-
hood of a particle. The other vectors are defined as:
Xi = [x1, x2, . . . , xiD] ≡ position of ith particle; Vi =
[v1, v2, . . . , vD] ≡ velocity of the ith particle; Bi ≡ po-
sition of the ith particle found so far, and B

g
i ≡ best

position found by the neighborhood of the ith particle.
When the convergence criterion is satisfied, the best par-
ticle (with its position) found so far is taken as the so-
lution to the problem. The pseudocode of PSO is shown
in Algorithm 1.

Algorithm 1 Pseudocode for basic PSO [13]

initialize particles population
while maximum iteration or required fitness is not at-
tained do

calculate the fitness of each particle i
update Bi if the current fitness is better than before
determine Bg

i from the neighbours
for each particle i do

calculate Vi according to Eq (1)
update Xi according to Eq (2)
update the best global solution

end for
end while;

However, in most cases, the velocities quickly attain
very large values, especially for particles far from their
global best. To control the increase in velocity, veloc-
ity damping is used in Eq.(1). Thus, if the right side of
Eq.(1) exceeds a specified maximum value ±V max, then
the velocity on that dimension is clamped to ±V max. In
[21], Maurice proposed the use of a constriction factor
to prevent velocity from growing out of bound:

V̄i(t) = χ

(

Vi(t) + φ1r1(Bi(t) − Xi) + φ2r2(B
g
i − Xi)

)

i = 1, 2, . . . , Ns

χ = 2
(

∣

∣

∣
2 − φ −

√

φ2 − 4φ

∣

∣

∣

)−1
(3)

where φ = φ1 + φ2.
PSO has two typical topologies [22]: the Global Neigh-

bourhood Topology and the Ring Topology (see Fig-
ure 1). The global topology supports fast information
sharing between particles and would be used in cases
where efficiency is valued over effectiveness. The ring
topology slows down knowledge sharing so it can stop
particles from converging to a local optimum solution
too quickly.

Fig. 1 PSO topologies: global (left) and ring (right)

2.2 AdaBoost for Object Detection

AdaBoost [23] is the most well known boosting proce-
dure. It has been used in numerous empirical studies
and has received considerable attention from the ma-
chine learning community in the last few years. Freund
and Schapire [23] showed two interesting properties of
AdaBoost. First, the training error exponentially goes
down to zero as the number of classifiers grows. Sec-
ond, AdaBoost still learns after the training error reaches
zero.

Viola and Jones [9] developed an AdaBoost system
for object detection. The system introduced a cascade of
AdaBoost classifiers to quickly eliminate most non-faces
from consideration speeding up the process of detection
significantly. The system uses a set of 5 basic types of
simple Haar-wavelet like features which are displayed in
Figure 2. A feature is calculated by subtracting the sum
of pixel grey scale values of the white area of the rect-
angle from the dark area. The complete set of features
(180,000 according to [9]) is generated by varying the
width, height and starting position of each of these fea-
tures with respect to a 24× 24 window within an image.
The feature set can be parameterized by four param-
eters: width, height, and the feature’s offset within the
window as shown in Figure 2(b). The advantage of using
these simple features is that they can be calculated very
quickly with the use of an “integral image”. An integral
image II over an image I is defined as follows:

II(x, y) =
∑

x′≤x,y′≤y

I(x′, y′)

Recalling that there are thousands of rectangle fea-
tures associated with each image sub-window, the hy-
pothesis is that a very small number of these features
can be combined to form effective classifiers. The main
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Fig. 2 (a) Standard Haar-like features. (b) The parameters
of a feature. (X, Y ): position of the detection window, W and
H : width and height of the feature.

challenge is to find these features. The AdaBoost al-
gorithm shown in Algorithm 2 attempts to find these
features. The algorithm is supplied with a training set
(x1, y1), . . . , (xN , yN ) where yi ∈ {−1, 1}, weighted by
wi uniformly. The algorithm iterates over a number of T

rounds. In every round t, and for each feature fj, there
is a weak classifier hj(x) that consists of the feature, a
decision threshold θj equaling 1

2
(C−j + C+j) where Cj

is the mean of the feature responses on the examples.

