
Set-Congruence Dynamic Analysis for
Thread-Level Speculation (TLS)

Cosmin E. Oancea and Alan Mycroft

Computer Laboratory, Cambridge University, Cambridge, CB3 0FD, UK,
Cosmin.Oancea@cl.cam.ac.uk and Alan.Mycroft@cl.cam.ac.uk

Abstract. The move to multi-core has increased interest in paralleliz-
ing sequential programs. Classical dependency-based techniques can be
successful for some classes of programs, but all too often such (static)
analysis disallow parallelization because of the need for safe (one-sided)
approximations of behaviour. Thread Level Speculation (tls) enables
increased parallelization by allowing out-of-order execution; correct de-
pendencies are ensured by run-time monitoring and possible rollbacks.
Two-sided approximations of program behaviour are now acceptable so
long as the rollback ratio is kept small. We describe dynamic analy-
sis based on representing dependencies as modular congruences. One,
thread partitioning, efficiently enables loop iterations to be allocated to
threads (and calculates the maximum effective concurrency); the other,
fine-grain memory partitioning, calculates a hash function which reduces
performance loss due to TLS-metadata-based and cache-based task in-
terference. The dynamic analysis can be used either on-line (during ex-
ecution) or off-line (based on previous training runs).

1 Introduction

Thread-level speculation (tls) is a parallelization technique that allows the com-
piler to partition the program into concurrent threads even in the presence of
dependencies. While important work examines hardware tls [2, 10, 22, 21], this
paper examines higher-level analysis than the one naturally done by hardware.

Current software-tls approaches [5, 6, 18] exhibit heavy-transactional sup-
port, and can yield good speed-up when (i) the static compiler disambiguates1

enough accesses to amortize the speculation overhead, and (ii) the iteration gran-
ularity is high enough to amortize the transactional overhead related to starting
a new iteration. Their design assumes little about patterns of accesses to mem-
ory, merely that these accesses generate relatively few dependencies.

Lightweight models [17, 16] facilitates a compositional perspective to software-
tls: a course variable-based memory partitioning is performed first and separate
optimized (adaptive) tls models are employed on each partition to exploit reg-
ular access-patterns. In the latter’s presence these models can be very effective

1 It is provable that no transactional support is needed.



even when most of the instructions require speculative support. These lightweight
models perform best when memory accesses with a partition are regular (think
linear strided), but cannot be proved so statically because (i) of perhaps few sin-
gular points and (ii) of static analysis hindrances such as: complex control-flow
and data-structures (increased abstraction level), potential aliasing. Evidence
of these hindrances is illustrated by proposals for C language extensions that
provide a special scope that guarantees the absence of cross-iteration depen-
dencies [13]. Lightweight models require a hash function2 which aims to reduce
speculative storage without generating inter-thread conflicts.

This paper proposes a framework for dynamic analysis to guide the introduc-
tion of lightweight tls models. The main idea is to use profile runs to build pat-
terns capturing dependent iterations. This leads to two orthogonal techniques:
First, the iteration space is partitioned based on dependent statement-instance
pairs to the goal of executing dependent iterations on the same thread. Second,
the data space is partitioned into (nearly) disjoint access patterns from threads,
to the result of efficient tls models’ hash-functions. While tls-related opti-
mizations [11, 23, 2] have focused so far on tuning the original code to enhance
speed-up, we investigate here the equally important direction of fine-tuning the
tls model according to code’s access patterns. Section 4.3 shows speed-up results
that demonstrate our analysis’ utility.

Previous profiling solutions for tls were mainly aimed at (i) identifying suit-
able code for tls (few dependencies) and designing flexible thread-formation
schemes that delay thread-spawning to minimize violations [1, 12], (ii) inferring
linear predictors [19, 2] for scalars which are very likely to violate dependencies,
and (iii) developing tls cost-models to predict speed-up [7]. This paper’s main
contribution is to introduce (at a high-level) an address-based, set-congruence
model and algebra that, to our knowledge, is the first that attempts to:

• compute a iteration-to-thread partitioning that respects frequent dependen-
cies3 and addresses the iteration granularity need;

• identify coarse-grained memory partitions, i.e. an exhaustive set of address
ranges; access patterns for these may vary, thus assigning tls models per
partition is most effective in general;

• identify regular, fine-grained access-patterns and uses them to construct the
hash functions that allow lightweight tls models to be effective. The latter
is only succinctly presented in Section 4 due to space constraints.

In principle, we are interested in both conservative – all events are mod-
eled, and two-sided approximation – enough events are modeled that the cost
of speculation failure is kept within cost bounds. With the latter, our analysis
is light enough to be applied both off-line and on-line (just-in-time), as desired:
the analysis is run on the profiled information corresponding to a small iter-
ation window W , and the algorithms are O(n log n) in the number of profiled
addresses. (Regularity can also be verified on a conveniently far away window.)

2 We abuse notation here: it describes regular accesses instead of randomizing.
3 Executes dependent iterations on the same thread – enabled by in-place tls models.



Comparing with static approaches [15, 14], besides the obvious more con-
servative (and hence imprecise) trait these exhibit, we note two interesting dif-
ferences: First, static approaches need to investigate how various loop-index
variables are combined to form an array index, hence requiring complex, rela-
tional analysis. Since dynamic analysis looks directly at the accessed address,
our model is simpler (non-relational flavor) while covering the exploitable cases.
Second, our dynamic analysis may be applied to richer containers (linked lists,
trees) than (only) arrays as long as the memory has a regular structure; Chilimbi
and Larus’s work [3, 4] improves cache behavior by re-organizing memory to a
similar regular structure that also facilitates our dynamic analysis.

The rest of the paper is structured as follows: Section 2 provides the back-
ground, motivation, states the general problem and compares with several clas-
sical approaches. Section 3 presents how the profiling information is gathered
and introduces (formally and in detail) the thread partitioning analysis. Due to
space constraints, Section 4 only briefly sketches the memory-partitioning anal-
ysis, gives a non-trivial example, and presents speed-up results demonstrating
our analysis usefulness. Section 5 concludes the paper.

