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Abstract. Dependence information between program values is extensively used
in many program optimization techniques. The ability to identify statements,
calls and loop iterations that do not depend on each other enables many trans-
formations which increase the instruction and thread-level parallelism in a pro-
gram. When program variables contain complex data structures including arrays,
records, and recursive data structures, the ability to precisely model data depen-
dence based on heap structure remains a challenging problem.

This paper presents a technique for precisely tracking heap based data depen-
dence in non-trivial Java programs via static analysis. Using an abstract interpre-
tation framework, the approach extends a shape analysis technique based on an
existing graph model of heaps, by integrating read/write history information and
intelligent memoization. The method has been implemented and its effectiveness
and utility are demonstrated by computing detailed dependence information for
two benchmarks (Em3d and BH from the JOlden suite) and using this information
to parallelize the benchmarks.

1 Introduction

The concept of data dependence between program statements is a fundamental tool for
the reordering of program statements and the determination of invariant values in basic
blocks, loops, or methods. Knowledge of data dependence allows the introduction of
instruction—level parallelism and thread-level parallelism (both in loops and method
invocations). In past work effective techniques for computing data dependence between
scalar variables have been developed. However, the extension of this work to tracking
memory—carried data dependence has been much less successful, in large part due to
the lack of suitable heap analysis techniques to support them.

Previous work focused broadly on two approaches for identifying possible heap—
carried data dependence, shape or points-to analysis as a proxy for data dependence
[2, 4,7, [14] wherein the identification of various acyclic structures and/or access path
information is used to infer which expressions cannot access the same portion of the
heap, and the explicit tracking of read/written locations [3, 8, 9] which model the set of
locations that may be read/written at each program point. This work introduced several
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fundamental concepts involved in modeling heap carried data dependence. However
experimental work with these approaches was limited to small numbers of micro-
benchmarks or used coarse points-to style analysis.

This paper builds on the basic concepts developed in earlier work and makes several
contributions which are critical to analyzing non-trivial programs. The first is a novel
method for tracking read/write locations during the analysis. The approach presented in
this paper only tracks a two program locations per object field (one read location and
one write location) instead of a set of all possible read locations and a set of all possible
write locations per field. This is sufficient to identify the most recent program point
where each memory location may be used/modified while avoiding the additional space
usage and computational cost of tracking a set of program locations per object field. The
next contribution is a method to efficiently track read/write information through method
boundaries, in particular how to ensure that the addition of use—mod information does
not have a serious impact on the memoization of method body analysis results, which
is critical to applying the technique to realistic programs.

Our analysis technique uses an explicit store model for the heap objects which allows
us to easily track the identity of objects between program statements. This differs from
some recent work on shape analysis, which uses logical models with implicit store rep-
resentations [5,/15] that cannot be efficiently extended to track the properties of arbitrary
heap locations. It also differs from approaches based on separation logic which restrict
the program to regular recursive structures and limited sharing of objects on the heap in
order to ensure termination [1, 6]]. These features preclude the use of these approaches
on many realistic application programs including the em3d and bh benchmarks, which
we analyze as detailed case studies here.

2 Running Examples

We use examples in this paper to illustrate the various aspects of the analysis technique.
The first is a small fragment created solely to illustrate the basics of the analysis. The
second is a routine taken from em3d, one of the JOIden [10,|13] benchmarks.

The first example [T] creates 2 Data objects, each of which has a single integer field
val, and puts them in a Pair object. If the conditional holds the first element of
the pair is modified and then the swap method is called to interchange the first and
second elements of the pair. This example is simple but relevant since in order to
determine that the asserted property always holds the analysis needs to be able to track
how pointer stores affect reachability relations in the heap, to identify where each heap
location may be written, and do so across method invocations.