Exhaustive search is done to select the classifier ht(x),
among the available ones, with the minimum classifica-
tion error ǫt, defined as the total weights of the misclas-
sified examples. At the end of each round, the weights of
the training examples misclassified by ht are increased,
so that the focus in the next round will be on these ex-
amples. The classifier with the minimum error hj() at
round t is taken to be the winner among all available
classifiers. The final strong classifier H(x) at the end of
T rounds is a linear combination of the weighted weak
classifiers, where each classifier is weighted by a param-
eter αt proportional to its error rate ǫt.

The pseudocode of the discrete AdaBoost algorithm
is listed in Algorithm 2. It is called discrete because the
output of the classifier is either +1 for a positive example
or −1 for a negative example.

Algorithm 2 Pseudocode for AdaBoost [9]

Given N examples (x1, y1), . . . , (xN , yN) where yi ∈
{−1, 1}
initialize w1,i = 1/2m, 1/2l for yi = −1, 1 respectively,
where m and l are the number of negatives and positives
respectively.
for t = 1,. . . ,T do

(1) for each feature j, train a classifier hj()

(2) evaluate the error of the classifier ǫj =
∑N

i=1
ωt,i.bi

(3) choose a classifier ht() with lowest error ǫt

update weights: ωt+1,i = wt,iβ
1−bi

t

where bi = 0 if ht(xi) = yi, bi = 1 otherwise
with βt = ǫt/(1 − ǫt)

end for
output strong classifier:

H(x) =

{

1 if
∑T

t=1
αtht > 0

−1 otherwise

with αt = log(1/βt)

2.3 Face Detection

One of the experimental case studies considered in this
paper is detection of a face in an image (see Section
5). Face detection and localization is an important im-
age analysis step in many computer vision applications
like human computer interaction, biometrics, computer
surveillance cameras and other security and authentica-
tion applications. This is a challenging problem due to
variability in pose, occlusion, orientation, lighting, etc.,
and many different techniques have been proposed to
solve it. These techniques differ in the concept of op-
eration and can be classified into four categories [24].
Firstly, top-down knowledge based methods which are
based on including human knowledge of what consti-
tutes a typical face in the detection process, for exam-
ple, a face often appears in an image with two eyes that
are symmetric to each other, a nose, and a mouth. Sec-
ondly, bottom-up feature based methods, based on using
features invariant to the pose, viewpoint or lighting con-
ditions like skin colour and facial features such as eye-
brows, eyes, nose, mouth, and hair line which are com-
monly extracted using edge detectors. Thirdly, template
matching methods based on computing the correlations
between an input image and stored patterns. Lastly, ap-
pearance based methods where, in contrast to template
matching, the models (or templates) are learned from
a set of training images. In general, appearance based
methods rely on techniques from statistical analysis and
machine learning to find the relevant characteristics of
face and non face images. The learned characteristics
are in the form of distribution models or discriminant
functions that are consequently used for face detection.
These learning methods have attracted much attention
and have demonstrated a certain level of success [9,23,
25–29].

Apart from the underlying technique, how to repre-
sent the image in terms of features affects the perfor-
mance in terms of accuracy and computation efficiency.
In general, image features are distinguished into global
and local features. Global features quantify character-
istics of the whole image to be measured. An example
would be a colour histogram of an image which gives im-
portant information about the whole image. Local fea-
tures quantify characteristics of a particular region of
the object to be measured.