2 Background, General Problem, Related Work

This paper uses modular arithmetic (over multiple modular bases) significantly.
We write Zn to mean the integers (mod n), or more formally Zn ≡ {{0, n, 2n, . . .},
{1, n+1, 2n+1, . . .}, . . . , {n−1, 2n−1, . . .}}. Elements of Zn, often called “mod-
ular numbers”, are referred to as cosets. This section briefly introduces software-
tls, provides the motivation and states the general problem for our two dynamic
analysis techniques, and compares them with related static approaches.

2.1 Software TLS

We provide here the minimum amount of tls information necessary to under-
stand this paper. We refer the reader to [10, 2, 24, 18] for a more comprehen-
sive tls perspective. tls exploits code regions that dynamically expose a good
amount of parallelism but for which static analysis fails to guarantee safety.
Under tls threads execute out of order, and use software/hardware structures,
referred as speculative storage, to record the necessary information to track the
inter-thread dependencies and to revert to a safe point and restart the compu-
tation upon the occurrence of a dependency violation (rollback recovery).

The thread assigned to the lowest numbered iteration of all is referred to as
the master thread since it encapsulates both the correct sequential state and
control-flow; the others are speculative threads since they may consume “dirty”
values and cause rollbacks. Serial-commit tls models [5, 6, 17] isolate the spec-
ulative state from the global state: each thread buffers its write-accesses, and
commits them when it becomes master. It follows that war and waw dependen-
cies are implicitly satisfied. In-place models [16, 8, 20] access (modify) directly the
program state, while still enforcing the sequential semantics. Important differ-
ences with respect to serial commit models are that (i) all types of dependencies
(raw, war and waw) may generate violations, but (ii) they are scalable – in



number of processors that may contribute to speed-up, and (iii) allow a more
flexible iteration-to-thread partitioning (threads may execute non-consecutive
groups of iterations, see later).

Finally, empirical results suggest that a software-tls application requires an
iteration’s granularity to be in the range of thousands of instructions: (i) big
enough to amortize the speculative overhead corresponding to starting a new
iteration, (ii) but not too big – so that the speculative storage is kept within
reasonable bounds. As discussed in the next section, when the original loop does
not provide enough granularity, we re-shape the loop in a fashion that preserves
iterations’ execution locality. In this sense, we denote by Wmin and Wmax the
minimal, maximal bounds for the number of consecutive, original iterations that
are allowed to execute concurrently. A collateral, but important advantage of
increasing iteration granularity is that it improves load-balance among threads.

2.2 Thread Partitioning – High Level View

Given a block B forming the body of the loop for(int i=0; i<N; i++) B(i);

we would like to schedule the iterations B(i) for a multi-core processor. We
denote by P the number of processors and by C the number of threads used to
parallelize the program. (In general, maximal speed-up occurs when C ≥ P ).

We assume we have profiled a window of Wmax consecutive iterations. The
general problem addressed in Section 3 is to find a repetitive structure (π) that
defines how iterations are assigned to threads so likely dependencies are satis-
fied. π : {0, . . . ,W −1} → {0, . . . , C −1} gives the mapping from W consecutive
iterations to concurrent threads. Writing as usual π−1(c) = {i | π(i) = c}, the
iterations executed by thread j are simply π−1(j). Note that C and W are also
analysis outputs; convenient values should maximize application’s available de-
gree of parallelism, keep threads well (load) balanced, and provide tls’s desired
granularity (Wmin ≤ W ≤ Wmax). With π, W and C the loop is re-written as:
parfor(t=0; t<C; t++) {

for(k=0; k<N/W; k++)

for each(j ∈ π−1(t)) B(k*W+j);

cond wait; /* required by TLS */ }
tls application requires a loose synchronization between threads to keep the con-
current execution well-localized This is depicted via cond wait that preserves
the invariant that always, at most C consecutive “expanded” iterations execute
concurrently (|ki − kj | < C, 0 ≤ i, j < C, where ki is k’s value on thread i).

We give two examples to illustrate forms of B, in which we assume P = 8.
The first example takes B(i) to be a[i+4] = a[i] + 2, code that features
cross-iteration dependencies of distance 4. Without considering the iteration-
granularity factor, a possible result is C = 4, W = 4 and π−1(j) = {j}, meaning
that iterations j +4Z ≡ {j, j +4, j +8, ...} execute on thread j. We observe that,
with this code, we can only partially exploit the available hardware-parallelism:
we use 4 threads although we have 8 processors. To increase the iteration gran-
ularity, we can choose W a convenient multiple of 4, say W = 16 and have
π−1(j) = {j, j+4, j+8, j+12}. (The first “expanded” iteration for thread 0 con-
sists of the original iterations {0, 4, 8, 12}.) It is worth noting however that this



way of increasing iteration-granularity is only applicable to in-place tls models.
(For a serial-commit model, the serial write-back phase cannot be achieved in
any effective way, and hence W = 4 = the cross-iteration dependence distance.)

The second example takes B(i) to be a[i] = a[i] + 2, and hence cor-
responds to (cross-iteration) dependency-free code. Without considering the
iteration-granularity aspect, a possible result is C = 8, W = 8 and π−1(j) = {j}
(iterations j + 8Z execute on thread j). Increasing iteration granularity by a
factor of 4, yields W = 32 and π−1(j) = {4j, 4j + 1, 4j + 2, 4j + 3}, meaning
that thread 0 executes iterations {0, 1, 2, 3, 32, 33, 34, 35, ...} and so on. (The first
“expanded” iteration for thread 0 consists of the original iterations {0, 1, 2, 3}.)
This method of increasing iteration granularity is applicable to both serial com-
mit and in-place tls models. (The serial-commit phase operates as expected
since the new iteration is formed from consecutive original iterations.)

2.3 Exploiting Access-Patterns via Adaptive TLS Models

Oancea and Mycroft [17] argue that rather than applying one over-arching tls

model to parallelize an application, software flexibility is, in some cases, better
exploited by combining several lightweight tls models [16, 17], each protect-
ing disjoint memory partitions. In principle, lightweight tls models attempt to
exploit a program’s access patterns and, where these exist, yield a very small
memory overhead and hence good performance.

