
Technologies for Evolvable Software Products:

The Conflict between Customizations
and Evolution

Peter Sestoft and Sebastien Vaucouleur

IT University of Copenhagen, Denmark
{sestoft,vaucouleur}@itu.dk

Abstract. A software product is software that is built for nobody in
particular but is sold multiple times. A software product is typically
highly customizable, or adaptable, to particular use contexts; moreover,
such a software product can typically be thought of as a common kernel
plus a number of customizations, one for each use context. A success-
ful software product will be used for many years, and hence the kernel
must evolve to accommodate changing demands and environments. The
subject of this paper is the conflict between the customizations made for
each use context and the evolution of the kernel over time. As a case
study we consider Microsoft Dynamics AX and Dynamics NAV, highly
customizable enterprise resource planning (ERP) software systems, for
which upgrades are traditionally costly. We study the challenges related
to the customization/evolution conflict and present some software engi-
neering approaches, programming language constructs and software tools
that attempt to address these problems, and discuss whether they could
be brought to bear on the conflict.

1 Introduction and Definitions

A successful software product is typically released in many versions over many
years; it evolves over time. Also, a software product is typically customized to
permit effective use in many different applications and contexts. In this work,
we are interested in the problems and conflicts that arise from the combination
of evolution and customization; we call this the upgrade problem.

In this section, we define the most important terms used in the next sections.
Then we discuss the relation to the concept of a software product line as it is
currently used in the literature. Finally, we outline the contributions and the
structure of the paper.

Definitions. A software product is software that can be used in many different
contexts, such as a shared calendar system for organizations, or a text process-
ing system. Such software products should be contrasted with software that has
been developed in a project for a particular purpose, for instance for the securi-
ties trading desk of a particular bank. One may view a particular instance of a
software product, deployed in a particular context or organization, as consisting

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 216–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Technologies for Evolvable Software Products 217

of a software kernel, plus customizations (adaptations of the kernel to the con-
text), plus possibly further configurations, whether organization-wide or for the
individual end-user. In this paper we shall distinguish customization, which can
add new and possibly unforeseen features to software, from configuration, which
enables or disables features that are already present in the software, change their
behaviour, or affect the way they appear to the end-user1. Software evolution is
the phenomenon that software must change over time to stay useful: errors must
be fixed, security holes must be plugged, new functionality must be supported,
and changes in the environment must be accommodated [25]. Finally, software
composition is the construction of software applications from existing software
parts.

Software product lines. The software products considered in this paper are
clearly related to software product lines [17]. Software product lines typically have
a closed-world assumption in which a central agent (such as a chief engineer)
has a clear idea of all the variations that are required. We will consider this ap-
proach to customization and compare it with approaches that have an open-world
assumption – that is, where no central agent has a clear understanding of all the
possible customizations that may be needed for a software product.

For software product lines with a closed-world assumption, the construction
of a particular member of the product line comes down to choosing from a
predefined set of features, that is, to configuration. In that case, kernel evolution
and customization are hard to distinguish.

Contributions. The contribution of this paper is two-fold. First, it gives a more
precise characterization of what we call the upgrade problem. Domain experts
and practitioners have previously claimed that the upgrade problem is an impor-
tant one, but surprisingly it has never been thoroughly studied from a technical
angle to the best of our knowledge. Second, we give a subjective evaluation of
some of the most commonly used customization techniques and study how they
can be used to mitigate the upgrade problem. We support our conclusions by
using an explicit set of criteria, as well as a simple running example.

Roadmap. The next section gives a detailed explanation of the upgrade prob-
lem. Then, section 3 gives a concrete example of this problem, through a study
of two widely used ERP systems. Section 4 gives a list of criteria that will be
used in section 5, the core of the paper, to give a subjective evaluation of some
of the most widely used customization technologies.

2 The Upgrade Problem

The focus of this work is the interaction of two distinct dimensions of change,
namely customization and evolution. When the kernel of a software product
1 Note that this terminology is not universally accepted. For instance, the Microsoft

Excel 2003 menu Tools > Customize performs what we would call configuration: it
determines which toolbars to display in the user interface, and so on.