The second program fragment is a method taken from the em3d benchmark. This
program builds a bipartite heap structure. Each call to computeNewValue takes a
ENode object from one side of the bipartite graph and updates the value field of this
node based on the value fields of ENode objects on the opposite side of the bipartite
graph. This example demonstrates the importance of precisely resolving the heap struc-
ture so the dependence analysis can determine that the set of heap location where the
value field is written is distinct from the locations that are read.
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ml void main() {

m2 Pair p = new Pair(new Data(5), new Data(10)) ;
m3 1f(*)

m4 p.first.val = 0;

m5 swap (p) ;

mé assert(p.first.val !'= 0);

m7 }

sl wvoid swap(Pair p) {

s2 Data temp = p.first;
s3 p.first = p.second;
sd p.second = temp;

s5 }

Fig. 1. Conditional Modify and Swap

cl static void computeNewValue (ENode n) {

c2 for(int i = 0; 1 < n.fromCount; i++)
c3 n.value -= n.coeffs[i] * n.fromN[1].value;
cd }

Fig. 2. Compute (From em3d)

3 Abstract Heap Domain

The underlying abstract heap domain that we extend is a graph in which each node
represents a region of the heap (a set of objects or data structures) or a variable and
each edge represents a set of pointers or a variable target. The nodes and edges are
augmented with additional instrumentation predicates.

Types. Since each node in the graph represents a region of the heap (which may contain
objects of many types) we use a set of type names for each node in the heap graph which
contains the type of any object that may be in the region of the heap that is abstracted
by the given node.

Linearity. To model the number of objects abstracted by a given node (or pointers by
an edge) we use a linearity property which has 2 possible values 1, which indicates that
the node (edge) concretizes to either O or 1 objects (pointers) and the value w, which
indicates that the node (edge) concretizes to any number of objects (pointers) in the
range [0, o).

Abstract Layout. To track the connectivity and shape of the region a node abstracts, the
analysis uses abstract layout predicates Singleton, List, Tree, MultiPath, or Cycle. The
Singleton predicate states that there are no pointers between any of the objects repre-
sented by an abstract node. The List predicate states that each object has at most one
pointer to another object in the region. The other predicates correspond to the standard
definitions for Trees, Dags, and Cycles in the literature.
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Interference. The heap model uses two properties to track the potential that multiple
pointers or variables can reach the same memory location in the region that a particular
node represents. In this work the examples only require one of these properties (inter-
ference) so we omit the discussion of the other property (connectivity) and refer the
interested reader to [12] for a more detailed description.

Each edge abstracts a set of pointers in the concrete program. The interfere property
has three possible values, to track that some of the pointers may alias (ap), that none
of the pointers alias but they may point into the same data structure (thus can interfere,
ip), or that each of the pointers refers to a unique and disjoint data structure in the node
that the edge ends at (they are disjoint and non-interfering, np).

Heap Representation. We represent abstract heaps pictorially as labeled, directed multi-
graphs. The variable nodes are labeled with the variable that they represent. The nodes
representing the regions are represented as a record [type, linearity, layout]
that tracks the instrumentation predicates.

The edges (which represent sets of pointers) in the figures are represented as records
[offset, linearity, interfere]. The offset component indicates the offsets
(labels) of the references that are abstracted by the edge. These labels may be any of the
field identifiers that are used in the program or the special label, ?, which is the label
given to the summary field representing all the elements in a collection object Vector,
List, or an array.

To simplify the figures we omit entries in the labels when they are the default domain
value. The default values for the nodes are layout = (S)ingleton and linearity = 1. The
default edge values are linearity = 1 and interfere = np. The variable edges always
represent single references and the label is always implicitly the variable name.

3.1 Heap Structure Examples

Pair Example. Figure 3] shows the heap model (without any read/write information)
that is computed as the result of executing the pair constructor in the first example
program. The variable p points to a single object of type Pair (the linearity is 1 and
the shape in Singleton, as described above this default information is omitted from the
figure). The node representing the Pair object has 2 outgoing edges representing the
two pointers stored in the first and second fields. The analysis determines that
these edges each represent a single pointer (and since any edge representing a single
pointer cannot have any interference the interfere property is np). Again the default

[second]

Fig. 3. Pair Allocation, Structure Only
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properties of linearity 1 and non-interference are omitted from the figure. Finally, the
model shows that the £irst and second pointers each refer to a single Data object.