For illustration, we intuitively present a simple tls technique to track raw

dependencies. Assume LdVct[] is a vector with as many entries as the size of an
array arr[] that requires speculative support. A read from arr[i] in iteration
r sets LdVct[i]=r iff r is currently the maximal iteration that has read arr[i].
A write to arr[i] by iteration w discovers a raw violation when w<LdVct[i]

since iteration LdVct[i] should have read the value written by w, but it did not.
To decrease speculative storage (LdVct) size, a (not one-to-one) hash func-

tion, of form hashs,q,Q(x) = ((x − s) quo q) rem Q can be used to map mem-
ory locations into indexes in LdVct. Now, the data space is partitioned into
equivalence-classes (x1 ∼ x2 ⇔ hash(x1) = hash(x2)), and a speculative read/
write operation is interpreted as if any locations belonging to the same equiv-
alence class may have been read/written. Although the execution soundness is
guaranteed for any such (not one-to-one) hash, good speed-up is achieved only
when the number of false-positives (hash(x1) = hash(x2) & x1 6= x2) leading to
dependence violations is small, so that the additional rollback-recovery cost is
vastly overcome by the small speculative memory-footprint and improved cache
behavior. (Naively chosen hashes will likely translate to poor performance.)

Section 4 presents at a very high-level the analysis that determines hash’s
s, q, and Q parameters. Assuming a 32-bit word, the first example in Section 2.2,
with B(i) ≡ a[i + 4] = a[i] + 2, C = 4, W = 16 and π−1(j) = {j, j+4, j+8, j+
12}, j ∈ {0, .., 3}, yields hash(x) = ((x − s) quo 4) rem 4, where s = a quo 4,
and a stands for the start address of array a. One can verify that hash(x) ≡ i,
for all addresses x accessed by thread i. Similarly, the second example, with
B(i) ≡ a[i] = a[i] + 2, C = 8, W = 32 and π−1(j) = {4j, 4j + 1, 4j + 2, 4j +



3}, j ∈ {0, .., 7}, yields hash(x) = ((x − s) quo 16) rem 8. One can verify that
thread i accesses addresses that map to i via hash.

We can thus introduce speculation via a very small memory-overhead (the
load/store vectors that track dependencies have sizes 4 and 8 for the two cases).
Moreover, since a thread repetitively accesses the same index of LdVct (and
different threads access different indexes) in the dependency tracking-structure
we can obtain a cache-ideal layout of speculative storage.

2.4 Comparison with Static Analysis Techniques

The classical (static) treatment depends on the assumption that the loop-body
B is simple in terms of (i) control flow – typically no conditionals, (ii) access-
patterns – linear indexing, and (iii) used data-structures – basic type arrays, and
(iv) provable no-aliasing. Where one of these does not hold, classical dependence
analysis is likely to indicate that loops must be executed sequentially, even on
a multi-core processor. However, the dynamic behavior (in particular the data-
dependencies) may in fact be reasonably regular, with a perhaps small number of
exceptions; tls allows the code parallelism to be extracted while providing the
safety net with respect to these few exceptions. The dynamic analysis introduced
in this paper optimizes tls application: where strong regular behavior exists,
lightweight, software-tls models are effective even when most B’s instructions
require speculative support.

Our thread-partitioning analysis, presented in Sections 2.2 and 3, most closely
resembles a form of octagonal analysis [15] but also using congruences [9]. Note
also the difference that the traditional use of octagonal congruences is for analysing
relationships between values of user variables while we analyse to determine val-
ues of the iteration number appearing at the ends of a run-time dependency
(x − y = c (modM) is a octogon-type congruence).

Our address-partitioning analysis, introduced in Section 2.3 and briefly pre-
sented in Section 4, is at a high level related to Masdupuy’s analysis of trapezoid
congruences [14]. The latter is a complex framework for relational integer analy-
sis, aimed at describing multi-dimensional array indexes, that leads to “interval-
like” or “congruence-like” information when interval or congruence analysis is
relevant, respectively. We employ a similar strategy aimed at reducing hash’s
image cardinality (i.e. Q), and thus tls’s memory overhead, but we restrict our
intervals to be equal-sized, since we need a fast hash. While the introduction
has recounted several profiling-related approaches, other tls-related optimiza-
tions include data-flow algorithms for identifying “idempotent references” [11],
aggressive instruction scheduling techniques aiming at reducing the stalls asso-
ciated with scalar values [23], and other optimizations related to loop inductors,
light thread synchronization locks, and reduction operators [2].

3 Thread Partitioning

The analysis presented in this section (i) identifies the cross-loop dependencies
that are likely to yield run-time violations, (ii) classifies dependencies into rare-
events, which can be ignored, and (frequent) repetitive-events that need to be



solved, and (iii) attempts to describe the iteration space via a regular structure,
in which iterations involved in cross-loop dependencies are assigned to execute
on the same thread, while maintaining the load-balance among threads. The
latter is the most efficient method of satisfying frequent-dependencies.

Constructing the regular structure is more useful than merely representing
the value set of addresses at a given program point because of the need to model
dependencies. It therefore involves representing relationships between addresses
occurring at two program points in different iterations – one the source of the
dependency and one the target. Our analysis applies to both regular and irregu-
lar, and simple and nested loops. For simplicity, in the following we restrict our
discussion to single loops and generalize in Section 3.6 for loop nests.

3.1 Notations, Preliminaries and Profiling Instrumentation

For simplicity, throughout the paper, we discuss our profiling and analysis tech-
niques in the context of loop parallelization, where threads concurrently execute
iterations out of the program order. However, this can be easily generalized to
any thread-partitioning, as long as partitions are numbered in a fashion that
respects the total order imposed by the sequential program’s control flow.

We assume that a simple static-analysis is performed first, to identify the
read/write accesses of memory locations that cannot be disambiguated and hence
require speculative support. We refer to the latter as speculative program points
(spp). Note that a spp is associated with either a write or a read access of
memory locations; mode : SPPdom → {r, w} represents this relation. We denote
by Adom, ISdom and SPPdom the domains of valid addresses, loop iteration space,
and spp. Hence Adom, SPPdom and ISdom ⊂ Z, where we consider iteration i to
be the ith executed iteration in sequential program order.