2.4 Related Work

To reduce the training time of AdaBoost, heuristic and
evolutionary algorithms have been incorporated within
an AdaBoost framework to replace the exhaustive search.
McCane and Novins [19] considered that selecting fea-
tures is an optimization problem with a well behaved
fitness function represented by the error rate. They pro-
posed a simple local search based on examining neigh-
bourhood points and moving to the smallest error point.
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A significant speed improvement over the training method
presented by Viola and Jones [9] was achieved with only
a modest increase in execution time. The feature selec-
tion method of Bartlett et al. [30] used a heuristic to find
promising features; they selected 5% of all possible fea-
tures randomly, and choose the best in terms of error rate
on the training examples. This feature was then refined
by shifting, scaling and reflecting to produce new sets of
features and the best was selected from this new set to be
the winner for that round. This feature selection process
was then repeated with the updated weighted examples
until the strong classifier achieves a minimum desired
performance rate. Treptow and Zell [31] proposed to ex-
tend the feature family proposed by Viola and Jones to
a more generalized set of similar features, and to use a
genetic algorithm search as a weak learner, where a chro-
mosome encodes the parameters of the feature (position
and dimensions). They found that AdaBoost training
with their evolutionary search over their larger feature
set produced better detectors than exhaustive search ap-
plied to the initial limited feature set. Abramson et al.
[32] used a new type of feature called control points with
AdaBoost for pedestrian detection tasks. However, train-
ing is impossible using exhaustive searching due to their
huge number of features. They proposed an evolutionary
hill climbing algorithm for training their detector.

Li et al. [33] reported the use of support vector ma-
chines as weak classifiers for AdaBoost for classifica-
tion tasks. Two algorithms, called AdaBoostSVM and
Diverse AdaBoostSVM were developed and compared
with a neural network based AdaBoost algorithm on 13
benchmark datasets chosen from the UCI machine learn-
ing repository. The results suggest that the proposed Ad-
aBoostSVM algorithm performed better than the neural
network based AdaBoost algorithm, and that the pro-
posed diverse AdaBoostSVM performed slightly better
than the SVM algorithm.

Hidaka and Kurita [34] reported the use of a PSO
algorithm to evolve weaker classifiers in AdaBoost for
face detection. The MIT CBCL face database was used
in the experiments. They claimed that the proposed al-
gorithm was 50 times faster than the usual AdaBoost
while keeping comparable classification accuracy.

Another issue, which has got less attention, is how to
determine the decision threshold of the weak classifier.
Because the weak classifier is not required to be very ac-
curate, a single threshold based on averaging the means
of feature responses on the negative and positive train-
ing examples is widely used. However, Rasolzadeh et al.
[35] reported a better performance using multithreshold-
ing. The multithresholds are found by assuming that the
feature responses each follow a normal distribution. For
the general case of multimodal distributions the feature
responses are placed in histogram-like model.

3 New PSO Based Approaches to Object

Detection

We have developed two PSO methods to object detec-
tion. Our approach treats the tasks of finding the dis-
criminative features and their thresholds as an optimiza-
tion problem to be solved by PSO.

3.1 PSOAdaBoost1 with Simple Weak Classifiers

PSOAdaBoost1 uses PSO to select good features only
and the weak classifiers use a simple decision stump.

Particle Encoding. A particle encodes the Haar-like fea-
ture parameters. The Haar-like features can be param-
eterized by the type (one of the types shown in Figure
2 (a)), upper-left position (X, Y ), with respect to the
detection window, and the size (W, H) in Figure 2(b).
Figure 3 shows the encoding of the particle.

Type X Y W H

Fig. 3 Particle Encoding in PSOAdaBoost1.

Weak Classifiers. Because the weak classifiers are only
required to be better than random guessing, a decision
stump (a depth-one decision tree which compares a sin-
gle input feature to a threshold) has been widely used
[12,36]. The examples are assigned to the positive class
if their single feature values are greater than the thresh-
old and to the negative class otherwise. During learning
in the standard AdaBoost with exhaustive search (Ex-
AdaBoost), each feature in the input feature vector is
examined in turn to find the best feature. The threshold
T is computed by taking the average of the means of
the feature values from negative and positive examples
as shown in Figure 4(a).