Em3d Example. The state of the heap at the entry to the computeNewValue method
in the program em3d is shown in Figure @] (again without any read/write information).
The em3d program computes electro-magnetic field values in a 3—dimensional space
by constructing a list of ENode objects, each representing an electric field value and
a second list of ENode objects, which represent a magnetic field values. To compute
how the electric/magnetic field value for a given ENode object is updated at each step
the computeNewValue method uses an array of ENode objects from the opposite
field and performs a convolution of these field values and a scaling vector, updating the
current field value with the result.

Figure 4 shows the heap structure computed for the computeNewValue method.
We have placed dashed lines around the structures that represent the magnetic field (in
blue if color is available) and the electric field (in green). Variable g points to a single
object of type BiGrph, which is the data structure that encapsulates all the objects of
interest. The BiGrph object has 2 fields, the hNodes field pointing to a linked list of
ENode objects that make up the magnetic field and, the eNodes field pointing to a
linked list of ENode objects that make up the electric field.

Looking at the structures in the magnetic field we see the edge labeled [?, @] which
represents all the pointers stored in the linked list. Since the linearity is @ we know the
edge may represent multiple pointers but each of these pointers must point to a unique
ENode object (the default interference value of non-interfering np is omitted). The
figure also shows that the magnetic field is represented by many ENode objects (the
node labeled [ENode, ®]) each of which has a pointer to a unique array of £loats

mmmmm=

~

Fig. 4. computeNewValue, Structure Only
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(the edge labeled coeffs) and an array of ENode objects (the edge labeled £fromN)
which are used as the set of nodes from the opposite field. The edge that represents the
pointers stored in this array is labeled [?, w, ap], which indicates that it represents all
the pointers stored in the array and, that the pointers it represents may alias (ap).

4 Data Dependence Extensions

To track the read/write histories of objects on the heap we extend the model presented
in Section[3] with information to track the identity of the objects represented by a given
node, and for each field in the object we track the most recent program location (state-
ment or control flow structure) where a read/write of that field may have occurred.

In order to ensure that the initial shape analysis when augmented with the read/write
domain remains efficient it is critical to minimize the amount of additional information
that is added to the heap model. The key observation is that for most optimization
applications the shape analysis only needs to provide precise information about the
most recent program location at which each field may have been read or written. Thus,
the analysis does not need to track every possible program location where a field may
have been read/written, and this significantly reduces the computational requirements.

4.1 Intermediate Representation

Before we introduce the domain extensions we need to specify how program locations
are represented. To simplify the analysis the Java programs are transformed into a struc-
tured mid-level intermediate language (called MIL). The partial grammar below pro-
vides a sample of the language constructs in the intermediate representation.

atom ::= var | literal

expr = atom|atom+ atom | new type(atom, ... atom) | var.f
| var.m(atom, ... atom) | var instanceof type | ...

stmt = var=expr | var.f=atom | break | ...

contol ::= if(atom) block else block | while(atom) block | ...

block ::= (stmt | control)x

The language has method invocations, conditional constructs (i £, switch), ex-
ception handling (try-throw-catch) and looping statements (for, do, while).
The state modification and expressions cover the standard range of program operations
(load, store and assign along with logical, arithmetic and comparison operators). We
associate with each statement and each control flow structure a program location £.

4.2 Extended Domain

Read—-Write Locations. Each node may represent a number of objects of different types
(71 ...1Ty) and each type may have many fields ( ffll_ ... fz,). For each of these fields we
keep two program locations (¢), the last time the field may have been read (¢,) and the
last time the field may have been written (¢,,).