At run-time, we employ an instrumentation phase that, for each spp, gathers
address-iteration pairs (pia) recording which addresses were read/written by
which iterations. Hence piaq ⊂ { (a, i) | a ∈ Adom and i ∈ ISdom}, q ∈ SPPdom.

The cross-iteration dependencies that may appear at run-time can be iden-
tified by analyzing the pias corresponding to spp pairs (ppp). For example if
(a, i1) ∈ PIAq1 , (a, i2) ∈ PIAq2 , i1 < i2, mode(q1) = w, and mode(q2) = r, then
we have a true-dependence (raw) with the source being executed in iteration i1

and the sink in iteration i2. This leads to the following definitions:

Definition 1 ( Dependency-Class Notation ). We denote by (itsrc, itsnk, tp)
the class of run-time, cross-iteration dependencies, such that the source/sink of
the dependency (on some memory location) is executed by the iteration numbered
itsrc / itsnk, respectively, and tp ∈ {t, a, o} denotes the dependency type: true
(raw), anti (war), or output (waw). By construction we have: itsrc < itsnk.

Definition 2 ( addg ). The dependency classes introduced in Definition 1 in-
duce a directed acyclic dependency graph (addg), in which nodes are iteration
numbers, and edges are directed from dependency’s source to sink and are an-
notated with the type of the dependence (t, a, o). Singleton nodes are eliminated
(they correspond to no dependency or to iteration-independent dependencies).



const int D = 4; const int B = 128; | if(cond1 || cond2) {
1 for(int i=D; i<N; i++) { | ... // PP1
2 a[i] = .... ; // PP1 | } else {
3 .... = a[i-D]; // PP2 | ... // PP2
4 if (i%8 = 1) | }
5 .... = a[i-1]; // PP3 |
6 a[i%B] = .... ; // PP4 | BECOMES
7 .... = a[i%D]; // PP5 |
8 if(highlyUnlikelyCond()) | if(cond1) {
9 .... = a[i-1]; // PP6 | ... // PP1
10 e[i] = // PP7 | } else if(cond2) {
11 e[N-i]; // PP8 | ... // PP1’
} | } else ... // PP2

Fig. 1. A. Motivating Example B. Branch Normalization

0

4
8

124

t

t
..... 128

.....
132t

a
o

a

3

7
11

127

t

t
..... 131

.....
135t

a
o

a

1

5
9

125

t

t
..... 129

.....
133t

a
o

a

.................

ADDG(PP4,PP5):

(a) Periodic Dep-
Pattern

8 12 ...40

...1 5 9 13

...2 6 10 14

...3 7 11 15

ADDG(PP1,PP2):
t

t

(b) Constant Dep-
Distance

10

98

16 17

24 25

ADDG(PP1,PP3):

.....

t

t

t

t

(c) Scattered
Dep-Distance

Fig. 2. addgs for Some Program Point (PP) Pairs in Figure 1.

After (just-in-time) profiling a number of iterations, we construct for each
spp pair ((q1, q2) ∈ ppp) their associated directed acyclic dependency graph
(addg(q1,q2)), in which the singleton nodes are eliminated. Dependencies of dis-
tance greater than Wmax are trimmed-out since they cannot result in run-time
violations (see cond wait in Section 2.2). This approach of constructing per-ppp
addgs as opposed to one whole-loop addg is motivated by the intuition that the
resulting addgs often correspond to simple access patterns that, in many cases,
can be easily inferred and expressed through basic congruence formulas. To this
end, we assume that or conditionals have been normalized via code cloning, as
shown in Figure 1.B. Next section exemplifies our approach.

3.2 Example

The cross-iteration dependencies, for the code shown in Figure 1.A, fall in one of
two categories: (i) dependencies that, if not synchronized, will result in frequent
run-time violations, leading to poor performance, and (ii) dependencies that, at
run-time, rarely violate the sequential program semantics.

With respect to the first category, we identify three dependency-patterns that
may still allow parallelism to be effectively exploited. Typical examples are the
dependencies (of distances D, 1 and 1) between PP1-PP2, PP1-PP3 and PP4-PP5,



whose corresponding addgs are shown in Figure 2. The addg corresponding to
PP4-PP4, representing output-dependencies of distance 128, is not shown sepa-
rately, but is overlapped in Figure 2(a) (pattern similar to Figure 2(b).)

The second category, includes for example the dependencies corresponding to
ppp PP1-PP6 and PP7-PP8. The former may cause a true-dependency of distance
1, but its sink is guarded by a condition that is highly-unlikely to evaluate to
true. The latter ppp, if analyzed semantically, yields a group of cross-iteration,
true/anti dependencies whose distances range uniformly from N to 0. Since we
assume N ≫ Wmax they will cause very few run-time violations, roughly when
the execution reaches the middle of the iteration space. (Note that a lightweight
profiling approach may in fact not even discover these dependencies, which is
consistent with our two-sided approximation strategy which ignores rare events.)

Ideally, we would like to fully exploit the available hardware parallelism,
while introducing no explicit synchronization. For example, on a two-processor
machine, an optimal thread-partitioning will execute iterations 0, 2, 4... on one
thread, and iterations 1, 3, 5, ... on the other. This satisfies the observed depen-
dencies without introducing any synchronization overhead, as the dependent
instructions are executed on the same thread. On a four-processor machine it
is probably better to use four threads, in which thread i executes iterations
i, i + 4, i + 8, ..., where 0 ≤ i < 4. This satisfies the dependencies in Figures 2(a)
and 2(b), while light synchronization is introduced to satisfy the dependencies
between threads 0 and 1 (those in Figures 2(c)).

3.3 Set-Congruence Model (in Z × Z)

As observed with the previous example, the addgs shown in Figure 2 have a
repetitive structure that allows parallelism to be efficiently extracted (even under
frequent dependencies). We aim at developing congruence relations such that:

– the repetitive structure is concisely and precisely described, and can be easily
identified via pattern-matching type algorithms

– they can be effectively combined yielding a parallelization strategy that finds
a good trade-off between the available code and hardware parallelism and
the introduced synchronization.