Fitness Function. We seek to use PSOAdaBoost1 to
find the best features to be used by the weak classifiers.
The fitness function is to minimize the weighted error ǫj

in AdaBoost (see Algorithm 1) for object detection, i.e.,

ǫj =

N
∑

i=1

ωt,i.bi

where bi =

{

0 if ht(xi) = yi

1 otherwise

3.2 PSOAdaBoost2 for Evolving Features and Weak

Classifiers

PSOAdaBoost2 uses PSO for selecting good features and
evolving corresponding thresholds in parallel. The parti-
cle encoding is shown in Figure 5. In addition to the five
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Fig. 4 (a) PSOAdaBoost1: using decision stump. C
−

and
C+ are computed by taking the means of negative and posi-
tive examples respectively. Example ei is labelled with class
C

−
as it is less than T . (b) PSOAdaBoost2: C

−
and C+ are

found using PSO, and example ei is labelled with class C
−

as d− < d+.

parameters in PSOAdaBoost1, the particles in this PSO
also include the ‘centroids’ of the positive and negative
examples. The C− and C+ are automatically evolved by
PSO in this method rather than being simply calculated
by taking the mean of the examples. Instead of selecting
a feature and then training a classifier to evaluate the
goodness of the feature, the parameters of the feature
and the associated weak classifier are considered as a
whole to be optimized using PSO.

Type X Y W H C
−

C+

Fig. 5 Particle Encoding in PSOAdaBoost2.

Figure 4(b) shows how the weak classifier operates.
For a given example ei, the distance to the evolved cen-
troids are computed and the example is labelled with the
class that has the shortest distance. Because these two
centroids are found in such a way to reduce the train-
ing error, the constructed weak classifiers are expected
to be more accurate. In this case, the optimum centroids
are the two points that minimize the inner class distance
and maximize the across class distance on the respective
feature axis. In other words, two centroids (C− and C+)
are found to maximize the following class separation cri-
teria:

J(C−, C+) =
|C− − C+|

1

m

∑m

i=1
|C− − e−i | +

1

l

∑l

i=1
|C+ − e+

i |

where m is the number of negative examples and l is the
number of positive examples. Instead of maximizing this
criteria based on the distances, it is maximized using
PSO indirectly in such a way as to reduce the error rate.
This is similar (in concept) to [37], where they maximize
the class separation represented by Fisher discriminant
formula through evolutionary minimizing of the classifi-
cation error. However, that approach does not work for
a single feature.

PSOAdaBoost2 uses the same fitness function as PSOAd-
aBoost1. In PSOAdaBoost2, PSO is incorporated into
AdaBoost to replace the exhaustive feature search and
the weak classifier training. Thus, the three steps in
the inner loop of Algorithm 2 are replaced by PSOAd-
aBoost2. In each round PSO is called to construct a new
weak classifier.

4 Experimental Case Study: Pasta Detection

4.1 Task and Image Dataset

The task here is to locate all pieces of pasta in a given
image. We use the pasta image dataset presented in the
competition at the GECCO conference in 2006 [18] with
the goal of evaluating and comparing the effectiveness of
the proposed PSOAdaBoost1 and PSOAdaBoost2. Al-
though the original problem in the competition was for
image segmentation [38], and the images were coloured,
we used these images for object (pasta) detection in this
paper and converted the colour images into gray-scale
images. The images are 1280 × 960 pixels and contain
pasta pieces of different size, position and rotation with
varied lighting conditions. The background of some im-
ages are noisy, including some pieces of alphabet soup,
whose intensities are very similar to the pasta objects,
making the detection problem even more challenging.
Figure 6 shows some examples of these images used in
the training process.

4.2 Object Detection Process

The object detection process using both PSO approaches
consists of a training step and a testing step. In the train-
ing process, both AdaBoostPSO algorithms are applied
to the training dataset of object “cutout” examples. As
the pasta pieces are of different sizes and rotations and
the images are of large size, it is not so straightforward
to exactly cut out the pasta from the large images. In
this paper, we implement the following procedure to
create training examples. On the training images, the
pasta pieces are firstly marked differently from the back-
ground. A scanning window, of size 61×61 pixels, moves
across the large training images in discrete jumps con-
sidering the current position as a pasta (positive) ex-
ample if it stands over a marked “white” spot, and a
position is considered a negative (non-pasta) example if
the scanning window stands on a “black” marked spot.
An example marked image is shown in the first column
in Figure 6. In this way, a window could be still consid-
ered a positive example if it includes some part of a pasta
and some pieces of background. Thus, the positive ex-
amples contain different parts of the pasta pieces rather
than one complete piece. In addition, these parts could
be quite different as the pasta pieces have different rota-
tions, shapes and brightness. Following this procedure,
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Fig. 6 Pasta training images used to extract training examples. The first image shows the marking to create the examples
(white areas are positive examples and black areas are negative examples).

1297 positive examples and 2434 negative examples were
generated to form the training set.

The trained classifiers were then used as a template
detector, in a moving window fashion, to detect the pasta
objects over the test set of full images. The detection
window size is the same as the size of the training object
cutout examples (61×61 pixels) and moves pixel by pixel
over the large testing images. If a window is detected to
be of pasta type, the centered pixel under the detection
window is marked as an object (pasta) pixel. In this
way, the pasta pixels are detected and an indication of
the whole pasta (size and rotation) is given.

4.3 Experiment Configuration

In all the experiments, both PSO approaches used the
ring topology. The ring is fixed in our experiments and a
particle is connected to only two other particles (neigh-
bours). The neighbours do not change during an exper-
iment run. Considering the computational effort in the
training phase, the two PSO approaches used the same
population size of 20 and a maximum 100 iterations for
comparison purposes, so there are 2000 different fea-
tures generated during the run to evolve the best feature
and construct a weak classifier. These parameter values
were set based on common settings and some prelimi-
nary empirical search. Note that this number is much
smaller than that needed to be evaluated using the ex-
haustive search in standard AdaBoost (roughly search-
ing for 2× 1011 features to find a single weak classifier),
where a large percentage of them are redundant and do
not have any discriminative power.

The particles are initialized within a range that does
not exceed the size of the detection window and the two
centroids parameters are initialised from [−20000, 20000].
In fact, this is not too critical as only the relative dis-
tance between the centroids is of concern.

As it is too expensive to use ExAdaBoost algorithm
for the pasta detection process, we did not include it
in our comparison. The next section will describe the
experiment results of the two proposed PSOAdaBoost
approaches.

4.4 Experimental Results and Discussion

To measure the performance of the two proposed PSOAd-
aBoost approaches, we used the Receiver Operating Char-
acteristic (ROC) curve [39] for the test set. To compute
points on the ROC curves, we used the large images in
the test set to mark and generate 2941 positive exam-
ples and 3411 negative examples. The two marked test
images are shown inset in Figure 7. The points on the
ROC curves were obtained by evaluating the strong clas-
sifier against these examples while sliding the confidence
threshold over the range (−∞, +∞), and taking the av-
erage results of 100 independent runs. The ROC curves
for the two approaches are shown in Figure 7. In this
figure, the dashed curve represents the performance of
the PSOAdaBoost1 approach and the solid curve corre-
sponds to the PSOAdaBoost2 method.

Fig. 7 ROC curves of PSOAdaBoost1 (solid curve) and
PSOAdaBoost2 (dashed curve).