Node Identity. In order to efficiently analyze method invocations we memoize the in-
put and return abstract states and reuse them as possible. In order to prevent spurious
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[first, m2-m2] [second, m2-m2]

[Data, vaI—m2—m2] [Data, vaI—m2—m2]

Fig. 5. Pair with use-mod

inequalities between the read/write program locations (that refer to the locations in the
caller scope) in the memoized models we replace them with a generic modified outside
value. To allow us to match the identities of the objects in the input state with their
position in the output state we add a unique identity tag (a value in N) to each node that
is passed into a method call.

In our extended domain each node in the heap is now represented as a tuple [type,
linearity,layout,scalar-fields,identity].Theentries type, layout
and count are as described in Section Bl The scalar-fields entry is a list of
field-readloc-writeloc entries, one for each scalar field, where readloc
and writeloc are either a program location £ or the special entry O (modified outside).
The identity entry is a set of identity tags or is omitted entirely if the node does not
have a identity tag associated with it (or for clarity if it is not relevant to the example).

To track the read write information for the pointer fields we extend each edge label
to [offset,linearity, interfere,readloc-writeloc] where readloc
and writeloc are defined the same as for the scalar fields in the nodes. Again, for
clarity, we omit readloc-writeloc information if it is irrelevant to the example.

Figure [5] shows the model that is computed as the result of executing the pair con-
structor in the first example program. The pair is marked as having read and written
the two pointer fields at initialization (the m2-m2 entries on the first and second
edges) and the identity tag is omitted (since this object was allocated in the current
scope). The two Data objects which had their val fields initialized at program location
m2 have the entry m2-m2 in their scalar-fields read/write entry.

4.3 Local Data Dependence

Now that we have extended the model with the required instrumentation properties
we can define a set of dataflow operations to model the effects of program operations
on the read/write information. The changes for load and store operations are simple,
only requiring an update of the last read/write value for the target object to the current
program location, thus we omit a detailed description of these operations.

Data Flow Domain. If ¢ is the set of all possible heap graphs and & = @(var) x
$(var) (a simple domain to track which variables must be true, the first element of
the pair, and which must be false, the second element) then our abstract domain is

D = (Y < B).
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Given an element in the abstract domain, ¢ € &, we assume the abstract semantics
are defined for expressions and statements. Thus, given an expression e, the abstract se-
mantics of this expression on the abstract state ¢ are given by .%[e] o and similarly for
statement s, the abstract semantics are given by . [s]o. Using the 8 component of the
domain and a boolean condition b, we can filter an abstract state ¢ = {0y,...,6;} into
two new abstract states Oyue = -7 [b]irue(0) = { 6; | b may be true in 6;} and G5 =
Z[b] faise(0) = { 6; | b may be false in 6;}.

Abstract Conditional Semantics. Using the above definitions we can write the stan-
dard definition for the 1 £ statement, .’ [if (b) block; else block¢]o=.7[block;](Oirye )
S [[block¢]|(Opuise). However, using this definition of the semantics can result in expo-
nential growth in the number of states that the analysis must deal with (since for most
cases at the union of the abstract states that result from analyzing true and false branches
will have many models that are identical except for a few readloc—writeloc entries).

To avoid this we replace all the readloc—writeloc entries that refer to program lo-
cations in the true or false branches of the conditional with the program location of
the conditional before the union operation. Thus any differences that are solely due to
readloc—writeloc entries are removed and exponential growth is avoided. Given ¢ =
{641,...,6} and a block which contains statements/control structures at program loca-

tions p/ = {vi,...,V;}, we define the operator & (o, block, i) = { 6,-|;‘l ’ 0; € 0'}, which

performs the required replacements in the heap graph models. With this definition the
improved semantics for the conditional operation (at program location x) are:

Zif (b) block; else blocks]|c =
& (7 [block; [ (Oirue), block;, k) U & (.7 [block ] (Opuise ), block , k)

Disjunctive Domain. To speed program analysis we employ a partially disjunctive do-
main [[11]] which we use to discard elements in the abstract states (6;) that contain redun-
dant read/write information. This is done by defining an order on the program locations
based on their control-flow order. In general this order is not total (e.g. statement loca-
tions in the frue and false branches of an if statement). However, our replacement of
locations inside nested control-flow structures with the program location of the struc-
ture that contains them ensures that we can always compare the program locations that
appear in the readloc—writeloc entries.