Definition 3 ( Modulo/Step Operators ). Given 0 ≤ a, b < M , where
a, b,M ∈ N, we define the modulo operator <M> and the step operator |M>
and of characteristic M for element (a, b) as:

(a, b)<M> = {(x, y) | x ≡ a (mod M) and y ≡ b (mod M)}

(a, b)|M> =

{

{(a + kM, b + kM) | k ∈ N}, if a < b,
{(a + kM, b + (k + 1)M) | k ∈ N}, if a ≥ b

Under characteristic 0, (a, b)<0> = (a, b)|0> = {(a, b)}.
Finally, we lift the modulo/step operators (from pairs) to sets (of pairs):
S<M> = ∪(a,b)∈S(a, b)<M>, where S ∈ P(ZM ×ZM ). The definition of S|M>
is similar.



Note that the step operator is more precise than the modulo operator: S|M> ⊆
S<M>. For example (0, 8) ∈ (0, 0)<4> but (0, 8) /∈ (0, 0)|4>. We represent the
addg in Figure 2(c) as (0, 1)|8>, since there is no constraint that requires iter-
ations 0 and 9 to be executed on the same thread, for example.

We represent the addg in Figure 2(a) via the modulo operator as ∪0≤i<4(i, i)<4>
(the step operator fails to represent it since, for example, (0, 8) /∈ (0, 0)|4>). Fur-
thermore, the addg in Figure 2(b) also requires the modulo operator (∪0≤i<4(i, i)|4>)
due to the implicit transitive closure: iterations 0 and 4, and 4 and 8 execute
on the same thread, hence iterations 0 and 8 execute on the same thread (al-
though iterations 0 and 8 are not dependent). (The transitive closure is a result
of iterations 0, 4 and 8 belonging to the same addg’s connected component.)

3.4 Set-Congruence Algebra (in Z × Z)

We present now how formulas describing addg’s basic patterns are combined.
The non-relational, static analysis of integer congruence properties employs the
lattice of integer cosets to join same-variable formulas: (a1+b1Z) ⊔ (a2+b2Z) =
a1 + gcd(b1, b2)Z if gcd(b1, b2)|(a2 − a1) and Z otherwise. Applying our analysis
on a special subset of Z×Z (see Definition 3), results in a (different) formula to
manipulate these descriptions.

Definition 4 (Additive Subgroup). We denote by [m]M the additive sub-
group of ZM generated by m. Note that [m]M = [g]M , where g = gcd(m,M),
since both subgroups have the same cardinality M/g and g generates m.

Assume a < b and m1 < m2. The step relation yields the invariant:
(a, b)|m1> = {(a+k∗m1, b+k∗m1) | k ∈ Z} ⊆ {(a+e+k∗m2, b+e+k∗m2) | k ∈
Z, e ∈ [m1]m2

} = ∪e∈[m1]
m2

(a + e, b + e)|m2>.

The modulo relation is similar to the integer congruence unification. Denoting
m = gcd(m1,m2) ([m1]m2

≡ [m]m2
) leads to: (a, b)<m1> ⊆ (a, b)<m>. (Also

(a, b)|m1> ⊆ ∪e∈[m1]
m2

(a + e, b + e)|m2> ⊆ (a, b)|m> ⊆ (a, b)<m>.)

We demonstrate now the usefulness of differentiating between step and mod-
ulo relations. Combining two congruence relations corresponds to taking the
union of the sets they represent. For the modulo relation we have: {(0, 1)}<8>∪
{(0, 1)}<18> ⊆ {(0, 1)}<2>, which implies that the program cannot be paral-
lelized (as iterations 0 and 1 modulo 2 are executed on the same thread). How-
ever, with the step relation we get: {(0, 1)}|8> ∪ {(0, 1)}|18> ⊆ S|18>, where
S = {(0, 1), (8, 9), (16, 17), (6, 7), (14, 15), (4, 5), (12, 13), (2, 3), (10, 11)}. In this
case we can run 9 concurrent threads while satisfying the observed dependencies:
thread i executes iterations S[i][0] and S[i][1] mod 18, where 0 ≤ i < 9. The
next theorem formalizes these results.

Theorem 1 (Step/Modulo Refining). Let U ⊆ P(Z × Z) be of the form
S|m>, and g = gcd(M,m). The smallest set U ′, U ⊆ U ′, of the form S′|M>
exists and is obtained when: S′ = {(x, y) | x ≡ a + e and y ≡ b + α ∗ m +
e mod M, where (a, b) ∈ S, α = 0 for a < b and 1 otherwise, and e ∈ [g]M}
For the modulo relation the set S′ can also be computed, but S′<M> ≡ S<g>.

Proof. Straightforward application of the finite additive subgroup theory.



The rest of this section gives the unification rules for the step and modulo
relations (sets). We introduce first the degree of parallelism of a set under the
modulo/step form, which is useful in simplifying the congruence formulas. In-
tuitively, upon unification, we aim to obtain the congruence formula that yields
the best precision (highest degree of parallelism) and conciseness (smallest char-
acteristic), in this order.

Definition 5 ( Degree of Parallelism ). Let lmax be the maximal number of
nodes of a connected component of the addg induced by a formula of the form
S<m>, where only iterations 0..(m−1) are considered. The degree of parallelism
of S<m> is ⌈m/lmax⌉. The same holds for S|m>.

Definition 6 ( Step/Modulo Unification ).
MS.1: S1|m> ⊔ S2<m> = (S1 ∪ S2)<m>
MS.2: S1|m1> ⊔ S2<m2> = ([S1|m1>]m ∪ [S2<m2>]m)<m>, where
m ∈ {m2, gcd(m1,m2)} is the value that maximizes the degree of parallelism. In
the case of equality, take the smaller m.

Similarly, combining two step relations yields a step relation. Combining two
modulo relations yields a modulo relation where the resulting characteristic is
computed by taking the gcd.

3.5 Basic Patterns

Figure 2 identifies three dependency patterns that may not necessarily prevent
parallelism from being extracted, and hence constitute the basic building-blocks
of our analysis. We expect that each addg associated to a certain ppp falls in one
of the three categories. Combining among addgs corresponds to unifying set-
congruence formulas as described in the previous section, and yields an algebra
of patterns. This section is not intended to present the exact pattern-matching
algorithms we use, as the paper does not aim to make a contribution in this
direction. We restrict to (i) asserting the main pattern characteristics such an
algorithm should identify, (ii) giving the pattern’s congruence formula, and (iii)
where not already discussed, presenting how formula unification is achieved.

We also note that we allow a few4 dependencies to fall outside our patterns;
they are tolerated as rare events, which is consistent with our two-sided analysis.
These dependencies are stored inside a per-addg residue set, and are taken into
account when the decision is made of whether tls application is effective or not.

Repetitive Scattered Dependencies Pattern: The first basic pattern
corresponds to the one shown in Figure 2(c). Its defining properties are: (i)
there are very many connected components, each containing a small number
of nodes, l (typically 2), (ii) the difference between the corresponding nodes of
two consecutive connected components, denote it by m, is constant and equal
between pairs of corresponding nodes (formula’s characteristic), and (iii) the de-
gree of parallelism ParDeg = ⌈m/l⌉ is big enough – if the latter is 1 for example,
parallelism cannot be extracted, since we intend to execute the connected com-
ponent’s nodes (iterations) on the same thread. The pattern’s formula is S|m>,

4 We use a 5% threshold of the per-addg total number of dependencies.



where S ⊆ P(Zm × Zm) contains the iteration pairs corresponding to the edges
of one connected component. (By pattern’s definition, all connected components
generate the same S.) For example, the addg in Figure 2(c) formula is (0, 1)|8>.

Constant Dependency Distance Pattern: The second basic pattern cor-
responds to the one shown in Figure 2(b). Its defining property is that (i) it
consists of several l connected components, (ii) where consecutive nodes i and
j on the same component satisfy the invariant i − j = m, with m constant and
l ≤ m. Denoting by R the set containing the roots of the connected components
modulo m, the pattern’s formula is {(i, i)|i ∈ R}<m>. For example, the addg

in Figure 2(b) formula is {(i, i)|0 ≤ i < 4}<4>.

Dependency-Free Window Pattern Although the addg in Figure 2(a)
can be represented via the {(i, i)|0 ≤ i < 4}<4> formula5, it corresponds to a
more general, orthogonal pattern. Its defining property is that there are several
nodes (nodes [0, 3]<128>) that are the source/sink of many dependencies, and
the structure is repetitive. If these iterations are executed sequentially, the re-
maining iterations ([4, 127]<128>) cause no dependency-violations, hence they
can be executed in parallel, out of order. The semantics is that for every 128
iterations, we apply a (synchronization) barrier and execute the first four iter-
ations sequentially. The pattern can be identified by recursively eliminating the
node featuring the highest number of incoming/outgoing edges from the graph;
the pattern holds if eliminating few nodes results in only singleton nodes. Space
constraints prevent us from formalizing this pattern here.

3.6 Further Remarks

The time complexity of the analysis proposed in this section is dominated by
the addgs construction phase, which is on average O(n log n) in the number of
profiled addresses (sort the per spp addresses; constructing the addg for a ppp

is then linear). This is so because in practice we do not have to analyze each ppp,
but, roughly, only those that refer to the same variable – we can determine the
maximal and minimal addresses accessed at each spp and construct addgs only
between spps whose addresses overlap. Furthermore, pattern-matching addgs

to determine formulas should be (in worst case) linear in the number of addg’s
dependencies, while unifying formulas among addgs (ppp) under the presented
algebra is cheap.

The order in which (addgs) formulas are unified is important: a state-of-art
framework would aim to assign iteration to threads such that most dependencies
are resolved, while preserving the optimal degree of parallelism (P ). Other ppps

whose unification would yield too conservative results are (lightly) synchronized
(see Section 3.2). This paper does not discuss these heuristics.

Finally, we have discussed our analysis so far in the context of simple-loops.
To generalize to loop-nests, we represent iteration numbers in Zp, where p is
the loop’s nesting depth. We apply our analysis for the most-outermost loop, L,
of suitable tls granularity, by projecting Zp to Z, in the context of L. If the
analysis fails to give an acceptable result, we repeat it for inner loops.

5 If D ∤ B – see Figure 1, the formula does not hold, but parallelism can still be extracted



PP1:
PP2:
PP3:

Program Memory

Memory Partition Result

(I)

Memory Partition Result for the code in Figure 1.A(II)

a a+4 a+Na+128 e e+N

for an array a, a+i is the address of a[i] 

Fig. 3. Illustrating Memory Partitioning

4 Memory Partitioning

This section introduces at a high-level the second part of our analyzes, whose
goals were stated in Section 2.3. Section 4.1 presents how memory is coarse-
grained partitioned into disjoint intervals that intuitively correspond to different
variables (e.g. arrays) whose accesses were not statically disambiguated. The
most suitable type of tls model is then chosen to protect each of these partitions
(see [17] for the software composition techniques). Partitioning memory in this
fashion provides opportunities to adapt the tls model behavior to the access-
patterns of each variable. Section 4.2 presents a fine-grained memory partitioning
by which each individual tls model’s hash functions are computed.

4.1 Building Variable-Based Memory Partitions

Figure 3.(I) intuitively depicts our approach. The profiling phase has yielded the
set of addresses accessed at each program point. A clustering technique is then
employed to exhaustively partition the memory into mostly-disjoint intervals,
where a few exceptions are allowed (e.g. the two “singular” points of PP1). For
on-line analysis, when only a window of iterations is profiled, we compute a linear
formula that predicts how intervals grow. The latter are used to compute interval
boundaries. Note that (i) a spp may correspond to two intervals (e.g. PP1), as it is
not required that a variable is laid out contiguously in memory, and (ii) two spps

may correspond to the same interval/partition (e.g. they may access the same
variable). Also, it is preferable to split an interval I into I1∪I2, when we observe
that one spp repeatedly accesses only few addresses in I (e.g. PP3 forms I1) –
this allows to more aggressively adapt/optimize I2’s tls model’s behavior (small
memory overhead within very few false-positives). For safe-languages (Java, C#)
an (extra) orthogonal partitioning can be made based on type information or
other invariants guaranteeing that two spp refer to disjoint set of addresses
(although their intervals overlap).

Figure 3.(II) shows the analysis result for the code in Figure 1. We denote by a
and e the start address of arrays a and e. We observe that accesses of a form three
disjoint partitions: [a, a + 3] for PP5, [a + 4, a + 127] for PP4, and [a + 128, ...] for
PP1, PP2 and PP3. Accesses of e form three intervals: an increasing one starting



s

qqq

sQ*q

hash(x) = ((x−s) quo q) rem Q

Q21

Fig. 4. Hash Function – Graphical View

at e, a decreasing one starting at e + N and a buffer-interval in the middle.
While the first two partitions may use aggressive fine-grained partitioning, the
middle-one should use a precise partitioning6.

Having computed the coarse-grained memory partitions, we look at their
associated addgs to determine the most suitable type of tls model for them.
We keep into account that serial commit models [17, 5, 6] implicitly satisfy waw

and war dependencies, while in-place models [16] do not. Also, [17] is inefficient
in the presence of many iteration-independent raw. However, note that if the
thread partitioning requires a non-trivial characteristic (m 6= 0), then only in-
place models may be employed, and only then when a serial phase7 is not needed.

4.2 Fine-Grained Memory Partitioning

For each memory partition we apply a congruence/set analysis that attempts to
map addresses accessed by different threads into mostly disjoint (coset-based)
equivalence classes. The latter naturally induces the tls model hash function,
and effectively reduces the tls memory overhead while introducing very few
false-positives. An important consequence of this strategy is that it implicitly
optimizes the speculative-storage cache-behavior in that the same thread re-
peatedly accesses the same speculative storage elements (and different ones for
different threads) and hence requires mostly L1-cache accesses (rather than L2).

We are looking for hash functions of the form: hashs,q,Q(x) = ((x −
s) quo q) rem Q, because (i) they are computationally effective (especially when
q and Q are powers of 2) and (ii) they enable both an interval and congru-
ence like analysis, which are both useful in reducing the image cardinal Q, and
hence the speculative storage size. The hash function can be seen as an equiv-
alence relation among addresses: a1 ∼ a2 ⇔ hashs,q,Q(a1) = hashs,q,Q(a2).
Figure 4 graphically depicts this view: there are Q intervals of equal length
q. All the addresses a such that (a − s) rem (Q ∗ q) belong to the ith interval
and are in one equivalence class. This class corresponds to the union of cosets:
(i ∗ q) + QZ∪ (i ∗ q + 1) + QZ∪ · · · ∪ (i ∗ q + q − 1) + QZ. The use of the offset s
is to align equivalence-classes in hash0,1,Q∗q so that they can be safely collapsed
by interval formation into hashs,q,Q.

Intuitively, hash should satisfy the invariant that for any two spps that may
generate a dependency violation (e.g. at least one is a write), the addresses ac-
cessed by iterations executed on different threads correspond mainly to different

6 I.e. use a one-to-one mapping of addresses to speculative storage: those memory
locations are already likely to generate dependency-violations – we should avoid
increasing that probability by introducing false-positives.

7 This might still be required for scalar computation or IO operations.



Seq/Parallel HandPar OptROHash OptHash Naive OneToOne

IDEA DeKey 3.83 2.78 2.44 0.96 0.65

IDEA Cipher 3.87 3.22 1.44 1.11 0.95

NeuralNetBW 1.64 1.15 1.07 0.90 0.25

NeuralNetFW 2.04 1.65 1.46 0.15 0.11

SparMatMult 2.11 1.93 1.60 0.57 0.13

FFT 2.02 1.90 1.90 0.66 0.66

Table 1. Speed-ups: Sequential / Parallel Timing Ratio(4 Processors)

cosets of ZQ, where a few exceptions can be accommodated. In general this
problem is computationally expensive to solve; although not presented here, we
have developed a guided-search heuristic that, although does not guarantee an
optimal solution, for all practical cases we encountered, it does so and is linear
in the number of profiled addresses.

4.3 Example and Speed-up Results

Some trivial examples of hash functions for tls models have been presented
in Section 2.3. Running our analysis on the Fast-Fourier-Transform application,
succinctly presented below (dual takes increasing powers of 2 in an outer loop):

for(a=1; a<dual; a++)
for(b=0; b<n; b+=2*dual) {

int i=2*(b+a), j=2*(b+a+dual);
x[j] = Exp(x[j+1], x[j]); x[i] = Exp(x[i+1], x[i]); ... }

yields hash(x) = (x quo 8) rem 4 (w.r.t. accesses of the x array), where we have
profiled for dual>4 (power of 2), and assumed a 4-processor machine. (In general
the maximal degree of parallelism is dual.) Hence, a vector with only 4 elements
is needed to track dependencies. Our result is more general than that obtained
via Masdupuy’s (static) trapezoid analysis which discovers only that indexes α
used with array x, satisfy: α − 2 ∗ a ≡ [0, 1] mod 4. The latter allows parallelism
on only two processors. The more conservative result is a consequence of the fact
that an abstract interpretation framework is bounded to discover congruences
modulo the first value of dual, which is 2, while we can profile for a conveniently
large dual and have dual degree of parallelism.

Finally, Table 1 shows speed-up results, computed as the ratio between se-
quential and parallel timings, for several applications selected from the bytemark
and SciMark benchmarks (see also [16]). All the tests were performed on a SMP
Sun machine with 8 Gb RAM memory, and four Opteron 850 processors, running
Fedora Core 4. We used the gcc3.4.4 compiler at -O2 optimization level.

The second column represents the speed-up achieved for optimal, hand-based
parallelization (no tls overhead).

The third column corresponds to applying tls via the dynamic analysis
presented in this paper. We have used two tls models: splip – an in-place
model [16] and spro – the read-only model in which a read just returns the
value stored into a memory location while writes cause a rollback followed by
a sequential fix-up. spro is very effective on coarse-grained memory partitions



that are mostly read and rarely written, since its read overhead is nearly 0 in
both time and space. splip’s optimized hashes are computed as described in the
previous section.

The column OptHash refers to the case when only splip is employed, how-
ever on optimized hashes. This serves as base of comparison with the last two
columns. The column Naive refers to a naively chosen hash, in which q=s=0 and
Q is roughly the size of the range of addresses accessed by concurrent iterations.
This still requires the coarse-grained partitioning, otherwise yielding too many
false-positive rollbacks. Finally, the last column uses one-to-one hashes: q=s=0
and Q is roughly the data-space size. (For FFT and NeuralNetFW columns 5 and
6 use roughly the same Q, i.e. speculative memory overhead.)

The differences between optimized and (i) naively chosen and (ii) one-to-
one hashes are significant for all tested applications. The reasons are: (i) the
near-ideal cache behavior of optimized hashes (column 4 vs 5) and (ii) the
small(er) memory overhead. The results for IDEA DeKey and SparseMatMult

look somewhat surprising in that the differences between columns 3 and 4 are
more pronounced than in the other cases. The reason is that the read-to-write
ratio is very high (and hence spro is very effective). These differences also ap-
pear for columns 4 vs 5 because the naive version suffers from read-contention
(concurrent cache eviction due to writes to tls’s meta-data), while optimized
hashes do not. One interesting observation is that when the application features
bad cache-locality (last two benchmarks), but still a regular behavior, we can
expect to obtain close to optimal (hand-parallelized) speed-up because the tls

overhead is furthermore amortized by the negative memory-hierarchy effects of
the original program.

5 Conclusions

We have shown how dynamic analysis of addresses accessed during a loop can
be used to facilitate thread-level speculation. First, we present an algebra for
partitioning the iteration-space to threads such that repetitive dependencies are
resolved and rare dependencies are ignored. Second, we use dynamic analysis to
fine-tune the tls model to exploit code’s access patterns, as opposed to previous
work, which has concentrated on optimizing the code for one tls model. We
have achieved this using coarse-grained followed by fine-grained partitioning of
the data space; now several optimized tls model instances are employed to
parallelize an application, instead of only one, over-arching model. Finally, we
have presented results that validate the utility of our analysis.

References

1. A. Bhowmik and M. Franklin. A General Compiler Framework for Speculative
Multithreading. In SPAA’02 Proceedings. ACM, 2002.

2. M. K. Chen and K. Olukotun. The Jrpm System for Dynamically Parallelizing
Java Programs. In ISCA-30, June 2003.



3. T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-Conscious Structure Defini-
tion. In PLDI’99.

4. T. M. Chilimbi and J. R. Larus. Using Generational Garbage Collection to Imple-
ment Cache-Conscious Data Placement. In International Symposium on Memory
Management, 1998.

5. M. Cintra and D. R. Llanos. Toward Efficient and Robust Software Speculative
Parallelization on Multiprocessors. In PPoPP’03, June 11-13 2003, San Diego,
California.

6. F. Dang, H. Yu, and L. Rauchwerger. The R-LRPD Test: Speculative Paral-
lelization of Partially Parallel Loops. In Proc. Int. Par. and Dist. Proc. Symp.
(IPDPS’02), 2002.

7. J. Dou and M. Cintra. A Compiler Cost Model for Speculative Parallelization. In
ACM TACO, vol. 4, no. 2, June 2007.

8. K. Fraser and T. Harris. Concurrent Programming Without Locks. ACM TOCS,
May 2007.

9. P. Granger. Static Analysis of Linear Congruence Equalities among Variables of
a Program. In LNCS, Vol. 493, 1991.

10. L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support for Chip
Multiprocessor. In ASPLOS, 1998.

11. S. W. Kim, R. E. Chong-Liang Ooi, B. Falsafi, and T. N. Vijaykumar. Reference
Idempotency Analysis: A Framework for Optimizing Speculative Execution. In
PPOPP’01 Proceedings. ACM, 2001.

12. W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas. POSH:
A TLS Compiler that Exploits Program Structure. In PPoPP’06.

13. A. Lokhmotov, A. Mycroft, and A. Richards. Delayed Side-Effects Ease Multi-Core
Programming. In Euro-Par’07, Rennes, France.

14. F. Masdupuy. Array Operations Abstraction Using Semantic Analysis of Trapezoid
Congruences. In ICS ’92.

15. A. Min. The Octogon Abstract Domain. In Higher-Order and Symbolic Computa-
tion Journal, Vol. 19, 2006.

16. C. E. Oancea and A. Mycroft. A Lightweight, In-Place Model for Software Thread-
Level Speculation. In email Cosmin.Oancea@cl.cam.ac.uk.

17. C. E. Oancea and A. Mycroft. Software Thread-Level Speculation
– An Optimistic Library Implementation. In IWMSE’08, available at
www.cl.cam.ac.uk/∼co280/IWMSE/TLSlib.pdf.

18. P. Rundberg and P. Stenstrom. An All-Software Thread-Level Data Dependence
Speculation System for Multiprocessors. The Journal of Instruction-Level Paral-
lelism, 1999.

19. Y. Sazeides and J. E. Smith. The Predictability of Data Values. In MICRO 30:
Proceedings of the 30th annual ACM/IEEE international symposium on Microar-
chitecture, pages 248–258. IEEE Computer Society, 1997.

20. T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, S. Grossman, R. L.
Hudson, K. F. Moore, and B. Saha. Enforcing Isolation and Ordering in STM. In
PLDI’07, 2007.

21. G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar Processors. In ISCA-
22, pages 414–425, June 1995.

22. J. G. Steffan, C. G. Colohan, A. Zhai, and T. Mowry. A Scalable Approach for
Thread Level Speculation. In ISCA-27, 2000.

23. A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler Optimization of
Scalar Value Communication Between Speculative Threads. In ASPLOS X 2002
Proceedings. ACM, 2002.



24. C. Zilles and G. Sohi. Master/Slave Speculative Parallelization. In Micro-35 Pro-
ceedings. ACM, 2002.