As can be seen from Figure 7, both curves are much
higher than the diagonal from (0, 0) to (1, 1), showing
that both new PSO based approaches performed the
pasta detection quite well. The solid curve is higher than
the dashed curve at almost all false positive rates, show-
ing that PSOAdaBoost2 achieved better performance
than PSOAdaBoost1.

To give an intuitive view of the detection results, Fig-
ure 8 shows the object sweep maps of pasta images in the
test set. The images in the first row are the original im-
ages that were not used in the training process. The sec-
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Fig. 8 Past detection: (a) unseen test images; (b) sweep maps produced by PSOAdaBoost1; (c) sweep maps produced by
PSOAdaBoost2.

ond row shows the corresponding sweep maps achieved
by PSOAdaBoost1 and the third row show the sweep
maps of the original images achieved by PSOAdaBoost2.
In these sweep maps, white pixels represent the “pasta
pixels” detected by the two approaches. Clearly, these
sweeping maps contain a number of false positives, that
is, some non-pasta pixels (either noisy background or
some alphabet soup) were incorrectly detected as pasta
pixels. The sweeping maps confirm that both approaches
successfully detected all pasta pieces in the images, but
PSOAdaBoost2 produced a smaller number of false pos-
itives for all the examples images. In particular, PSOAd-
aBoost2 is much more tolerant to the noisy background
than PSOAdaBoost1, and is also much better in dis-
criminating pasta pixels from the alphabet soup. These
results suggest that using PSO to select good features
and evolve corresponding weak classifiers in AdaBoost
is better than to select features only for the pasta detec-
tion problem examined in this paper.

5 Experimental Case Study: Face Detection

5.1 Task and Image Dataset

In this second case study we compare the standard Ad-
aBoost with exhaustive search (ExAdaBoost) against
our best PSO based AdaBoost (PSOAdaBoost2). Here
ExAdaBoost solves the subproblem to determine a weak
classifier exactly (using exhaustive search) whereas PSOAd-
aBoost2 solve this subproblem approximately (using PSO).
The question is which gives better effectiveness on the
full problem to design a strong classifier. The task here is
to distinguish between face and non-face images. We are
also specifically interested in what features are selected
by PSO within the AdaBoost framework and whether
these can be meaningfully interpreted.

For training and testing we use an image dataset con-
sisting of 4999 images showing different faces and 6960
images which do not show face images and extracted ran-
domly from images of different background [19]. Samples
of these images are displayed in Figure 9. The gray value
images have size of 25 × 25 pixels and are variance nor-
malized. The face/non face sets are split randomly into
a training set which consists of 2575 positives and 3480
negatives and a test set consists of 2424 positives and
3480 negatives. Caution has been taken during splitting
to avoid similar face images being shared between the
training set and test set.

Fig. 9 Sample images from face/non-face dataset.
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Fig. 10 Face detection performance with different numbers of weak classifiers: (a) results for the training set; (b) results for
the test set.

5.2 Experiment Configuration

Similarly to the pasta experiment, the ring topology was
used here again. The ring is fixed in our experiments and
the neighbours do not change during an experiment run.
Since we are comparing PSOAdaBoost2 against ExAd-
aBoost, we allow the PSO more resources than the pasta
experiments. Here, the PSO consists of a population of
200 particles and runs to a maximum of 1000 iterations.
However, it is terminated if there was no improvement
in the global solution in a period of 50 iterations. The
population is initialised randomly such that the feature
parameters part of the particle (x, y, w, h) are initialised
within the range [0, 25], type of the feature in the range
[0, 4] and the centroids part (C− and C+) in the range
[−50, 50]. Here r1 and r2 are random numbers indepen-
dently taken in the range of [0, 1], and φ1 and φ2 are
both set to 2.05. These parameter values are set based
on the common settings and some preliminary exper-
imentation, and we found that the results are not so
sensitive to different parameter values. In fact, the last
range is not critical because as explained in section 2.2,
it is the relative distance of the example with respect
to the centroids that is of concern. The experiments for
each algorithm are repeated for ten runs and the best,
average and the worst results are reported. Note that

each run is initialised with a different random seed num-
ber. The experiments were run on a Pentium V 3 GHz
machine.

