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Abstract. The problem of coreference resolution (finding individuals,
which describe the same entity but have different URISs) is crucial when
dealing with semantic data coming from different sources. Specific fea-
tures of Semantic Web data (ontological constraints, data sparseness,
varying quality of sources) are all significant for coreference resolution
and must be exploited. In this paper we present a framework, which
uses Dempster-Shafer belief propagation to capture these features and
refine coreference resolution results produced by simpler string similarity
techniques.

1 Introduction

A major problem, which needs to be solved during information integration, is
coreference resolution: finding data instances, which refer to the same real-world
entity. This is a non-trivial problem due to many factors: different naming con-
ventions used by the authors of different sources, usage of abbreviations, am-
biguous names, data variations over time. This problem for a long time has been
studied in the domains of database research and machine learning and multi-
ple solutions have been developed. Although in the Semantic Web community
information integration has always been considered as one of the most impor-
tant research directions, so far the research has been primarily concentrated on
resolving schema-level issues. However, semantic data represented in RDF and
formatted according to OWL ontologies, has its specific features: instances often
have only a few properties, relevant information is distributed between inter-
linked instances of different classes, an OWL ontology allows expressing a wider
range of data restrictions than a standard database schema, different sources
may significantly differ in quality. Some of these features make it hard to di-
rectly reuse the algorithms developed in the database domain, while others may
provide valuable clues, which should be exploited.

The main motivation for our work comes from the enterprise-level knowledge
management use case. In this scenario a shared corporate ontology is populated
automatically with information extracted from multiple sources: text documents,
images, database tables. Although there is no schema alignment required in this
scenario, the data-level integration problems listed above are present. In addi-
tion to the usual issues related to heterogeneity, the data may also contain noise



caused by incorrect extraction results. Data sparseness often prevents the use of
sophisticated machine-learning algorithms and requires simple techniques such
as string similarity metrics applied to instance labels. The output of these tech-
niques is not completely reliable. In order to improve coreferencing results we
have to utilize the links between data instances, to take into account uncertainty
of sources and coreferencing algorithms and to consider logical restrictions de-
fined in the domain ontology. In this paper we describe an approach, which uses
the Dempster-Shafer belief propagation in order to achieve this goal.

The rest of the paper is organized as follows: in the section 2 we briefly discuss
the most relevant existing approaches. Section 3 provides a short description
of the approach and its place in the overall integration architecture. Section
4 summarizes the theoretical background of our belief propagation algorithm.
Section 5 describes in detail the usage of belief networks and provides examples.
In the section 6 we present the results of our experiments performed with test
datasets. Finally, section 7 summarizes our contribution and outlines directions
for future work.

2 Related Work

The problem of coreference resolution during data integration has been studied
for a long time [1]. In different communities it has been referred to as record
linkage [1], object identification [2] and reference reconciliation [3]. A large num-
ber of approaches (see [4] for a survey) are based on a vector similarity model
initially proposed in [1]: similarity scores are calculated for each pair of instances’
attributes and their aggregation is used to make a decision about whether two
instances are the same. This procedure is performed for instances of each single
class in isolation. Different string similarity techniques have been proposed to
measure the similarity between attribute values (e.g., edit distance, Jaro, Jaro-
Winkler, Monge-Elkan [5]) and different machine learning algorithms to adjust
the parameters of decision models have been developed (e.g., [6], [2]).

Such approaches assume that all attributes, which are relevant for deter-
mining the equivalence of two instances, are contained in the attribute vector.
This assumption does not hold for scenarios where relevant data is distributed
between different instances, which are related to each other. Thus, approaches,
which analyze relations between data instances of different classes, have received
significant attention in recent years (e.g., [3], [7], [8], [9]). One algorithm focusing
on exploiting links between data objects for personal information management
was proposed in [3], where the similarities between interlinked entities are prop-
agated using dependency graphs. RelDC [7] proposes an approach based on ana-
lyzing entity-relationship graphs to choose the best pair of coreferent entities in
case when several options are possible. The authors of these algorithms reported
good performance on evaluation datasets and, in particular, significant increase
in performance achieved by relation analysis. These algorithms, however, assume
data representation similar to relational databases. The OWL language used for
formatting Semantic Web data allows more advanced restrictions over data to be



defined (e.g., class disjointness, cardinality restrictions, etc.), which are relevant
for the validation of coreference mappings. Given the variable quality of seman-
tic annotations, information about provenance of the data is also valuable: if a
mapping between two individuals violates an ontological restriction, it is pos-
sible that some piece of data is wrong, rather than a mapping. These factors
require development of specific solutions adjusted to the needs of the Semantic
Web domain.