Analyze Conditional Example. Figure[6(a)]is the abstract heap that approximates the
state of the program after the frue branch (7 [block:](Cuuye)), Where the first element
of the pair had the val field written. In the node that represents the Data object
that was written we updated the writeloc entry to program location m4 (where the
write occurred, marked in red if color is available). Figure [6(b)| shows the result of
&(Z[block](Otrue), block; ,m3), where we replaced the readloc—writeloc locations that
appear in the true branch with program location of the if statement (program location
m3, shown in blue).

Figure shows the abstract heap from the false branch where no write occurred
(L [blocks](Opuise ). The most recent mod location is unchanged (program location m2,
where the object was initialized) in & (.7 [blocky](Ouise),blocks,m3) since program
location m2 is not nested in the conditional.



102 M. Marron et al.

[first, m2-m2] [second, m2-m2] [first, m2-m2] [second, m2-m2]

[Data, val-m2-m4] [Data, vaI—m2—m2] [Data, val-m2-m3] [Data, vaI—m2—m2]
(a) True Branch (b) True, After Mod Location Update

[first, m2-m2] [second, m2-m2] [first, m2-m2] [second, m2-m2]

Data, vaI—m2—m2] [Data, val—m2—m3] Data, val-m2-m2

(c) False, After Mod Location Update (d) Discard Subsumed False Branch

Data, val-m2-m2

Fig. 6. Updating Read/Write Locations At Control Flow Join

Given our order relation on the use-mod sites we can simplify the models resulting
from the true and false branches into a single model shown in Figure Intuitively
the may use-mod information from the true branch indicates that the memory location
atp.first.val may have been written at location m3 (the i f statement) or at some
previous point in the program, while the result of the false branch indicates that the
memory location at p. first.val may have been written at location m2. Since the
possibility that the object may be written at or before program location m2 is implied
by the statement that the object may be written at or before program location m3 we can
safely discard the model from the false branch.

Abstract Loop Semantics. The semantics of a looping statement while at program
location x can be expressed in terms of accumulating all possible exit states. To do this
we define the state of the heap at the loop test for the i iteration of the loop as:

6=1° ifi=0
" L block] (L [birue (0i—1)) otherwise

Then we can define the semantics of the loop analysis as the union of all the possible
exits from the loop with the read/write program locations that occur within the loop
body replaced by the program location of the loop (k). Formally:

S [while(b) block] 6 = J{ &(.7[b] fase (), block, ) | i € N}

4.4 Interprocedural Data Dependence

In order to efficiently handle large programs we memoize results of analyzing each
method. At method call sites, if we were to naively compare the memoized heap models
with the current call state the method specific readloc—writeloc entries we embed in
the model would create many spurious inequalities. As an example consider the swap
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function from our running example. The swap method could be called from multiple
locations in a program and at each of these call sites the Pair object may have a
different readloc—writeloc entries for the first and second fields. If comparision
is done in a naive manner these differences will result in spurious mismatches with
memoized analysis values, forcing the method to be re-analyzed for each call.

To avoid this problem we anonymize the readloc—writeloc locations before attempt-
ing to find a match in the memo table. However, when doing this anonymization we
need to ensure that we can figure out which locations in the result heap may have been
read/written in the call and which must not have been read/written (and thus have the
same readloc—writeloc entry as before the call).

Call Example. The anonymization and remapping operations are conceptually simple
but without some intuition into how they function the definitions are difficult to follow.
Thus, we first examine how the swap call is handled in the pair example. Figure [7]
shows the steps that are taken to analyze the call at program location m5 assuming that
the memo table contains Subfigures and[7(b)|as a memoized result.

Figures[7(a)]and [7(b)] show that during the analysis of the swap method the analysis
has determined the first and second fields have been read and written (the readloc
and writeloc entries refer to program locations within the swap method, 52, s3 and s4)
but that the val fields are neither read nor written. The readloc and writeloc entries are
the modified—outside value 0. Further, based on the identity tag sets we know that the
object which was stored in the £irst field at the method entry (Figure and was
given the identity tag 2 is stored in the second field at the method exit (Figure [7(b)).
A similar situation holds for the object stored in the second field at the method entry,
which was assigned the identity tag 3.

Figure shows the state of the heap model at the call site (location m5) after we
have added fresh tags (7, 8, and 9) to uniquely identify the nodes. After anonymizing
the locations of the readloc—writeloc entries to the modified—outside value (0) we have
the model shown in Figure which is isomorphic (up to identity tags) to the model
in our memo table, Figure

During the anonymization we construct a map from the identity tags we added
and the field identifiers to the readloc—writeloc entries in the caller scope that we are
anonymizing. This gives us the map ModM={(7,£irst)— (m2,m2), (7,second) —
(m2,m2), (8,val) — (m2,m3), (9,val) — (m2,m2)}. Using the isomorphism from
Oin — Ogqy We have amap IT= {1 — 7,2 — 8,3 — 9}.

Using these maps we transfer the read/write information from the call input to the
memoized output, replacing any readloc—writeloc entries that refer to program loca-
tions in the callee body (swap) with the program location of the call site (program
location m5) and replacing any occurrences of the modified outside value with the ap-
propriate entry from modM. In Figure[7(b)|the node with identify tag 2 has the modified
outside value for the readloc/writeloc of the val field (val-0-0). To place the correct
readloc—writeloc values into this node we look up the node that it maps to in the caller
scope (via the Il map), which gives us the identity tag 8. Then we look up the caller
scope readloc—writeloc information in the modM map, which gives us the read/write
information for the field, m2 -m3.
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[first, 0-0] [second, 0-0] [first, s2-s3] [second, s3-s4]

[ Data, val-0-0, {2} ] [ Data, val-0-0, {3} ] [ Data, val-0-0, {3} ] [ Data, val-0-0, {2} ]

(a) Memo In (b) Memo Out

[first, m2-m2] [second, m2-m2] [first, 0-0] [second, 0-0] [first, m5-m5] [second, m5-m5]

(Data, val-m2-m3,18)]  (Data, val-m2-m2, (9}] (Data, val-0-0,{8}] [ Data, val-0-0, {9} ] (Data, val-m2-m2, (9}) ~ (Date, val-m2-m3, (8})

(c) Call In (d) Anonymized (e) Call Out

Fig. 7. Mapping Through Memoization

This remapping gives us the result in Figure[7(e)} which shows that the object stored
in the second field of the Pair object may have been written at program location m3
but that the object stored in the £irst field has not been modified since initialization
at program location m2. Thus, we can determine that the read fromp . first.valis
non-zero and the assertion will always succeed.

Dataflow Operations. For a method invocation at call site ¢.,; we give each node in
the call state 0., a unique tag K € N, set the read/write location to the modified outside
value and build a map ModM : N X field — (¢, 0,,).

We then compare the anonymized version of 0.,y with the entries in the memo table
ignoring the read/write information. If a match (G;,, Gy ) is found then there is a graph
isomorphism @ : G;,, — Oyy. This isomorphism and the fact that the set of location tags
in 0, and o, are the same implicitly defines a map, IT : { k | kK a location tag € Gy}
— { k" | " alocation tag € O.4;}. Using this map we can then compute the result of
the call by replacing any readloc—writeloc values ({y) for the fields in each node n with:

() = Lean, if £, is a location in the callee method
| max({n'.4y | x € n.identity An’ € O.uy ATI(x) € n'.identity}), otherwise

5 Experimental Results

In this section we examine how the data dependence information can be used to perform
thread level parallelization on variations of two of the more complex JOlden bench-
marks, em3d and bh [10, [13]. To asses the performance of our approach we examine
the analysis runtime on the JOlden suite, several of the SPECjvm98 benchmarks [[16],
and a logic formula manipulation program we developed as test case.

5.1 Case Studies

Em3d. The first application of the read/write dependence information we look at is
performing thread-level parallelization of the em3d benchmark. In Figure 2] we show
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2, w] /®

ENode, w, value-c2—c2]

[hNodes] [coeffs, w, c2-0]

float[], w, ?-c2-0
[ )

[fromN, w, c2-0]

[?, w, ap, c2-0]

ENode[], w

float[], w

[eNodes] [fromN, w] [coeffs, w]

ENode, w, value-c2-0 ]
[?, w]

Fig. 8. Em3d With Read/Write Info

el for(int i1 = 0; i < this.hNodes.size(); ++1)
e2 computeNewValue ( (ENode) this.hNodes.get(i));

Fig. 9. Main Em3d Compute Loop

the code for updating the value field of a single ENode object. By applying our
read/write analysis we obtain the model in Figure[8] at the end of the method body. We
see that some object from the list of magnetic field nodes has had the value field both
read and written in the loop, readloc = c2 and writeloc = c2 (marked in red if color
is available), while there have been reads from the coef fs and fromN pointer fields,
readloc = c2 (marked in green), writeloc = 0. The pointers in the £romN array have
also been read in order to access the value fields in the ENode objects in the opposite
field, which have been read but not written (readloc = c2, writeloc = 0).

Using this information, the fact that each reference in the linked list (LinkList)
of ENode objects refers to a unique object (the edge is np, the omitted default inter-
ference value) and the linear loop iteration, allows us to determine that each magnetic
ENode object is written on a single iteration of the main update loop, program location
e2, in Figure [0l which calls computeNewValue. Given this information it is valid to
thread parallelize this loop (and to vectorize the loop in computeNewValue). Doing
so results in a speedup of 3.21 on our quad-core test machine.

BH. Figure[IQlshows the model that the analysis computes for the heap based read/write
information in the hackGravity method of the Barnes—Hutt benchmark. For clarity
we have simplified the heap structure in areas that are not relevant to this example.

The bh program performs a fast—multipole algorithm on the gravitational interaction
between a set of bodies (the Body objects) and uses a space decomposition tree of
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[{?, subp}, h2-0] [root, h2-0

[bodyTabRev]
[bodyTab]

{Cell Vector}, w, C, mass- —0]

_0]
[pos, w, h2-0]
Body, w, mass-h2-0 [pos, w, h2-0]
double[], w, ?-h2-0
double[], w, ?-h2-0
[newAcc, w, h2-0]
[vel, w, 0-0]

double[], w, ?-0-h2 lacc, w, 0-0]

double[], w, ?-0-0

double[], w, ?-0-0

Fig. 10. BH With Read/Write Info

hl TIterator b = this.bodyTabRev.iterator();
h2 while(b.hasNext())
h3 ((Body) b.next()).hackGravity(rsize, root);

Fig. 11. Main Update, Gravity Computation

Cell objects each of which has a Vector containing a subtree or a reference to the
Body objects. The program also keeps two vectors for accessing the bodies, bodyTab
and bodyTabRev. Figure [10] shows the state of the heap model after the loop body
(Figure [[T) that contains the majority of the computation in bh. This loop takes each
Body object and walks the space decomposition tree (the root field) to determine a
new acceleration value for the Body object (stored in the newAcc field).