5.3 Experimental Results and Discussion

Training Efficiency Performance. Compared with the
commonly used exhaustive AdaBoost method (ExAd-
aBoost), the new method PSOAdaBoost2 is much more
efficient for finding a good (strong) classifier. Using the
large training set of the face images, ExAdaBoost spent
an average time of 347,788 seconds to find a good clas-
sifier for achieving the ideal performance, that is, all the
examples in the training set were correctly classified. The
PSOAdaBoost2 method, however, only required an av-
erage time of 18,645 seconds to evolve a good classifier
to achieve the same performance, which is 19 times more
efficient.

Table 1 Number of features required for face detection.

Best Average Worst

ExAdaBoost 240 240 240
PSOAdaBoost2 95 104 112
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A closer inspection reveals that the new PSOAd-
aBoost2 method used a much smaller number of features
(weak classifiers) than the exhaustive AdaBoost method.
Table 1 shows the number of features generated to form a
strong classifier for the ideal training performance. While
PSOAdaBoost2 only required 95 features in the best case
and 112 features in the worst case, while ExAdaBoost
needs 240 features to reach that point. On average, the
PSOAdaBoost2 method can evolve a good strong clas-
sifier with 104 features. This number is much smaller
than the number needed by the ExAdaBoost method
(240). To show a clear pattern, Figure 10(a) shows the
relationship between the classification accuracy rate and
false positive rate against the number of features/weak
classifiers required by both methods on both the training
test and the test set. These results suggest PSO is effec-
tive for evolving good weak classifiers for this problem
and that it is much more efficient than the exhaustive
method.

System Test Effective Performance. Table 2 summarises
the overall comparison of the best results of PSOAd-
aBoost2 and ExAdaBoost on the test data. PSOAd-
aBoost2 has an average classification accuracy rate of
97.63% on the test set and a false positive rate of 2.25%
for the face images. The ExAdaBoost method only achieved
an average 95.55% of accuracy with 4.03% false positive
for the faces, even using a large number of features (weak
classifiers). Figure 10(b) shows the relationship between
the classification accuracy and false positive rate against
the number of weak classifiers (features) used to form a
strong classifier. These results show that the proposed
PSOAdaBoost2 method is not only more efficient than
the existing ExAdaBoost method for learning/evolving
a good classifier, but also more effective on the classifi-
cation performance on the unseen test set. This also sug-
gests that the new PSOAdaBoost2 method has a better
generalisation ability for this dataset.

Table 2 Face detection performance on the test set.

Average Average
Classification rate False Positive rate

ExAdaBoost 0.9555 0.0403
PSOAdaBoost2 0.9763 0.0225

5.4 Feature Analysis

To further understand why the PSOAdaBoost2 method
does such a good job, we more closely inspected some
features (weak classifiers) that PSOAdaBoost2 selected
using PSO. Figure 11 shows six of these evolved features
in the faces. We noticed that the evolved features were

concentrated around the eyes region. As stated in the
literature, the eye region features are important (even
dominant) for face recognition. This suggests that PSO
can efficiently find these useful features that can be com-
bined to solve the face detection problem.

Fig. 11 The first six features selected by PSOAdaBoost2,
overlayed on a sample image.

To inspect the roles these features played in the train-
ing and testing process, Table 3 shows the classification
accuracy rate of the features acting individually or com-
bined with the previously selected ones. The first row
shows that feature 1 (in Figure 11) can result in 83.4%
accuracy on the training set and 83.2% on the test set.
Row 3 shows that using feature 3 alone can produce an
accuracy rate of 79.2% and 78.3% on the training set
and test set, respectively. But the combined feature sets
(features 1, 2 and 3) can produce a classification accu-
racy of 90.6% and 89.7% on the training set and the test
set, respectively.

Table 3 Classification performance of the first six features
selected by PSOAdaBoost2.

Training Testing
Feature No. Indiv. Combined Indiv. Combined

1 0.834 0.834 0.832 0.832
2 0.825 0.834 0.825 0.832
3 0.792 0.906 0.783 0.897
4 0.801 0.906 0.792 0.897
5 0.754 0.924 0.757 0.919
6 0.745 0.926 0.726 0.920

These results suggest that combining useful features
together can generally improve the classification perfor-
mance. However, the ways of combining the individually
good features are not clear and adding a new selected
feature that can individually perform well to a good
combination does not always improve the classification
performance. For example, adding feature 2 to feature 1
does not improve the performance, and adding feature 4
to the previous feature combination that consists of fea-
ture 1, 2 and 3 does not improve the performance either.
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Therefore, an improvement to PSOAdaBoost2 that can
be considered is to further investigate effective feature
selection mechanisms, feature ranking algorithms and
feature combination/construction methods using PSO in
the future.

6 Conclusions

The goal of this paper was to investigate a new approach
using PSO within AdaBoost for object detection. The
goal was successfully achieved by using PSO for selecting
good features and evolving weak classifiers in parallel
within the AdaBoost algorithm for object detection. In
this way, the original time consuming exhaustive search
in AdaBoost was successfully avoided.

Two PSO based methods were developed in this pa-
per. PSOAdaBoost1 considers using PSO to evolve and
select the good features only and the weak classifiers
use a kind of decision stump. PSOAdaBoost2 consid-
ers using PSO for both selecting the good features and
evolving weak classifiers in parallel. The experimental re-
sults show that both approaches performed quite well for
the pasta detection problem, and that using PSO for se-
lecting good individual features and evolving associated
weak classifiers in AdaBoost is more effective than for
selecting features only for this problem. PSOAdaBoost2
was examined and compared with the exhaustive Ad-
aBoost algorithm on a large face image dataset. The ex-
periment shows that PSOAdaBoost2 method was able
to be trained in much shorter time and achieved more
accurate classification performance.

Inspection of the evolved individual features by PSO
reveals that the new PSOAdaBoost algorithm can find
meaningful features for face classification and the best
evolved individual features were mostly concentrated on
the eyes regions. Combining the good individual features
sequentially into the top (group) features generally in-
creased the face recognition performance, but not all the
“good” individual features can make a clear improve-
ment. Clearly, some of the evolved best/good individual
features are redundant to a certain extent and integrat-
ing all of them sequentially based on their individual
performance is not necessary.

As future work, the following directions will be con-
sidered for improving the system performance:

– This paper mainly considered selecting good individ-
ual features. The features may be selected based not
only on individual fitness but also considering the
context with the previously selected features. This
will in turn reveal whether and how PSO can be
effectively used for automatic feature construction,
feature ranking and feature selection, which is a big
topic in face and image detection and recognition as
well as other classification tasks.

– Another interesting future direction is to investigate
the effect of replacing the two prototype/centroid pa-

rameters used in this work with a single boundary
parameter for binary classification.

– In this paper, we used three methods to determine
the optimal thresholds: A simple decision tree (deci-
sion stump, in PSOAdaBoost1) and PSO (PSOAd-
aBoost2). From the system performance point of view,
two other simple methods could be used. The first is
to find the optimal thresholds by sorting the weighted
Haar-like feature values of the training examples. The
second is to keep the weighted feature values of the
positive and the negative examples as histograms and
to use the histograms for classification. One poten-
tial problem of these methods is that some of them
can only be used for binary classification, but not for
multi-class classification or detection problems.

– Although the new PSO approach was much more
efficient than the exhaustive AdaBoost method for
object detection and classification, the training time
was still a bit too long (five hours). More efficient
ways need to be investigated in the future.
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