218 P. Sestoft and S. Vaucouleur

evolves, and an organization wants to upgrade to a new version of this kernel,
the customizations of the deployed software product must be carried over to the
new version. In simple cases this may just involve copying the customizations
over unchanged, but in general it may involve a rewrite of the customizations
and also require comprehensive knowledge of the customizations as well as the
old kernel and the new kernel; see section 3.9. This work incurs considerable
cost and often causes end-user companies to postpone the upgrade as long as
possible.

2.1 Customizable Software

Almost all software is configurable. Even the most mundane of applications, the
Minesweeper game delivered with Microsoft Windows, has several levels of diffi-
culty, sounds on or off, and so on. Also, there is hardly a Unix (or Linux) program
without a configuration file somewhere in /etc/, or a .foorc configuration file
in the user’s home directory.

Moreover, much software is customizable, in the sense that it admits subse-
quent extensions of its functionality, unforeseen at the time the software itself
was designed, implemented and shipped. For instance, Web browsers such as
Firefox support add-ons that enable the browser to display new media types;
spreadsheet programs such as Microsoft Excel support add-ins that enable the
spreadsheet program to solve optimization problems and other specialized tasks;
and integrated development environments such as Eclipse support plug-ins that
enable the development environment to support new programming languages,
graphical modelling tools, and so on. These add-ons, add-ins and plug-ins are
what we call customizations.

In all the above examples the additional functionality is provided via software
components that can be dynamically loaded into a running application on de-
mand. A more static approach would permit customization when the software
is built, by importing (or not) third party features into the software when it is
compiled or linked. Operating systems such as Linux support both static and
dynamic customization: drivers for particular network devices, file systems, and
so on can be added to the Linux kernel when compiling it, and in addition some
modules (e.g., wireless network drivers, support for USB devices) can be loaded
and unloaded on demand while the operating system is running.

In the above examples, there are well-specified interfaces between the kernel
and the software (add-ins, add-ons, plug-ins, modules) that implement the ad-
ditional functionality. For some software systems it is difficult or impossible to
foresee what kinds of customizations are needed, so it is impossible to design
interfaces that are both general enough and specific enough. Instead, (some)
customizations require edits to the kernel software itself. We shall call the latter
a white-box approach to customization of the kernel.

2.2 Software Evolution

All software will change from time to time, if it is used at all, as evidenced
by the all too familiar and increasingly arcane version numbers: C# compiler

Technologies for Evolvable Software Products 219

version 3.5.21022.8, Eclipse version 3.3.1.1, Oracle database version 9.2.0.6.0,
Linux kernel 2.6.23.1-42.fc8, and so on.

Software evolution is a research topic in its own right, pioneered by Lehman
in an empirical research setting three decades ago [24,23], and now having its
own conferences, terminology and methods, as well as a Journal of Software
Maintenance and Evolution. Lehman’s original software evolution research made
several observations: We all too often believe that the system we are currently
building will be the final one, and hence we fail to plan for change, whether
foreseeable or unforeseeable. Also, the very purpose of some kinds of software
systems, called E-programs by Lehman [24], is to cause a change in the context
in which they are deployed, and hence those are even more prone to change, as
the context changes and feeds back change requirements on the software system.
Current research on software evolution and maintenance attempts to classify the
various reasons for evolution [25], to propose theoretical means to understand
software evolution and to find practical mechanisms to help maintain software
during evolution.

Probably the strongest drivers of software evolution are:

– commercial pressure to support additional functionality
– organizational changes, such as company mergers
– legal changes, such as additional audit requirements
– changing technical environments, such as evolving operating systems
– demand for distributed and mobile access and new user interface technology
– co-evolution for interoperability with other software

2.3 The Evolution of Specifications

The problem of supporting customization as well as evolution cannot be ad-
dressed without taking evolving specifications into account. In an ideal software
architecture, every software kernel component is accessed only through a well-
defined specified interface. If a customization modifies a component, but the
component continues to satisfy the specified interface, then obviously the soft-
ware system continues to work correctly, using the traditional relative notion of
correctness (satisfaction of a specification).

However, the point of software evolution is often that the specification must
change, not just the implementation. Changes to the specification are usually
caused by changes in the environment, such as new business processes or user
needs, as outlined in section 2.2. When the specification changes, the black-
boxing of the implementation behind the specification provides little help in the
upgrade of customizations.

The more interesting and challenging case is when the software kernel evolves
due to a changing specification, not the case where its implementation changes
but the interface specification remains the same.

2.4 Upgrade Problems in Operating Systems

In early versions of Microsoft Windows, upgrade problems would be experienced
almost daily, a phenomenon that was known under the name “DLL hell”. Most

220 P. Sestoft and S. Vaucouleur

applications would rely on dynamically loaded libraries (DLLs), which were typ-
ically shared system-wide between multiple applications. This caused problems
because at any time there could be only one installed version of each DLL, and
newer versions of a DLL were not necessarily backward compatible. For instance,
installing a new version of the Internet Explorer web browser might require an
upgrade also of a DLL, and the deletion of the old version. Subsequently one
would discover that the accounting software installed on the same computer had
relied on that old version and was incompatible with the new version, and hence
stopped working. At its core, the problem was that multiple applications relied
on a common resource (DLL), and that one application would affect the others
through unwanted modification of the common resource. Another variant of this
problem would be that manipulation of the path environment variable caused
by installation or upgrade of one application would mean that other applications
could no longer locate their DLLs and therefore stopped working.

The same problems could be observed in early Linux distributions, where an
upgrade of the gcc C compiler and its associated libraries might break some
other part of the system. In more recent versions of Microsoft Windows as well
as Linux, such problems are addressed by allowing multiple versions of the same
library to coexist. For instance, in a current Linux installation one may find both
versions 0.9.7a and 0.9.7f of the libssl.so library.

Modern programming platforms, such as Microsoft’s .NET, address these
problems in an even more powerful way, by allowing one library (called an as-
sembly) to express its versioned dependencies on other libraries. A forthcoming
version of the Java platform is expected to support versioning of libraries (called
modules) and versioned dependencies in a similar way [15]. In the experimen-
tal language Fortress being developed at Sun Microsystems for DARPA, the
basic program module is the trait (see section 5.6), and the language aims to
provide upgradable program components in the form of versioned collections of
traits [2,3].

2.5 Conclusion on the Upgrade Problem

The upgrade problem is found in many contexts and can be addressed in many
ways. In the remainder of this paper we focus on software products, and in par-
ticular on the conflict between customization of a software kernel and subsequent
evolution of that kernel. In particular, we consider this problem in relation to
highly customizable enterprise software systems.

3 Case Study: Dynamics AX and NAV

To get a more concrete setting for discussing upgrade problems, we now present
Microsoft Dynamics AX [26] and Dynamics NAV [27,38], two enterprise resource
planning (ERP) systems from Microsoft Corporation.

For short, the term “Dynamics” will refer to the Dynamics products (AX
and/or NAV), and the term “Dynamics developers” will refer to the core Dy-
namics development teams at Microsoft.

Technologies for Evolvable Software Products 221

3.1 Add-ons and Customizations

Both Dynamics AX and Dynamics NAV are highly customizable and config-
urable, and customization takes place in several stages. Microsoft builds and sells
a kernel system, consisting of runtime environment, database system, develop-
ment environment and a number of core packages, e.g., for sales tax reporting
in a particular country. A large number of partners, also called independent so-
lution vendors (ISVs) or value-added resellers (VARs), sell add-on solutions and
customizations.

An add-on solution may be targeted to a particular industry (a vertical solu-
tion area), such as apparel and textiles, or address a particular activity within an
organization (a horizontal solution area), such as customer relationship manage-
ment. Several add-on solutions may be used together in a Dynamics installation.
Simply put, in ERP parlance an add-on is a set of customizations.

Further customizations may be created on top of the kernel and the add-
ons, thus tailoring the ERP system to the needs and processes of a particular
company. Some end-user companies even make such customizations themselves.

Add-ons are written as additional modules or by modifying parts of the kernel
modules, using the development environments. Hence, Dynamics AX and NAV
are software products developed over a long time and sold in many copies, with a
wide range of customizations, to many different customers. They also exhibit the
upgrade problem outlined in section 2 above, in a particular way: The add-ons
and customizations are developed primarily by partner companies, whereas the
kernel evolution is controlled primarily by the Dynamics development team.

This section will provide details about the Dynamics software products, the
upgrade problems experienced, and some current practices to alleviate them.