Our analysis is not able to precisely resolve the construction of the space decomposi-
tion tree and conservatively assumes it may be a cyclic structure (shown by the C in the
node representing the Cell objects). However, the analysis is able to determine that
the Cell objects and the Body objects represent distinct regions in the program. This
piece of information combined with the observation that the space decomposition tree
is only read in the loop body (all the readloc entries set to A2, marked in green, and the
writeloc entries set to 0), that the only part of the heap which is modified is never read
(the double[] stored in the newAcc field, writeloc = h2, set to red), and that the col-
lection being indexed over (the Vector referred to by the bodyTabRev field) does
not have multiple references to the same object (the ? edge is np, the omitted default
interference value), is sufficient to ensure that there are no heap—carried dependence in
this loop. Thus, we can safely thread—parallelize the loop body, achieving a factor of
2.98 speedup on our test machine.
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5.2 Performance

The analysis algorithm was written in C++ and compiled using gcc 4.2. The analysis as
well as the parallelization benchmarks were run on a 2.6 GHz Intel quad-core machine
with 4 GB of RAM (although memory consumption never exceeded 60 MB).

The original Java programs are transformed into MIL programs and the required stub
code is added to enable the analysis of the standard Java libraries (which requires from
200-600 lines depending on which libraries the benchmark uses). These MIL programs
are then processed by the analyzer. A demo version of the analyzer and benchmarks can
be obtained at [|13].

Benchmark LOC Classes Methods Analysis Time Shape RW Dep

bisort 560 36 348 0.26s Y Y
mst 668 52 485 0.12s Y Y
tsp 910 42 429 0.15s Y Y
em3d 1103 56 488 0.31s Y Y
perimeter 1114 44 381 0.91s P N
health 1269 59 534 1.25s Y Y
voronoi 1324 58 549 1.80s Y Y
power 1752 57 520 0.36s Y Y
bh 2304 61 576 1.84s P Y
db 1985 68 562 1.42s Y Y
logic 3960 72 620 48.26s P Y
raytrace 5809 63 506 37.09s Y Y

Fig. 12. LOC is the size of the program after transformation to MIL (including library stub
code that must be analyzed), Classes/Methods are the number of classes/methods in the program
(including Java Libraries that are used). Shape reports the heap connectivity is correctly identified
and RW Dep reports if the RW information is useful (as in Section[3.1)).

We report Y(es) in the Shape column if the analysis correctly identified all the rel-
evant the shape information of the heap structures in the program. P(artial) means the
analysis was able to determine the precise shape for some of the data structures but that
some properties were missed.

We report similar information for the utility of the RW information. Y(es) means the
read/write information would be sufficient to introduce substantial thread level paral-
lelism (as in Section [3.])) and provides the information required to enable significant
instruction level parallelism optimizations (e.g. code motion to improve scheduling,
elimination of redundant loads/stores or the identification of loop invariant values). We
Report (N)o for only one of the benchmarks, perimeter, where the read/write informa-
tion does not enable any thread level parallelism and only enables minor scheduling or
load elimination opportunities.

Our experimental results show that the analysis is capable of efficiently computing
very precise heap—carried dependence information over a range of benchmarks. In par-
ticular the ability to compute this information on the benchmarks bh, em3d, voronoi
and raytrace is a significant advance in the state of the art for understanding the pro-
gram heap. Computing precise shape and dependence information for these benchmarks
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requires the analysis to precisely model recursive data structures, Java collections, non-
trivial sharing between components of the heap and, in order to compute the dependence
information, to precisely track the part of the heap each read/write affects.

The analysis presented in this paper is not only capable of accurately modeling all
of these features but is able to do so efficiently (analyzing the smaller benchmarks
takes less than 2s per benchmark and raytrace at 5809 LOC takes only 37s). Based on
these results we believe that the analysis reported in this paper is robust enough to be
generally useful in the optimization of smaller Java programs and we plan to continue
work on scaling the analysis to handle larger programs with the same level of precision.
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