The problem of data integration in the Semantic Web context also requires deal-
ing with data sparseness and the distribution of data between several linked indi-
viduals. In the Semantic Web community so far the research effort has been pri-
marily concentrated on the schema-level ontology matching problem [10]. Some
of the schema-matching systems utilize links between concepts and properties
to update initial mappings created using other techniques. One such technique
is similarity flooding [11], which uses links in the graph to propagate similarity
estimations. It is, however, more suitable to schema matching rather than data
integration: it relies, for example, on the assumption that the graph is com-
plete. Ontological restrictions and uncertainty of mappings between concepts
are analyzed in [12]. Now, with a constantly increasing amount of RDF data
being published and the emergence of the Linked Data initiative, the problem
of instance-level integration is also gaining importance. The issue of recognizing
coreferent individuals coming from different sources and having different URIs
has been raised by different research groups and several architectural solutions
were developed, such as OKKAM [13], Sindice [14], RKBExplorer [15]. Sindice
[14] relies on inverse functional properties explicitly defined in corresponding on-
tologies. The authors of OKKAM entity name service [13] have employed Monge-
Elkan string similarity for their prototype implementation. Data aggregation for
RKBExplorer [15], to our knowledge, was performed using techniques specially
developed for the scientific publication domain (e.g., analyzing co-authorship,
etc.). The L2R/N2R algorithm recently proposed in [16] and [17] focuses on
employing ontological restrictions (in particular, functionality and disjointness)
in order to make coreferencing decisions. Their approach is probably the most
similar to ours, but emerged as a purely logical inference-based algorithm and
treats some aspects in a different way. In particular, data uncertainty is not
considered (data statements are treated as correct) and similarity between indi-
viduals is aggregated using maximum function, which does not allow capturing
cumulative evidence.

In our view, there is still a need for data integration methods adjusted to the
needs of the Semantic Web domain. First, as was said, the algorithms developed
in the database community do not take into account the specific properties of se-
mantic data. Ontology matching techniques, on the other hand, focus primarily
on the schema-matching issues. Our approach tries to analyze together relations
between individuals of multiple classes, logical restrictions imposed by ontologies
and data uncertainty in order to improve the quality of instance coreferencing.



3 Overview

The algorithm described in the paper represents a module of the knowledge fu-
sion architecture KnoFuss initially developed to integrate semantic annotations
produced from different sources using automatic information extraction algo-
rithms. The architecture receives as its input a source knowledge base (KB)
containing a set of RDF assertions extracted from a particular source. The sys-
tem processes this source KB and integrates it into the target KB. KnoFuss
aims to solve two main problems: find and merge coreferent individuals and
ensure consistency of the integrated KB. The structure of the KnoFuss system
and the initial stage of its workflow is described in [18]. This stage involves
producing mappings between individuals (interpreted as owl:sameAs relations)
using a library of coreferencing algorithms. In this paper we focus on the second
stage of the fusion workflow where these initially produced mappings are refined
using additional factors, which are not considered by attribute-based similar-
ity algorithms but can serve as evidence for revising and refining the results of
coreferencing stage. We consider three kinds of such factors:

— Ontological schema restrictions. Constraints and restrictions defined by the
schema (e.g., functionality relations) may provide both positive and nega-
tive evidence. For instance, having two individuals as objects of a functional
property with the same subject should reinforce a mapping between these
individuals. The reverse also applies: the fact that two potentially identi-
cal individuals belong to two disjoint classes should be considered negative
evidence.

— Coreference mappings between other entities. Even if there is no explicit func-
tionality restriction defined for an ontological property, related individuals
still may reduce the ambiguity: the fact that two similar individuals are both
related to a third one may reinforce the confidence of the mapping.

— Provenance data. Knowledge about the quality of data may be used to assign
the confidence to class and property assertions. This is important when we
need to judge whether a mapping, which violates the domain ontology, is
wrong or the conflict is caused by a wrong data statement. Knowledge about
the “cleanness” of a source (e.g., whether duplicates occur in a given source)
provides additional evidence about potential mappings.

Most information, which we have to deal with in the fusion scenario, is uncer-
tain. Mappings are created by attribute-based matching algorithms, which do
not provide 100% precision. Class and property assertions may come from unre-
liable sources or be extracted incorrectly. Various ontological relations provide
different impact as evidence for mappings: if two similar foaf:Person individuals
are both connected to a sweto:Publication individual via a sweto:author relation,
it is a much stronger evidence for identity mapping than if they were related to
a tap:Country individual #USA via a #citizenOf relation. In order to manage
uncertainty adequately, the framework needs to have well-defined rules for rea-
soning about the confidence of both data statements and coreference mappings,
combining multiple uncertain pieces of evidence and propagating beliefs. This



can be achieved by employing an uncertainty representation formalism. Our ar-
chitecture utilizes the Dempster-Shafer theory of evidence [19], which generalizes
the Bayesian probability theory. We proposed the initial version of the algorithm
as a means to resolve ABox inconsistencies in knowledge bases [20]. The next
section briefly summarizes our previous work.

4 Dempster-Shafer belief propagation

Our algorithm uses the Dempster-Shafer theory of evidence as a theoretical ba-
sis for uncertainty representation. The reason for this choice (in comparison
with the more commonly used Bayesian probability) is its ability to represent
a degree of ignorance in addition to the positive and negative belief [20]. This
feature is valuable when we deal with the output of coreferencing algorithms. By
default, these algorithms can only produce positive evidence: a positive result
produced by a low-quality algorithm (e.g., with a precision 0.2) can only be con-
sidered as insufficient evidence rather than negative evidence. The uncertainty of
a statement is described by belief masses, which can be assigned to sets of pos-
sible values. In our case each statement is described by three mass assignments:
(i) belief that the statement is true m(1), (ii) belief that the statement is false
m(0) and (iii) unassigned belief m({0; 1}), specifying the degree of our ignorance
about the truth of the statement. Given that >, m; = 1, these assignments are
usually represented using two values: belief (or support) (m(1)) and plausibility
(m(1) +m({0;1})). Bayesian probability is a special case, which postulates that
no ignorance is allowed and m(1) + m(0) = 1. Our workflow for processing a
conflict involves three steps:

— Constructing a belief propagation network. At this stage an OWL subontol-
ogy is translated into a belief network.

— Assigning mass distributions. At this stage the belief mass distribution func-
tions are assigned to nodes.

— Belief propagation. At this stage the uncertainties are propagated through
the network and the confidence degrees of statements are updated.

As the theoretical base for belief propagation we used valuation networks as
described in [21]. Valuation networks contain two kinds of nodes: variable nodes,
which represent the uncertain assertions, and valuation nodes, which represent
the belief propagation rules (converted from TBox axioms). We use a set of rules
to convert an OWL subontology into a corresponding valuation network (this
procedure is described in more detail in [20]). Then, initial beliefs are propagated
through the network and updated values are produced according to the standard
axioms for valuation networks formulated in [21]. The basic operators for belief
potentials are marginalization | and combination ®. Marginalization takes a
mass distribution function m on domain D and produces a new mass distribution
on domain C' C D. It extracts the belief distribution for a single variable or subset
of variables from a complete distribution over a larger set.

m9(X)= Y m(Y)

yic=x



For instance, if we have the function m defined on the domain {z, y} as m({0;0}) =
0.2, m({0;1}) = 0.35, m({1;0}) = 0.3, m({1;1}) = 0.15 and we want to find
a marginalization on the domain {y}, we will get m(0) = 0.2 + 0.3 = 0.5 and
m(1) = 0.35+ 0.15 = 0.5. Combination calculates an aggregated belief distribu-
tion based on several pieces of evidence. The combination operator is represented
by Dempster’s rule of combination [19]:

mexzzx m1(X1)ma(Xo)
1- ZX10X2:® my(X1)mz(Xz)

Belief propagation through the network is performed by passing messages be-
tween nodes according to the following rules:

mi ®m2(X) =

1. Each node sends a message to its inward neighbour (towards the arbitrary
selected root of the tree). If u4—7 is a message from a node A to a node B,
N(A) is a set of neighours of A and the potential of A is m 4, then the message
is specified as a combination of messages from all neighbours except B and
the potential of A: uA~8 = (@{p*X~4|X € (N(A) — {B}) @ mu})!A"E

2. After a node A has received a message from all its neighbors, it combines all
messages with its own potential and reports the result as its marginal.

Loops must be eliminated by replacing all nodes in a loop with a single node
combining their belief functions. The initial version of the algorithm deals with
inconsistency resolution and does not consider coreference mappings and identity
uncertainty. In the following section we describe how we further develop the same
theoretical approach in order to reason about coreference mappings.

5 Refining coreference mappings

The algorithm receives as its input a set of candidate mappings between indi-
viduals of source and target KBs. In order to perform belief propagation, these
mappings along with relevant parts from both knowledge bases must be trans-
lated into valuation networks. Building a large network from complete knowledge
bases is both computationally expensive and unnecessary, as not all triples are
valuable for analysis. We select only relevant triples, which include (i) values of
object properties, which can be used to propagate belief between two owl:sameAs
mappings (functional, inverse functional and “influential” as described in 5.2)
and (ii) class and property assertions, which produce conflicts. Conflicts are de-
tected by selecting all statements in the neighborhood of potentially mapped
individuals and checking their consistency with respect to the domain ontology
(we use the Pellet OWL reasoner with the explanation service). If the reasoner
found an inconsistency, all statements which contribute to it are considered rele-
vant. Then, belief networks are constructed by applying the rules defined in (]20]
and the extended set described in subsection 5.1) and initial beliefs are assigned
to variable nodes. For each owl:sameAs variable node the belief is determined
according to the precision of the corresponding coreferencing algorithm, which



produced it. Each algorithm could produce two kinds of mappings: “probably
correct” exceeding the optimal similarity threshold for the algorithm (the one,
which maximized the algorithm’s F-measure performance), and “possibly cor-
rect” with similarities below the optimal threshold, but achieving at least 0.1
precision. Each variable node representing a class or property assertion receives
its initial belief based on its attached provenance data: the reliability of its source
and/or its extraction algorithm. After that the beliefs are updated using belief
propagation and for each mapping the decision about its acceptance is taken.

The most significant part of the algorithm is network construction. At this
stage we exploit the factors listed in the section 3. In the following subsections
we describe how it is done in more detail.

5.1 Exploiting ontological schema

Logical axioms defined by the schema may have both positive and negative
influence on mappings. First, some OWL axioms impose restrictions on the data.
If creating an owl:sameAs relation between two individuals violates a restriction,
the confidence of the mapping should be reduced. Second, object properties
defined as owl:FunctionalProperty and owl:InverseFunctionalProperty allow us
to infer equivalence between individuals. The initial set of rules and possible
network nodes we proposed in [20] does not capture instance equivalence and
thus is insufficient for reasoning about coreference relations. Therefore, in this
section we present a novel set of additional rules (Table 1), which allow us to
reason about coreference mappings. Table 2 lists the additional belief assignment
functions for corresponding valuation nodes.

Table 1. Belief network construction rules

N|Axiom Pre-conditions Nodes to create|Links to create
_ N1 : Il = ]2

1 |sameAs I =1 (variable)

. ]1;&[2 N12117£]2
2 |differentFrom (variable)

N1 . Il = [2 (varia.ble)7 N3 : Il = ]2 (]\71,]\/vg),(]\/vg,]Vg,)7
3 |sameAs Ny : R(Iz, Is) (valuation), (N3,N4)
Ny : R(I1,13)

N1 211 = IQ (Variable), N3 : Il 75 IQ (Nl,Ng),(NQ,Ng)

4 |differentFrom Ny : I) # I, (variable) (valuation)

Functional T C<1R, N1 : R(Is, ), (N1,N4),(N2,Ny),
: C<
g Property Ny : R(I3,I3), N3 : I, = I Ne:TL<1R (N3,N4)
InverseFunctional|T C< 1R™, N1 : R(I1,Is), _|(N1,N4),(N2,N4),
: C<
6 Property Ny : R(I2,I3), N3 : I, = I Ne: TE<IR (N3,N4)

The axioms owl:sameAs and owl:differentFrom (Table 1, rows 1-4) lead to
the creation of both variable and valuation nodes. This is because each one repre-
sents both a schema-level rule, which allows new statements to be inferred, and a



data-level assertion, which has its own confidence (e.g., produced by a matching
algorithm). owl: FunctionalProperty and owl:InverseFunctionalProperty (rows 5-
6) can only be linked to already existing owl:sameAs nodes, so that they can
only increase similarity between individuals, which were already considered po-
tentially equal. Otherwise the functionality node is treated as in [20]: as a strict
constraint violated by two property assertion statements. This is done to prevent
the propagation of incorrect mappings.

Table 2. Belief distribution functions for valuation nodes

N|Axiom Node type |Variables Mass distribution
m({0;0;0}, {0;0;1},
1 |sameAs 11 = ]2 11 = 12, R(Il,lgg), R(IQ,L;) {0;1;0}, {0;1;1},
{1;0;0}, {1;1;1})=1
2 |differentFrom|I, # I Li=05L, L #1I m({0;1},{1;0})=1
Functional m({0;0;0}, {0;0;1},
3 | Property T E<1R |R(I3, 1), R(Is, I), I, = I5|{0;1;0}, {1;0;0},
{L;51})=1
Inverse m({0;0;0}, {0;0;1},
4 |Functional |T C< 1R™|R(I1,13), R(I2,I3), I = I2|{0;1;0}, {1;0;0},
Property {1;1;1})=1

To illustrate the work of the algorithm we will use an example from our
experiments with datasets from the citations domain (see Section 6). One such
dataset (DBLP) contains an individual Ind! describing the following paper:

D. Corsar, D. H. Sleeman. Reusing JessTab Rules in Protege. Knowledge-Based Sys-
tems 19(5). (2006) 291-297.

Another one (EPrints) also contained a paper Ind2 with the same title:

Corsar, Mr. David and Sleeman, Prof. Derek. Reusing JessTab Rules in Protege. In
Proceedings The Twenty-fifth SGAI International Conference on Innovative Techniques
and Applications of Artificial Intelligence (2005), pages pp. 7-20, Cambridge, UK.

This illustrates a common case when the same group of researchers first pub-
lishes their research results at a conference and then submits the extended and
revised paper to a journal. An attribute-based coreferencing algorithm (Jaro-
Winkler similarity applied to the title), which had a good overall performance
(precision about 0.92 and F-measure about 0.94), incorrectly considered these
two papers identical. However, a mapping between these individuals violated two
restrictions: the individual belonged to two disjoint classes simultaneously and
had two different values for the functional property year. The inconsistencies
were detected by the algorithm, which produced two sets of relevant state-
ments: {owl:sameAs(Ind1, Ind2); Article(Ind1); Article_in_Proceedings(Ind2);
owl:disjoint With(Article, Article_in_Proceedings)} and {owl:sameAs(Ind1, Ind2);



year(Ind1, 2006); year(Ind2, 2005); owl: Functional Property(year)}. Since these
sets share a common statement (sameAs link), they are translated into a single
valuation network (Fig. 1). Although in our example the initial support of the

ArticleC—in_Proc [ Functional(year) }
[ [

[ Adiclegndty ] [ inProcgnd?) | [ year(ndt,2005) | [ year(ndi,2008) |
0.99/(0.97;0.98) [ [ 0.95/(0.91;0.96)
( Indi=zln2 | | Indi=ind2 |

\ | \ \
[Cin_Procgnd2y | [ indt=indz | ( year(nd2, 2005) |
0.9/0.74;0.82) 0.92/(0.2;0.21) 0.85/(0.72;0.85)

Fig. 1. Example of a belief network constructed during the experimental testing. The
numbers show the support before propagation and support and plausibility after propa-
gation for variable nodes (white). Leaf variable nodes are given in the KB while non-leaf
ones are inferred using axioms corresponding to valuation nodes (blue).

mapping was higher than the support of both statements related to Ind2 (Ar-
ticle_in_Proceedings(Ind2) and year(Ind2, 2005)), after belief propagation the
incorrect owl:sameAs mapping was properly recognized and received the lowest
plausibility (0.21 - obtained as m(1) +m(0;1) = 0.20 4 0.01).

5.2 Influence of context mappings

Belief propagation for properties explicitly defined as functional is a trivial case.
However, properties which allow multiple values are also valuable as a means to
narrow the context of matched individuals and increase similarity between them.
We have to estimate the impact of the relation and model this in the network.
As shown in Table 2 (row 1), by default the valuation node for the owl:sameAs
relation is defined in such a way that the belief in I; = I is completely inde-
pendent from a strong belief for both R(I5,1;) and R(I3, I2). The functionality
axiom represents an opposite scenario: having a belief 1.0 for both R(Is, ;) and
R(I3,I) implies the belief 1.0 for I; = I5. The actual strength of influence for
a property may lay between these extreme cases. In order to utilize such links
the network construction algorithm receives for each relevant property a vector
< ni,ns >, where ny, ny determine the impact of the link in direct (subject to
object) and reverse (object to subject) directions. The impact in two directions
may be different: having two people as first authors of the same paper strongly
implies people’s equivalence, while having the same person as the first author of
two papers with the similar title does not increase the probability of two papers
being the same. The owl : sameAs valuation node, combining variables I; = I,
R(I3,I3), R(I1, I3) will receive two belief assignments instead of one: m({0;0;0},
{0;0;1}, {0;1;0}, {1;0;0}, {1;1;1})=ny and m({0;0;0}, {0;0;1}, {0;1;0}, {0;1;1},
{1;0;0}, {1;1;1})=1 — n1. One possible way to determine coefficients < ny,ng >
is to learn them from training data, as we did in our experiments, or to assign



them based on expert estimations or the number of statements per individual as
in [11].

Also some relevant relations may be implicit and not defined in the ontology.
For instance, the same group of people may be involved in different projects. If
the link between a project and a person is specified using a property akt:has-
project-member, when two knowledge bases describing two non-overlapping sets
of projects are combined, the relations between people cannot be utilized. In
order to capture these implicit relations we can add artificial properties, which
connect individuals belonging to the same sets, into the ontology. Co-authorship
analysis, commonly used in the citation matching domain, is a special case of
this scenario (Fig. 2a).

a) [Coauthor(PersonH, Person22)] b) lArIington = ArI_Vﬂ [ Arl_Vax Arl_Tx ]
1.0/(1.0;1.0) 5; B

Person2 = Person2’ )
n=0.85 “Webber, B.L.>=‘Bonnie L. Webber’

[Coauthnr(Personﬂ, PersonZZ)] [ Person21 = Person22 ]
0.84/(0.86;1.0)

Arl_Va= Arl_Tx

Person11 = Person12 }“B B P
n=0.95 ‘ \“Bard, J.B.L."="Jonathan Bard"

[Coauthnr(Person12, PersonZZ)] [ Person11 = Person12 ] Arlington = Arl_Tx]
1.0/(1.0;1.0) 0.16/(0.83;1.0) 0.9/(0.31;0.35)

Fig. 2. Examples of belief networks illustrating (a) the usage of artificial set member-
ship relations and (b) processing competing mappings knowing that a source does not
contain duplicates. The numbers show the belief before propagation and belief and
plausibility after propagation.

5.3 Provenance data

The estimated reliability of a source is directly used at the starting stage when
initial beliefs are assigned to variable nodes representing class and property as-
sertions. Thus, if a violation of a functional restriction is caused by a property
assertion with a low belief, its impact will be insufficient to break the owl:sameAs
link. Another important factor is the knowledge about duplicate individuals in
a knowledge base. For instance, one knowledge base (AGROVOC) contains an
individual “fao:arlington”. If we match this against the UTexas geographical on-
tology, which contains two individuals “arlingtonVa” and “arlingtonTx”, then al-
though the similarity of one pair is slightly greater than another one, both values
are above the threshold and both these individuals can potentially be matched
to the first individual. However, knowing that this particular knowledge base
does not contain duplicates, allows us to add a corresponding ow!l:differentFrom
variable node into the network (Fig.2b). Updating beliefs allows us to reject one
of the two competing options.



6 Evaluation

In order to test the system we used the following datasets from the domain of
scientific publications:

1. AKT EPrints archive!. This dataset contains information about papers pro-
duced within the AKT research project.

2. Rexa dataset?. The dataset extracted from the Rexa search server, which
was constructed in the University of Massachusetts using automatic IE al-
gorithms.

3. SWETO DBLP dataset®. This is a publicly available dataset listing publi-
cations from the computer science domain.

4. Cora(I) dataset®. A citation dataset used for machine learning tests.

5. Cora(II) dataset. Another version of the Cora dataset used in [3].

AKT, Rexa and SWETO-DBLP datasets were previously used by the authors in
[18]. The SWETO-DBLP dataset was originally represented in RDF. AKT and
Rexa datasets were extracted from the HTML sources using specially constructed
wrappers and structured according to the SWETO-DBLP ontology (Fig. 3). The
Cora(I) dataset was created in the University of Massachusetts for the purpose
of testing machine-learning clustering algorithms. It contains 1295 references
and is intentionally made noisy: e.g., the gold standard contains some obviously
wrong mappings®. We translated this dataset into RDF using the SWETO-
DBLP ontology. The authors of Cora(II)[3] translated the data from Cora(I) into
RDF according to their own ontology and cleaned the gold standard by removing
some spurious mappings, so the results achieved on Cora(I) and Cora(Il) are
not comparable. Data and gold standards mappings in Cora(II) are significantly
cleaner than in Cora(I). Also in Cora(II) all Person individuals were initially
considered different while in Cora(I) individuals with exactly the same name
were assigned the same URI, which led to a significant difference in the number
of individuals (305 vs 3521) and, consequently, in performance measurements. In
our tests we tried to merge each pair of datasets 1-3 and to find duplicates in the
Cora datasets. To the SWETO ontology we added the restrictions specifying that
(i) classes Article and Article_in_Proceedings are disjoint, (ii) datatype property
year describing the publication year is functional and (iii) object property author
connecting a publication with a set of authors is functional. Given that both Cora
datasets did not distinguish between journal and conference articles, instead
we used venues as individuals and added functionality relations for them. Also

! http://eprints.aktors.org/

2 http://www.rexa.info/

3 http://lsdis.cs.uga.edu/projects/semdis/swetodblp /august2007 /opus_august2007.rdf

4 http://www.cs.utexas.edu/users/ml/riddle/data/cora.tar.gz

5 For instance, two papers by N. Cesa-Bianchi et al. “How to use expert advice. 25th
ACM Symposium on the theory of computing (1993) 382-391” and “On-line pre-
diction and conversion strategies. Eurocolt’93 (1993) 205-216” were considered the
same in Cora(I).
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Functional

L foaf:Person J [ foaf:Document J

name L year

sweto:Publication ..
- label

( swetoArticle } [ swetoArticle_in_Proceedings ]
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" book_title

journal_name e
disjoint
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Fig. 3. Class hierarchy in the SWETO-DBLP ontology

the Cora(II) ontology described pages as two integer properties pageFrom and
pageTo, which allowed us to add a functionality restriction on them as well.
For attribute-based coreferencing we used string similarity metrics applied
to a paper title or person’s name. In particular, we used Jaro-Winkler and
Monge-Elkan metrics applied to the whole strings or tokenized strings (L2 Jaro-
Winkler). L2 Jaro-Winkler is a mixture of string similarity and set similarity
measures: it tokenizes both compared values, then each pair of tokens is com-
pared using the standard Jaro-Winkler algorithm and the maximal total score
is selected. Initial belief mass distribution for each owl:sameAs relation was as-
signed according to the precision of the algorithm, which produced it. Initial
belief assignments for the class and property assertions are shown in the Ta-
ble 3. We assigned the values based on our knowledge about how each dataset

Table 3. Initial belief mass assignment

Dataset Class assertions|Datatype assertions
DBLP 0.99 0.95

0.81 (<2 citations)
Rexa 0-95 0.855 (>2 citations)
EPrints 0.9 0.85
Cora(l & II)|N/A 0.6

was produced and manual reviewing of the datasets. We did not further classify
publications in Cora datasets into journal and conference articles, so class as-
sertions were not relevant. Knowing that the data in Cora datasets was noisy,
we assigned beliefs in such a way that disagreement on a single property value
was not sufficient to break the mapping. We measured the quality of corefer-
ence before and after belief propagation. The results of the tests are shown
in the Table 4. As expected, in almost all cases the refinement procedure led
to an improvement in overall performance expressed by the Fl-measure. For
sweto:Publication instances (rows 1, 2, 4, 6, 7, 8) the recall has decreased: the



Table 4. Test results

Matching sweto: Publication
Dataset No|algorithm Before After
Precision|Recall|[F1  |Precision|Recall|F'1
EPrints/Rexa 1 Jaro-Winkl.er 0.950 0.833 |0.887|0.969 0.832 [0.895
2 |L2 Jaro-Winkler|0.879 0.956 [0.916{0.923 0.956 [0.939
. 3 |Jaro-Winkler 0.922 0.952 |0.937|0.992 0.952 0.971
EPrints /DB L s aro-Winkler[0.380  [0.984 [0.558/0.838  [0.083 [0.905
Rexa/DBLP 5 Jaro-Winkl.er 0.899 0.933 |0.916|0.944 0.932 ]0.938
6 |L2 Jaro-Winkler|0.546 0.982 ]0.702{0.823 0.981 [0.895
Cora(I) 7 |Monge-Elkan  [0.735 0.931 |0.821|0.939 0.836 |0.884
Cora(II) 8 |Monge-Elkan  |0.698 0.986 [0.817(0.958 0.956 [0.957
foaf:Person

EPrints/Rexa |9 |L2 Jaro-Winkler|0.738 0.888 ]0.806(0.788 0.935 |0.855
EPrints/DBLP|10 |L2 Jaro-Winkler|0.532 0.746 [0.621(0.583 0.921 |0.714
Rexa/DBLP |11 |Jaro-Winkler  |0.965 0.755 ]0.846(0.968 0.876 [0.920
Cora(I) 12 |L2 Jaro-Winkler|0.983 0.879 ]0.928]0.981 0.895 [0.936
Cora(II) 13 |L2 Jaro-Winkler|0.999 0.994 10.997(0.999 0.994 |0.997

algorithm incorrectly resolved some inconsistencies, which in fact occurred due to
wrong data statements. The decrease was slight for AKT/Rexa/DBLP datasets
and more significant for Cora where the degree of noise was higher. However, in
all cases this decrease was more than compensated by the increase in precision.
For foaf:Person individuals the effect of belief propagation primarily influenced
recall: links between instances reinforced the potential mappings, which would
otherwise be rejected. Because Cora(II) was better formatted than Cora(I) there
were very few “dubious” mappings produced during initial coreferencing and be-
lief propagation was not able to catch them.

Considering the F1 measure obtained for Cora(I) publication (row 7) in com-
parison with the state-of-the art algorithms from the database and machine
learning communities, we found that it is higher than those reported in [22]
(0.867), [9] (0.87), but lower than in [2] (0.93)%. As was said before, in order to
minimize the number of attributes processed by basic coreferencing methods, in
our tests we only used the title comparison for determining candidate individu-
als. This was the main factor, which reduced the performance: e.g., the algorithm
used in [2] achieved similar F-measure (0.88) on the test set when trained only
on the title, year and venue attributes. For Cora(Il) the F-measure was similar
to that reported for [3]: slightly higher for publications (0.957 vs 0.954) while
slightly lower for people (0.997 vs 0.999). The difference is due to the fact that
the authors of [3] used better similarity measures (reported F-measure for publi-

5 Note that the authors of [8] and [7], and [16] used different versions of the Cora
dataset where, in particular, more mappings were removed from the gold standard
so that the dataset contained 132 clusters [8] rather than 125 in Cora(II), and papers
with the same title and year were considered identical [16]. This does not allow direct
comparison of reported performance with our algorithms.



cations 0.948 without exploiting links) while exploiting data uncertainty by our
approach increased recall (e.g., having different years for papers was not enough
to break the mapping if there was an agreement for the venue name and pages).

7 Conclusion and future work

In the paper we have presented an approach which uses Dempster-Shafer belief
propagation in order to improve the quality of data integration, in particular
coreferencing of individuals. We consider this extension and application of the
Dempster-Shafer belief propagation mechanism as the main contribution of this
paper. Our initial experiments performed with test datasets have shown an im-
provement in the output quality of basic string similarity algorithms. However,
there are still issues which have to be resolved in the future work.

First, the Dempster-Shafer belief propagation mechanism is sensitive to the
initial belief distribution, which may be an issue if initial belief does not ade-
quately reflect the actual data, e.g., if the estimated precision of a coreferencing
algorithm was measured using a test set with a different distribution of data.
Second, at the moment the algorithm assumes that the data to be merged is
formatted according to the same ontology. In order to be employed on a Web
scale, the ability to work in a multi-ontology environment is necessary. In partic-
ular, the output of ontology matching algorithms must be considered. Another
important feature would be automatic discovery of ontological restrictions by
retrieving other ontologies covering the same domain (e.g., using Watson” or
Swoogle® engines) and analyzing them.
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