3.2 Dynamics NAV Versus Dynamics AX

Before we dive into the upgrade problems in more detail, let us consider the char-
acteristics of the Dynamics NAV and Dynamics AX enterprise resource planning
systems. Both systems are partially model-driven and partially programming
language based. Namely, database tables, runtime data structures, and the user
interface (forms) are described by metadata, not built using programming lan-
guage declarations. On the other hand, behaviour is described using traditional
programming language constructs, called code units, which correspond to func-
tions or methods.

The two systems have distinct organizational and technical characteristics:

– Dynamics NAV mostly targets smaller organizations, for which pre-devel-
oped add-ons mostly suffice, so they only require minor customizations. A
large number of organizations run Dynamics NAV. The integrated develop-
ment environment is called C/SIDE, and the programming language, C/AL,
is a relatively simple language with a Pascal-like syntax. The developers em-
ployed by NAV partners usually focus on the customer’s business and many
do not have a strong background in software development. Code unit cus-
tomizations are made simply by editing the required code units in the C/AL
language.

222 P. Sestoft and S. Vaucouleur

– Dynamics AX mostly targets larger and more complex organizations, that
often require extensive customizations. Fewer organizations use Dynamics
AX than NAV. The integrated development environment is called MorphX,
and its proprietary programming language X++ is an object-oriented lan-
guage with a Java-like syntax. The developers employed by AX partners
often have a good background in software development. The Dynamics AX
model is structured into a number of layers, with layers for the kernel, layers
for partners’ customizations, layers for further customizations in the end-user
organization, and so on; see section 3.8. A code unit customization is made
by copying the code unit from the layer at which it was originally defined
and then adding and editing at a higher layer. The higher layer version will
then be used instead, and is said to shadow the lower layer code unit; see
section 3.9.

We present both systems here, because their different organizational and tech-
nical characteristics cause different kinds of upgrade problems.

3.3 The Dynamics Ecosystem

Microsoft and its partner companies form an ecosystem in which the partners
depend on Dynamics developers for providing a kernel that is robust, compre-
hensive, easily customizable, and up to date. Conversely, Microsoft depends on
the partners for marketing its kernel, for developing add-ons that make it valu-
able for customers, for making customizations, and for deploying the customized
solutions in customer organizations.

There is a delicate balance in relation to the evolution of the system kernel: If
the kernel changes by frequent small steps, then the partners will find it difficult
to sell all these upgrades (of kernel and customizations) to their customers; but
if the kernel changes by infrequent radical steps, partners or customers may find
upgrade so complex that they can just as well switch to a competing product
(such as SAP, an Oracle-based system, or software as a service). Also, if the
kernel evolves too slowly or not at all, advanced customers may find that it
no longer interoperates well with other software they use, or does not support
new reporting standards or functionality that they need, such as visualization,
business intelligence, electronic trade, etc.

3.4 What Constitutes an Upgrade

Common to Dynamics AX and NAV is that an upgrade to an installation in-
volves upgrade of kernel and customizations as well as conversion of the end-user
organization’s production data. The data conversion poses interesting challenges
itself. First, it is highly time-critical because the end-user company usually can-
not conduct business while the data conversion is being done, so the conversion
must take place over a weekend or an extended weekend. Second, the data con-
version must be fully reliable, or it would disrupt the business. Third, full-scale
testing of the scripts that perform the data conversion cannot be conducted until
a test environment consisting of the entire upgraded ERP system (new kernel

Technologies for Evolvable Software Products 223

and upgraded customizations) is available, which is usually late in the process;
see also section 3.9. The code and metadata migration can be done in advance
of the actual data conversion upgrade; only the data conversion is time-critical
in this sense.

Nevertheless, we shall say no more about the data conversion process in this
paper, but focus on the problems caused by upgrade of code customizations.

3.5 Upgrade Problems in Dynamics NAV and Dynamic AX

It is clear from a survey of partners [10], from talking to the Dynamics AX and
NAV core development teams, and from various online forums and blogs, that
upgrade of customizations in Dynamic AX and NAV are problematic. For in-
stance, a public video from a Dynamics AX core developer [34] acknowledges
that upgrade of customizations can be costly: “Our research shows that an aver-
age upgrade costs as much as 30% of (the original cost of) the customizations”.
As further evidence, a Google search for dynamics nav upgrade gives 114,000
hits (January 2008). There are companies, such as Liberty Grove Software in
Illinois, USA, that specialize in doing NAV upgrades for other partners at a
fixed price quoted after a preliminary upgrade diagnostic. Also, partner-oriented
materials from Microsoft itself suggest that care is needed when customizing the
systems to minimize future upgrade problems (see section 3.10).

3.6 Constraints on a Solution to the Dynamics Upgrade Problem

Although a kernel upgrade affects both add-on solutions and partner-made cus-
tomizations (see section 3.1), in this paper we focus on the problems caused by
partner-made customizations, because fewer resources are available for upgrad-
ing those than for upgrading add-ons, which are usually sold more than once.

A potential solution to the upgrade problem should work with the current
ecosystem (see section 3.3), and should provide a plausible upgrade path from
the technologies currently used (the existing code base is very large, therefore
incremental technology adoption is important). Ideally the solution, especially
for NAV, should support the short edit-compile-run cycle that developers are
used to. Developers add, modify and experiment with customizations in the
development environment, and then immediately switch back to the running
enterprise application without a lengthy build phase and without restarting the
enterprise application and loading data anew.

3.7 Handling Upgrade in Dynamics NAV

Here we consider how the modest size and complexity of some NAV customiza-
tions mean that the upgrade of customizations can be handled by rather simple
techniques. A particular Dynamics NAV partner, Logos Consult in Denmark,
reports [28] that most of their original customization projects are small, on the
order of 50–500 man hours, and involve only one or two developers. While doing

224 P. Sestoft and S. Vaucouleur

the original customization, developers simply mark each change in the cus-
tomized code using stylized change comments with date and developer’s initials,
like this:

// >> 07.FM

DtldCVLedgEntryBuf."Document Date" := "Document Date";

DtldCVLedgEntryBuf."Job No." := "Job No.";

// <<

These stylized comments are easy to search for in the source base, and indicate
who made the change and when. Because customization projects are so small,
and because developers stay long with Logos Consult, this information is enough
for the developer to understand how to upgrade the customization when sub-
sequently the kernel gets upgraded; no special tools are used to assist in the
upgrade. Program comments might also be used to indicate why the change is
made, but often this is not needed.

The Dynamics NAV approach sketched above is simple and suffices for NAV
applications that do not differ too radically from the NAV kernel. However, it is
unlikely to scale to applications that require extensive customizations, such as
customizations that require a large number of places in the kernel source code
to be updated correctly.

In the rest of this paper we will focus on Dynamics AX, whose customizations
are usually much more elaborate than those for NAV.

3.8 The Layered Structure of a Dynamics AX Application

The Dynamics AX layering system supports multi-stage customization and ex-
tension. The architecture has eight layers [14, page 15], shown in Figure 1. An
application element (also called model element) at a higher layer hides one with
the same name on lower layers. This supports multi-stage customization because
a lower-layer application element may be customized at a higher layer, and that
customized application element may be further customized at a yet higher layer.

For each of the eight layers shown in Figure 1 there is a patch layer directly
above it, used for small delta updates, for instance to avoid redistributing a
slightly changed version of the entire 472 MB SYS layer file.

3.9 Customization Using AX Layers

To customize or extend an application element from a lower level (say SYS) at a
higher level (say LOS), the developer copies the entire application element to the
LOS level and makes the desired edits to it there. Henceforth the system will use
that customized application element. A subsequent upgrade to the application
element at the SYS level is not automatically carried through, but must be
handled manually in an upgrade project.

In response to a subsequent kernel upgrade, at least the following tasks must
be performed:

– Find all those lower layer elements that have changed in the new kernel
version and have been customized in the current installation.

Technologies for Evolvable Software Products 225

Layer name Meaning and purpose

USR User: Individual companies, or companies within an enterprise, can use
this layer to make customizations unique to customer installations.

CUS Customer: Companies and business partners can modify their installa-
tions and add the generic company-specific modifications to this layer.
The layer is included to support in-house development without jeopar-
dizing modifications made by the business partner.

VAR Value-added reseller: Business partners use this layer, which has no
business restrictions, to add any development done for their customers.

BUS Business solution: Business partners develop and distribute vertical and
horizontal solutions to other partners and customers. A vertical solution
targets a particular line of business such as brake pad manufacturing.
A horizontal solution addresses a particular task that is similar across
multiple businesses, such as car fleet management.

LOS Local solution: For strategic local solutions developed in-house.
DIS Distributor: For critical hotfixes.
GLS Global solution: For country-specific functionality.
SYS System: The lowest application element layer and the location of the

standard Dynamics AX application.

Fig. 1. The layers of a Dynamics AX application. The LOS, DIS and GLS layers
are developed by the Dynamics development team but their application elements can
be customized by partners. Only Dynamics developers have access to the element
definitions at the SYS layer.

– In each case, decide whether
(a) the new lower layer functionality makes the customization unnecessary;

if so, remove it
(b) the customization continues to work; if so, copy it to a new customization

of the lower layer code
(c) the customization no longer works; if so, design and implement a new

one

These steps require insight into both the old and the new version of the Dynamics
AX kernel, into the old customizations, and into the reason for making those
customizations in the first place. Hence this work must be done by an expert,
preferably the same developer who made the old customizations.

A shadow is an application element from the standard application that has
been modified at a higher level. The cost of an upgrade (of the standard appli-
cation, say from AX 3.0 to 4.0) is to a high degree determined by the number of
shadows [14, pages 464-467].

A partner-oriented textbook on Dynamics AX distinguishes the various en-
vironments in which a version of the system may execute [14, page 466]: pro-
duction environment, test environment and development environment. It also
distinguishes the following phases of the upgrade process, from Dynamics AX
3.0 to AX 4.0, say:

1. Test AX 3.0 layer files (customizations) in test environment
2. Create a production environment with AX 3.0 and the layer files

226 P. Sestoft and S. Vaucouleur

3. Modify layer files to work in AX 4.0; [that is, upgrade the customizations]
4. Write data migration code and migrate data from AX 3.0 production envi-

ronment to AX 4.0 development environment
5. Perform functional test of the AX 4.0 application with migrated data
6. Move AX 4.0 layer files to production environment and migrate up-to-date

AX 3.0 data files; this is the time-critical step mentioned in section 3.4
7. Start production on the AX 4.0 application

3.10 Mitigating Code Upgrade Problems in Dynamics AX

A public video called “Smart Updates” from a Dynamics AX core developer [34]
gives some advice on upgrade in Dynamics AX. Its main messages are:

– One should customize small application elements such as class methods, and
avoid big ones such as forms: “Once you customize an application element,
a copy of the entire original element is placed in the customization layer”.
The larger application elements one customizes, the more future upgrade
liabilities are incurred.

– One should avoid gratuitous customization: “It is tempting to customize ev-
erything” but then later the “customer upgrades the kernel application” and
“you’ll have to resolve all conflicts” that is, “whenever you’re overlayering
an element that has changed”

– One should avoid, whenever possible, code unit customizations that could
cause a conflict at a later upgrade. Instead one should use “class substitution”.

“Class substitution” simply exploits that the Dynamics AX language has object-
oriented features, unlike the Dynamics NAV language. The idea is to (1) make
a derived class of the to-be-customized lower layer base class, overriding the
method that should be customized; (2) to introduce a factory method, for in-
stance called “Construct()” that returns an object of the derived class instead
of the base class object; and (3) to make sure this Construct method is called
everywhere the base class constructor would otherwise be used. Section 5.1 below
further explores this approach to customization, which is a classic object-oriented
idea. The point is that a customization based on “class substitution” is much
easier to upgrade than a customization that consists of arbitrary edits to the
source code of a code unit.

4 Evaluation Criteria

This section describes the four central criteria that we will use in section 5 to
evaluate a range of customization technologies.

– Need to Anticipate Customizations (A kernel developer concern.)
– Control over Customizations (A kernel developer and partner concern.)
– Resilience to Kernel Evolution (An end-user concern.)
– Support for Multiple Customizations (A partner and end-user concern.)

Table 1 on page 250 summarizes the evaluation results.

Technologies for Evolvable Software Products 227

4.1 Need to Anticipate Customizations

Many software engineering techniques for software customization are based on
some degree of anticipation of future changes. When the designer can foresee
some future needs for customization and evolution of the software system, he
will choose a software design that can accommodate these with as few changes
as possible. Unfortunately, it is not always possible for the designer to foresee well
enough the broad class of possible future customizations. In general, there is a
trade-off between control and flexibility. For instance, a customization technique
that permits arbitrary source code edits offers little control but high flexibility.
Conversely, a customization technique that permits only a choice between a
number of predetermined options offer high control but little flexibility.

We distinguish approaches that:

– Require no anticipation. The customization technique does not require
anticipation of the customizations, whether of the customization points nor
of the customization kinds.

– Require anticipation of the customization points. The customization
technique requires the anticipation of the customization points – that is
where customizations can be applied in the source code.

– Require anticipation of the kind of customizations. In this case, the
customization technique expects the developer to foresee the content of the
customizations that will be potentially applied.

4.2 Control over Customizations

When a developer is customizing a correctly functioning software system, he
takes the risk that his changes break the coherence and correctness of the cur-
rent implementation. Hence, a customization technique should help in preserving
the intent of the original software maker. The customization techniques typically
offers control over customization at two different staging times: design-time and
run-time. We will categorize the customization techniques according to the fol-
lowing categories:

– Design time control over the customizations. Customizations can be
constrained during the design stage of the software product’s kernel.

– Run-time control over the customizations. The customization tech-
nique gives explicit support for controlling customizations at run-time (for
example activation and deactivation of certain customizations).

– No control over the customizations. The technique provides no explicit
support for controlling the customizations.

4.3 Resilience to Kernel Evolution

A software product that has been customized will eventually need to be upgraded
to a more recent version. Since the kernel will have evolved, it is likely that the
customizations cannot be ported automatically to the new version. Different
customization techniques have different weaknesses in this respect and require

228 P. Sestoft and S. Vaucouleur

different amounts of intervention from the developer to port customizations to
the new kernel. The third criterion is the resilience of customizations to the
evolution of the kernel. We will differentiate the following three categories of
explicit support for resilience to evolution of the kernel:

– Some resilience to evolution. The customization technique provides some
resilience even to evolution of parts of the kernel related to existing cus-
tomizations.

– Restricted resilience to evolution. Resilience only to evolution of parts
of the kernel unrelated to existing customizations. Existing customizations
may rely indirectly on some part of the kernel that has changed, which
may affect the behaviour of those customizations. In some cases this will be
intended—after all, the point of changing the kernel is to change the system’s
behaviour—but in some cases it will be unintended. We assume here that it
is impossible to distinguish those two cases by automatic means.

– No support for resilience to evolution. The customization technique
provides no explicit support for resilience to evolution of any parts of the
kernel. Any part of the kernel may have been altered by some customization,
so any change to the kernel may conflict with somebody’s customization.
Inspection (manual or tool-supported) is needed for each customization to
detect whether it conflicts with a change to the kernel.

4.4 Support for Multiple Customizations

Very often customizations are not made by the same company. The challenge
is that those multiple customizations must be gathered together into a single
product. We will distinguish three categories of techniques with respect to sup-
port for multiple customizations. First, those who support parallel development
(customizations can be independently developed and brought together at a later
stage, possibly by an other company). Those who support only sequential devel-
opment: customization are conceived one after the other. Finally we distinguish
the techniques that provide no explicit support for multiple development. We
summarize those three categories:

– Support for parallel development of customizations. Multiple cus-
tomizations can be independently developed and then subsequently applied
to the same customization point in the kernel. There is still a risk that the
customizations have unintended interference, for instance by updating some
data structure in the kernel.

– Support for sequential development of customizations. If one cus-
tomization is made after, and has access to the other one, then both can be
applied to the same customization point in the kernel.

– No support for multiple customizations. No support for multiple cus-
tomizations without breaking the abstractions that are used for the cus-
tomizations.

Technologies for Evolvable Software Products 229

4.5 Runtime Performance Penalty

Runtime performance can be an important criterion, especially for computation
intensive software systems and for core software such as collection libraries. How-
ever, all the customization technologies considered in this paper have acceptable
runtime performance overhead, typically comparable to a few indirections or
a virtual method call per customization point reached during execution. This
should be contrasted with reflective method calls, which are typically one or two
orders of magnitude slower.

Since all the technologies considered here have satisfactory performance, we
will not discuss this criterion further.

4.6 Illustration of the Criteria

We describe further the last three criteria through an illustration, see figure 2.

– Figure 2(a) illustrates our second criterion: a software product P1 is be-
ing customized by a third-party programmer and is further customized by

P1

P2

P3

a

b

(a)

P1
1 P2

1

P1
2 P2

2

P1
3 P2

3

a

b

a’

b’

(b)

P1

P2 P3

P4

a b

b’ a’

(c)

Fig. 2. Concerns (a) Further customization (b) Resilience to Kernel Evolution (c)
Support for Multiple Customizations

230 P. Sestoft and S. Vaucouleur

another programmer, resulting in a software product P3. The concern here
is the staging time of the control for customization: design-time, runtime,
etc.

– Figure 2(b) illustrates our third criterion: again, a and b are two successive
customizations of an original software product P1. The original kernel P 1

1

will eventually evolve into a new version P 2
1 . The concern here is the ease

with which customizations can be ported to the evolved kernel.
– Figure 2(c) illustrates our fourth criterion: here a and b are independently

conceived customizations of an original software product P1. Those two cus-
tomizations are then used by another company to compose the software
product P4. Informally, the concern here is that the two customizations can
be developed independently and brought together at a later stage, ideally
yielding an equivalent software product whether one applies a then b′, or b
then a′. Note that this equivalence is a design goal, not a theorem—to prove
such a thing would require a clear definition of the notion of equivalence.

5 Survey of Software Customization Methods

Software customization is a recurrent theme within the software engineering com-
munity. Software extension in particular has received much attention from the
researchers working on software reuse. Software reuse is important for economical
reasons: instead of developing software from scratch one hopes to save effort and
obtain better quality by reusing an existing software module, or sometimes an
entire software system. They are many different ways to implement customiza-
tions. In this section, we review some of these customizations techniques, and
we categorize them with respect to the criteria defined in the previous section.

5.1 Inheritance

Inheritance and dynamic binding are heavily used within object-oriented pro-
gramming to create families of software systems. Virtual methods allow for cus-
tomization by subclassing. This is essentially the “class substitution” approach
for Dynamics AX customization described in section 3.10.

For example, assume we need an Invoice class with a GrandTotal method
that is customizable in the sense that the computed grand total may be modified
by a customization. Then we can define a base class Invoice with a virtual
method After, like this:

public class Invoice {

protected virtual void After(ref double result) { /* do nothing */ }

public double GrandTotal(int input) {

double total = ...;

After(ref total);

return total;

}

}

Technologies for Evolvable Software Products 231

If we want to customize Invoice to give a 5 percent discount on grand totals
over 10,000 Euros, we declare a subclass in which After has been overridden to
do just that:

private class CustomizedInvoice : Invoice {

protected override void After(ref double result) {

if (result >= 10000)

result *= 0.95;

}

}

Basically, as is usual in object-oriented programming, the After virtual method
is a parameter (of function type) of the Invoice class, and that parameter may
be (re)bound in subclasses. This particular example is a variant of the well-known
Template Method design pattern [13].

To ensure that all clients use this customization of Invoice one can require
them to obtain Invoice instances only through a central factory method, using
the Factory design pattern [13]:

public static Invoice Construct() {

return new CustomizedInvoice();

}

Then only one place in the code needs to be changed when a new customization is
created. As a further precaution against clients creating un-customized Invoice
instances, one could declare the Invoice base class abstract.

Hence, customization of methods can be done by method redefinition. Dy-
namic binding allows for run-time selection of the method body to be executed
depending on the actual type of the target object. Multiple dispatch systems
such as CLOS claim to be more flexible in that they allow for the selection of
the methods upon the types of all of their arguments.

– Need to Anticipate Customizations. This technique requires anticipation of
the needed customization points. In the Invoice example, as in any use of
the Template Method pattern, the abstract template method is basically a
(function-type) parameter of the class, and one needs foresight to determine
which template methods are needed and where they need to be called. Also,
the designer of the software system must foresee that the Factory pattern
might be required to create an instance of a specific implementation of the
Invoice class.

– Control over Customizations. