
A Fully Parallel LISP2 Compactor with preservation of

the Sliding Properties

Xiao-Feng Li, Ligang Wang, and Chen Yang

Managed Runtime Optimization, Intel China Research Center, Beijing, China

{xiao.feng.li, ligang.wang, chen.yang}@intel.com

Abstract. Compacting garbage collector (GC) is widely used due to its good

properties of in-place collection and heap de-fragmentation. In addition, it sup-

ports fast bump-pointer allocation and provides good access locality. Most

known commercial JVM or CLR implementations use compaction algorithm in

certain garbage collection scenarios, such as in full heap or mature object space

collections. LISP2 compactor is one of the best-known GC algorithms. As

multi-core architecture prevails, several efficient parallel compactors have been

proposed. Nevertheless, there is no parallel LISP2 compactor available that can

preserve all the sliding properties of its sequential counterpart. That is, to com-

pact live data in-place into a single contiguous region in one end of the heap

while maintaining the original object order. In this paper, we propose a fully

parallel LISP2 compactor that keeps all the sliding properties. We also prove

the correctness of the design. This parallel LISP2 compactor is fully parallel

because all of its four phases are parallelized and the workloads are well bal-

anced among the collector threads. The compactor supports fall-back compac-

tion and adjustable boundaries that help deliver the best performance. We have

implemented the parallel LISP2 compactor in Apache Harmony, a prod-

uct-quality open source Java SE implementation. We evaluate and discuss the

design on an Intel 8-core platform with representative benchmark.

Keywords: Garbage collector, compactor, parallelization.

1. Introduction

Garbage collection is a key component in managed runtime systems such as the run-

time engines of Java, C# and scripting languages. In current known commercial JVM

and CLR implementations, compacting garbage collector is unavoidably utilized in

certain scenarios because of its advantages. For example, compacting GC reduces the

heap fragmentation by packing data together while eliminating the unusable areas in

between. This improves both heap space utilization and data locality. By leaving the

free space contiguous, compacting GC also allows fast bump-pointer allocation. Fi-

nally, compacting GC can preserve the original object order in the heap as before the

compaction, which is believed to have the best memory access locality.

The LISP2 compactor [3][6] has additional benefits. It does not rely on underlying

OS virtual memory support, and it compacts the heap in-place without requiring sig-

nificant extra space for collection, such as the block offset table used in some other

compactors. One special benefit that is nonexistent in other compactors is that, the

LISP2 compactor compacts the heap in the granularity of individual object, which

provides good chances for individual object manipulations on the fly, such as to add

or remove some data fields of the interested objects.

Although there have been several parallel compactors proposed [4][1][8][13], only

one [4] tried to parallelize the LISP2 compactor, which partitions the heap into multi-

ple regions, so that multiple GC threads (called collectors) can collect them inde-

pendently in parallel. The problem with that compactor is that, it cannot compact the

live data into a single contiguous region at one end of the heap, but leaves multiple

object groups, one for every two neighboring partitions. This is a huge drawback to

the original LISP2 compactor. Moreover, in that compactor, how to partition the heap

pre-determines the available parallelism. The number of partitions strictly decides

how many collectors can work in parallel, and the live data amount in a partition de-

cides the work load of the collector assigned to that partition. The overall loads of the

collectors are not dynamically balanced.

In this paper, we propose a fully parallel LISP2 compactor, all of whose phases are

parallelized with balanced loads among the collectors. Furthermore this parallel com-

pactor preserves all the good properties of LISP2 compactor.

1.1 Overview of LISP2 compactor

Fig. 1. Phases of LISP2 compactor (An object is represented as a cell, and a live object is in

dark color. Object reference is represented as an arrow pointing from the containing object to

the referenced object. The numbers are the addresses of the objects, and the underscored num-

bers refer to the new target addresses of the objects.)

The core algorithm of the LISP2 compactor consists of following phases for a col-

lection:

Phase 1: Live object marking. This phase traces the heap from root set and marks

all the live objects;

Phase 2: Object relocating. This phase computes the new address of every live ob-

ject, and installs this value into the object header;

Phase 3: Reference fixing. This phase adjusts all the reference values in the live

objects to point to the referenced objects’ new locations;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. Live object marking

2. Object relocating

3. Reference fixing

4. Object moving

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 7 85 9 106 11 12 13 14 15 16

1 2 3 4 5 6

1 2 3 4 5 6

Phase 4: Object moving. This phase copies the live objects to their new locations.

Fig. 1 illustrates the phases of the LISP2 compactor1.

In our experiments with the typical benchmarks, the four phases take similar exe-

cution time. That means, all of them should be parallelized in order to achieve good

performance. In our design, we parallelize the four phases in four different ways ac-

cording to the phase behavior while preserving the sliding properties.

The rest of the paper is organized as follows. Section 2 gives an overview of the

parallel LISP2 compactor. Then we describe the design in details in Section 3. Section

4 introduces how we apply the parallel compactor into a real JVM to support adjust-

able boundaries. Section 5 evaluates and discusses the design with SPECJBB2005

benchmark. We discuss the related work in Section 5, and summarize the work in

Section 6.

2. Design of parallel LISP2 compactor

In this section, we give an overview of the parallel LISP2 compactor design. We dis-

cuss the design phase by phase.

2.1 Live object marking

The phase of live object marking is to traverse the object connection graph. The par-

allelism granularity is naturally a node in the graph, i.e., an object. Although the par-

allelization properties for this phase have been studied by GC community for years,

there are still a couple of design decisions to make for a GC algorithm.

Firstly, we need to decide the representation of the marking status of an object. A

separate mark bit table requires atomic operations for marking, while marking the ob-

ject header requires scanning the heap to find the marked objects. We choose to mark

the object header due to its low overhead compared to that of atomic operations.

We also need to balance the loads of the marking tasks among multiple collectors.

The idea is to assign the marking tasks evenly to the collectors at runtime, thus

achieving dynamic load balance. After comparing the techniques of pool sharing,

work stealing and task-pushing [14], we adopt the task-pushing technique because it

can avoid atomic operations. Task-pushing composes a data-flow network between

multiple collectors through task queues, as shown in Fig. 2

Last thing to decide for parallel marking is the traversal order in the object connec-

tion graph. Since the live objects spread across the heap, it is possible that one tra-

versal order has better access locality than another. Our experience is that the

depth-first order has the best locality.

For the parallel LISP2 compactor, the live object marking phase traces the object

connection graph in depth-fist order and marks object header with task-pushing load

1Actually in our implementation there is an extra final phase that restores the object header in-

formation, which was replaced by a forwarding pointer in the object relocating phase. This

phase takes negligible time compared to other phases and is not necessarily inherent to the

LISP2 compactor algorithm. So we do not discuss it in this paper.

balance mechanism. Since the marking phase is common and studied in many differ-

ent GC algorithms, we will not discuss it in the following text, but focus on other

phases.

Fig. 2. Task-pushing load balance (The dotted directed lines represent how the collectors push

and pull the marking tasks through the queues. Normally the queues length is just one, which is

virtually a shared variable between two collectors.)

2.2. Object relocating

This phase computes the objects’ target locations, without really moving the objects.

Since the new addresses decide where and how to move the objects, this phase is criti-

cal for the correctness and efficiency of the algorithm.

The new addresses of the live objects must ensure the preservation of their original

heap order. To guarantee the correctness, one collector should never overwrite an-

other collector’s useful data. At the same time, we should decide a suitable parallel

granularity for runtime efficiency.

Data races could exist between multiple collectors if they happen to compute the

target address of the same object, or to relocate different objects to the same target

address. We have to use atomic operations to eliminate the possible races in this

phase. It is natural to use a group of objects as the parallelization granularity to avoid

excessive atomic operations. In our design, we use heap block for the purpose. The

heap is partitioned into fixed-size blocks, and each block has a block header for its

metadata, i.e., block base address, block ceiling address, the state of the block, etc.

The amount of metadata is a constant that is independent of the block size.

Only two atomic operations are needed for one block in the phase: one for taking

the ownership of the block as a compacting source block, and the other for taking the

ownership of the block as a compacting target block.

To ensure the correctness of the runtime execution process, we use a block state

transition graph to guide the collectors to select proper blocks. More details will be

discussed in Section 3.

T1

T2

T3

mark -s ta cks queues
co l lec to rs

2.3 Reference fixing

Once the new address of an object is computed and stored in the object header, it is

easy to parallelize the reference fixing phase. Each collector simply grabs a group of

objects (a block) in the heap and updates all the references in it as thread local data.

This can be achieved by incrementing a global block index (or address) atomically.

Since this phase is inherently highly parallelizable, we will not discuss it further in the

following text.

2.4 Object moving

To move the live objects in parallel is not as easy as to fix the references. The prob-

lem is due to the potential races between multiple collectors when they move objects

from a source block to a target block. For example, they might write into a same tar-

get block, or write into a target block whose objects have not been moved away yet.

The latter case happens when one collector’s target block is another collector’s source

block.

In the object relocating phase, source block is used for the threads’ synchronization

control. That is, the collectors atomically grab the source blocks according to the heap

order, and compute the target addresses of the live objects in the source block. Here in

the object moving phase, we use the target block to control the moving. That is, only

when a collector holds a block’s ownership, can it move data to this block. The prob-

lem is how to guarantee that the data in the block has been moved away already be-

fore it is taken as a target block. A counter (target_count) is used for each block to

solve the problem. As a source block, a block’s live objects might be copied to more

than one target blocks; target_count records the number of its target blocks. The value

is set in the phase of object relocating. After that phase, there are three possible values

for target_count:

1. For most blocks, target_count value is one, meaning all data from one block has

been moved to a single target block.

2. Some blocks have their target_counts with value two, meaning part of the block

data has been moved to one block, and the remaining part to another block.

3. There are also many blocks with value 0 in target_count. This happens when there

are no live objects in those blocks.

During the object moving phase, target_count of a block is decremented by one

when it finishes its data movement to one target block. When the target_count be-

comes zero, it means this block has no data left for moving, and it is ready to be used

as a target block, i.e., a collector can move data from a source block into this block.

Since we use target block to control the parallel data moving, when a collector

grabs the ownership of a target block, it should be able to find all of its source blocks.

This requires a source_list for each block, which links all its source blocks. tar-

get_count and source_list jointly support the parallel object moving. More details will

be discussed in Section 3. It should be noted that these two data structures require

only two words in every block header, hence negligible space overhead.

2.5 Phases composition

With all the phases parallelized, the last thing is to compose the phases into a com-

plete collection process. This is straightforward in our design. Since the four phases

are almost independent, we simply insert a barrier between two phases, where a new

phase is only started after the old phase has finished.

There are some data passed from one phase to another:

1. Before the object relocating phase, the live objects have mark bit set in their object

headers; then the collectors can iterate the heap to find all the live objects and

compute their new locations;

2. The reference fixing phase needs the mark bit set as well, in order to find all the

live objects to fix their references;

3. target_count and source_list should be set before the object moving phase. They

are prepared in the relocating phase.

After the moving phase, all these information are useless and can be cleared.

3. Parallelization implementation

In previous section we have discussed the parallelization design. In this section we

describe how we implement the design in details, and we focus on the phases of ob-

ject relocating and object moving.

3.1 Object relocating implementation

During the compaction process, each block has two roles: It is a source block whose

data are moved to new locations; it is also a target block where other live data are

moved into. In the object relocating phase, each thread always holds a target block

and a source block for target address computing. For each live object in the source

block, the collector computes its target address in the target block. When the target

block has no enough space, the collector grabs next target block. When the source

block has no more live objects, the collector grabs another source block until all the

blocks have been visited. Then the collector terminates its execution for this phase.

When all the collectors finish the phase, they pass the barrier and enter next phase.

This phase decides if the following properties can be kept:

1. Order preservation: The blocks must be grabbed in heap order, and the objects’

original order in the blocks is kept;

2. Compaction: The target addresses are contiguous in the heap;

3. Load balance: No collector is idle if there are remaining blocks for object relocat-

ing;

4. Parallel efficiency: The collectors do not conduct any redundant work except that

required for object relocating.

To achieve the goals, the key idea is to use a state transition graph for each block to

guide the relocating process. Each block is assigned with one of the following four

states:

Block States Meaning

UNHANDLED Initial state of all blocks (neither a source block nor

a target block.)

IN_COMPACT Objects are under target addresses computation

(i.e., the block is a source block)

COMPACTED Objects’ target addresses have been computed

TARGET The block is a target block.

The collectors operate on the blocks according to the state transition graph shown

in Fig. 3. And the state transition rules are given below.

Fig. 3. Block state transition graph

Executing in parallel, each collector grabs from the heap a source block and a tar-

get block according to the heap address order. The rules for block state transitions are:

1. All the blocks are UNHANDLED at the beginning.

2. The collectors compete for an UNHANDLED source block in the heap order. If a

block is grabbed, its state is set IN_COMPACT. Other failing collectors continue

to compete for next source block in the heap order.

3. When a source block finishes all its objects relocating, its state is set to be

COMPACTED, and the thread continues to grab a new source block.

4. At the same time, all the collectors compete for a target block in the heap order that

is COMPACTED. If a block is grabbed, its state is set to be TARGET.

5. If a collector fails to grab a COMPACTED block in the heap order before its own

source block, the thread uses its source block as its target block, and sets its state

from IN_COMPACT to TARGET.

During the process, target_count and source_list are created and maintained ac-

cordingly.

UNHANDLED

IN _COM PACT

COM PACTED

TARGET

S e lected as ta rg b lock

be fore fin ish ta rge t-

add ress com pu ting

N

Se le cte d as ta rg b lock

S e lected as src b lock fo r ta rge t-add r com pu ting

Y

Fig. 4 gives an example illustrating the source-lists built after the phase. In the fig-

ure, block #4 as a source block stays in both the source-lists of block #1 and #4, so

the target-count of block #4 is 2, while that of block #9 is 1.

Fig. 4. source-list built in the object relocating phase

Based on the rules, we prove that the target address of any live object is no bigger

than its original address in Theorem 1 below. This is a requirement for the paralleliza-

tion correctness of the compactor algorithm.

Theorem 1: After the object relocating phase, the target address of a live object is no

bigger than its original address.

Proof: According to the state transition graph, a source block has IN_COMPACT

state (transitioned from the UNHANDLED state); and a target block has TARGET

state (transitioned from either COMPACTED or IN_COMPACT state). We prove the

theorem in the following two cases depending on the target block state transition.

Case 1: A target block becomes TARGET from COMPACTED state. This means

the collector can grab the target block before reaching to its own source block in heap

address order, so a live object’s target address in the destination block must be smaller

than its original address in the source block;

Case 2: A target block becomes TARGET from IN_COMPACT state. This means

the collector uses its own source block for the target block, i.e., the same block acts as

both source and target block. In this case, the target address of a live object must be

no bigger than its original address, since there are normally dead objects in the block,

and the live objects are “moved” downwards to the block start. If there are no dead

objects, the target address is the same as its original address. In this case, the object is

not moved.

These two cases cover all the situations, so the theorem is proved. �

1

6

5

4

3

2

n

1 4

2 6

3 5

4 7

8 11

6 10

m

8

9 12

targ blocks src blocks

Next heap block

Source-list

Next src block

3.2 Object moving implementation

After the phase of fixing object references, the collectors are ready to move the live

objects to their new locations. It is the phase doing the real compaction. The basic

idea is similar to the object relocating phase, i.e., the collector always holds a source

block and a target block; but the roles are flipped for the source and target blocks. In

the relocating phase, the collectors’ synchronization is mainly controlled by the grab-

bing of the source block ownership, while in this phase, that is done though the grab-

bing of the target block ownership.

We use a shared global variable current_target for the central control, which repre-

sents the last target block in the heap order that has been grabbed by the collectors.

The algorithm is as following:

1. Set current_target to be the first block in the heap. (Use CT to represent cur-

rent_target.)

2. Each collector Ti atomically picks up a source block SBi from the source-list of

CT, and copies live objects from SBi to their new addresses in CT;

3. When a collector finishes copying all the live objects in SBi to CT, it atomically

decrements the target-count of SBi and picks up another source block from CT’s

source-list. (Note since block SBi can be the source block of more than one target

blocks, the collector actually only copies those live objects that have target ad-

dresses in CT. The reaming live objects in SBi will be copied when their targeted

block is processed.)

4. When the source blocks in CT’s source-list are run out, the collector looking for a

source block chooses a new target block as CT according to the rules below, and

loops back to Step 2.

When a collector is looking for a new block as CT, an eligible candidate has to sat-

isfy either of the following conditions:

• The block’s target-count is 0; (It means all live objects in it have been copied

already.)

• The block’s target-count is 1 while the first block in its source-list is itself.

With the rules, we prove in Theorem 2 that this phase never introduces race condi-

tion, i.e., no live object is overwritten before it is copied to a new location. This guar-

antees the correctness of the parallel compaction.

Theorem 2: In object moving phase, no live data are overwritten before they have

been copied to their new locations.

Proof: According to the current_target block eligibility conditions, we prove the

theorem in two cases:

Case 1: If the block’s target-count is 0, all its live data have been copied or the

block has no live data. This is a trivial case;

Case 2: When its target-count is 1 and the first block in its source-list is itself, it

will be taken as the source block of itself. According to Theorem 1, the target address

of every live object in this block is no bigger than its original address. When the data

are copied to their new locations within the same block by a single thread, it is as-

sured that no data loss can happen if the data are copied in order. When all the live

data in this block are copied, Case 2 becomes Case 1, which has been proven already.

These two cases cover all the situations, so the theorem is proved. �

To illustrate the object moving phase, we give an example in Fig. 5 based on the

source-lists built in Fig. 4. The target blocks are taken one by one in the heap order,

and the source blocks are also taken one by one in the source-lists of the target blocks.

All the collectors keep busy in the process.

Fig. 5. Object moving phase illustration

Up to this point, we have described the design and implementation of the proposed

parallel compactor. Note that the parallelization algorithms used for the four phases

are not closely inter-dependent, i.e., as long as the necessary data for later phases are

prepared by the earlier phases as described in subsection 2.5, the implementations are

not constrained by what are described here. Actually we have implemented the phases

of live object marking and object relocating in different ways in Apache Harmony.

We also want to emphasize that the number of collectors is configurable. A user

can decide the number according to the heap size and/or the available number of

cores. He or she can also choose to use different number of collectors for different

phases. The option has also been implemented in Apache Harmony.

4. The compactor algorithm in real GC

The parallel LISP2 compactor can be used as a standalone collector, or work with

other collection algorithms. In this section, we describe how we use it in a real GC to

support fallback compaction [9], and to support adjustable space boundaries.

4.1 Applied in a generational GC

When it is used in a generational GC, the parallel LISP2 compactor is commonly used

for major collections due to its in-place compaction advantages. Minor collections are

1

12

8

8

5

6
3

10

4

2

11
6

9
7

4
1

3

2

4

5

6

Collector1Target block

sr
c

b
lo

ck
 g

ra
b
b
in

g
 o

rd
er

Source-list

Next src blockmn

Collector2 Collector3

usually conducted by a copying collector implementing semi-space or partial-forward

algorithms.

As shown in Fig. 6, in a typical generational GC, the heap is partitioned into two

parts, mature object space (MOS) and nursery object space (NOS). In order to achieve

the best performance with a fixed-size heap, NOS size should be as big as possible to

utilize as much the available free space. So we want to leave as small as possible the

reserved free space in MOS for NOS copying. We should be able to adjust the bound-

ary between MOS and NOS for the purpose. This has two requirements on the parallel

LISP2 compactor:

1. It should always compact the live objects to the low end of MOS space, leaving a

big contiguous free space to NOS;

2. When the reserved free space in MOS cannot accommodate all the NOS survivors

in a minor collection, the collection can fallback to a major collection on the fly.

The first requirement can be satisfied trivially since it is one of the compactor’s

properties. The second requirement demands additional support from the compactor.

When a fallback happens, some NOS survivors have already been forwarded to

MOS, some are still in NOS. Those forwarded survivors have two copies in the heap:

the new copy in MOS and the original copy in NOS, resulting in an inconsistent heap

state. To make it consistent, when the compactor marks an object in the live object

marking phase, it checks if the object has been forwarded. If it has been forwarded,

the collector only marks the new copy. Meanwhile, it updates any references to the

old copy to point to the new one. Then after the live object marking phase, there

would be no references pointing to the old copies, and heap consistency is maintained.

The phases afterwards can be executed as usual.

4.2 The compactor with a LOS collector

In some GC designs, large objects are managed separately in a large object space

(LOS). Fig. 7 is a typical heap layout that has LOS area. LOS is put at the low end

because it is common to put NOS to the high end of the heap. (NOS is in the

non-LOS part here. When there is MOS, MOS stays between LOS and NOS. MOS

and NOS together are called non-LOS.) When LOS is fully occupied by large objects,

a major collection is triggered.

To leave little free space in LOS may trigger frequent expensive major collections,

while too much free space reserved in LOS may waste the space. We need to support

an adjustable boundary between LOS and non-LOS (called LOS-boundary). But since

NOS MOS

Fig. 6. LISP2 compactor applied in generational GC

Non-LOS LOS

Fig. 7. LISP2 compactor with LOS

the compactor compacts live objects to the low end of non-LOS starting from the

boundary, extra supports are needed for such an adjustment.

Fortunately, the parallel LISP2 compactor can support adjustable LOS-boundary if

we know the new boundary value before the compaction. The idea is to specify the

new boundary as the logical start address of the non-LOS area, as illustrated in Fig. 8.

When shifting the boundary to non-LOS side, we logically connect the areas between

the old boundary and the new boundary to the high end of non-LOS area; then the

compaction can be done as usual starting from the new boundary. The original low

end area is compacted to the high end of non-LOS. On the other hand, if we want to

shift the boundary to LOS side, we set the first target block starting from the new

boundary, then we can compact non-LOS as usual.

Fig. 8. Adjustable boundary with LOS

With the techniques described here, we can use the parallel LISP2 compactor to

achieve good performance in a product-quality GC in Apache Harmony, which has

the heap layout as shown in Fig. 9. The boundaries between LOS, MOS, and NOS can

be adjusted at runtime to get highest heap utilization.

5. Evaluations and discussions

We implemented the parallel LISP2 compactor in Apache Harmony and it is in the

current main trunk source tree. To evaluate the design and implementation, we col-

lected the data with SPECJBB2005 on an 8-core platform with Intel Core 2 2.8GHz

processors. We ran the benchmark using 1GB heap size by default.

LOS Non-LOS

new boundary

LOS Non-LOS

compact

compact

old boundary

MOS LOS

Fig. 9. Apply the compactor in Apache Harmony

NOS

5.1 Scalability

We collected the GC total pause time and the time spent in different phases as shown

in Fig. 10. In the experiments, we specified to use the original sequential and the par-

allel LISP2 compactor for the collections. The parallel compactor ran with 2, 4, 8

collectors.

It is seen from the figure that the overall pause time has been reduced steadily from

100% to 70%, 43% and 27% respectively. Fig. 10 also gives the speedups of the

phases, which in average are 1.4x, 2.3x, and 3.7x respectively with 2, 4, 8 collectors.

0

500

1000

1500

2000

2500

3000

3500

Total Marking Relocating Fixing Moving

T
im

e
(s
)

0

1

2

3

4

5

S
p
e
e
d
u
p
s

Sequential 2 Collectors 4 Collectors

8 Collectors 2 Collectors 4 Collectors

8 Collectors

Fig. 10. GC time and speedups in phases with SPECJBB2005

Although the results above are good enough according to our experience in parallel

GC, there are still opportunities for improvements. For example, in the object relo-

cating and object moving phases, every source and target block requires an atomic

operation to acquire. Almost all the blocks that have live data have been acting as

source and target block once, so the number of the atomic operations is proportional

to the number of blocks. It can be reduced if we use a bigger block size. The current

block size is set to be 32KB, which is quite small compared to some other GCs.

5.2 Adjustable boundaries

As we described in Section 4, our parallel LISP2 compactor can adjust its boundaries

adaptively. We collected data to show the importance of this support for

SPECJBB2005’s performance, as shown in Fig. 11.

The current GC in Apache Harmony has two different NOS collection algorithms.

One is the semi-space collector; the other is the partial-forward collector. To demon-

strate the effectiveness of the adjustable boundaries, we let the NOS collector to sim-

ply copy the survivors in NOS to MOS in minor collections. In Fig. 11, we can see

that the adaptive NOS size can achieve better performance than all of other fixed

NOS size settings. For example, it is almost 5x better than that of 8MB NOS size.

We can not demonstrate the effectiveness of the adjustable LOS boundary with

SPECJBB2005, because it is not large object intensive.

Fig. 6. SPECJBB2005 performance with different NOS sizes

6. Related work

LISP2 compactor is known for its simplicity, but its parallelization is not straightfor-

ward if we want to keep the sliding properties, such as the contiguous free space, ob-

ject order preservation, in-place collection, and object-level compaction granularity.

To the authors’ knowledge, Flood et al. [4] is the only previous work trying to par-

allelize LISP2 compactor. Their collector pre-partitions the heap into a number of in-

dependent regions, and compacts them separately in parallel within the regions. The

resulted free space is noncontiguous. This is a big loss of the LISP2 compactor’s ad-

vantages, although they can alternate the compacting direction for each region so as to

form [(n+1)/2] contiguous free areas. Nonetheless, their work achieved rather good

scalability with SPECJBB and Javac applications. The speedups were around ~5x on

8-processor platform.

There are a couple of other non-LISP2 compactors proposed by the community.

The threaded reference compactor suggested by Morris [10] and Jonkers [7] is inher-

ently sequential due to its nature of scanning the heap back and forth to build the

threaded reference in the heap order.

Abuaiadh et al [1] proposed a three-phase parallel compactor that uses a

block-offset array and mark-bit table to record the live objects moving distance in

blocks. When it moves the objects in the granularity of a heap block, it wastes about

3% space collecting SPECJBB. When it moves live objects in the granularity of indi-

vidual object, the compaction time is increased by more than ~30%.

Kermany and Petrank [8] proposed the Compressor that requires two phases to

compact the heap; Wegiel and Krintz [13] designed the Mapping Collector with

nearly one phase. Both approaches depend on the virtual memory support from un-

derlying operating system. The former one leverages the memory protection support

to copy and adjust pointer references on a fault, and the latter one releases the physi-

cal pages that have no live data.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#warehouses

N
o
rm

a
liz
e
d
 s
c
o
re
s

8MB 16MB 32MB 64MB Adaptive

7. Summary

In this paper, we design and develop a fully parallel LISP2 compactor that compacts

the live objects to a contiguous area in one end of the heap. It preserves all the sliding

properties of the sequential LISP2 compactor. This parallel LISP2 compactor is fully

parallel because all of its phases are parallelized. We have proved the correctness,

implemented the parallel LISP2 compactor in Apache Harmony and evaluated it with

a representative benchmark. Our result demonstrates that the collector can achieve

3.7x speedup on an 8-core platform (before the compactor is fully tuned).

Our current work and next step is to continue the fine tuning and leverage the com-

pactor in a JIT-assisted GC, where the JIT can help in object allocation and release.

We are also investigating how to reduce the sequential part in the GC implementation

hence to achieve better scalability.

References

1. D. Abuaiadh, et al. An efficient parallel heap compaction algorithm. In the ACM Conference

on Object-Oriented Systems, Languages and Applications, 2004.

2. S. Borman. S. Sanitation, Understanding the IBM Java Garbage Collector,

http://www.ibm.com/.

3. J. Cohen and A. Nicolau. Comparison of compacting algorithms for garbage collection.

ACM Transactions on Programming Languages and Systems, 5(4):532–553, 1983.

4. C. Flood, et al. Parallel garbage collection for shared memory multiprocessors. In the

USENIX JVM Symposium, 2001.

5. HotSpot Virtual Machine Garbage Collection.

http://java.sun.com/javase/technologies/hotspot/gc/index.jsp.

6. R. E. Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory Management.

Wiley, July 1996.

7. H.B. M. Jonkers. A fast garbage compaction algorithm. Information Processing Letters, July

1979

8. H. Kermany and E. Petrank. The Compressor: Concurrent, incremental and parallel compac-

tion. In PLDI, 2006.

9. Phil McGachey, Antony L. Hosking: Reducing generational copy reserve overhead with

fallback compaction. ISMM 2006: 17-28

10. F. L. Morris. A time- and space-efficient garbage compaction algorithm. Communications

of the ACM, 21(8):662-5 1978

11. Jeffrey Richter, Garbage Collection: Automatic Memory Management in the Micro-

soft .NET Framework, Nov 2000.

12. Tuning the memory management system,

http://edocs.bea.com/jrockit/geninfo/diagnos/memman.html.

13. M. Wegiel, C. Krintz, The Mapping Collector: Virtual Memory Support for Generational, Par-

allel, and Concurrent Compaction, In ASPLOS '08, Seattle, WA, March 2008.

14. Ming Wu and Xiao-Feng Li, Task-pushing: a Scalable Parallel GC Marking Algorithm

without Synchronization Operations. IEEE IPDPS2007.

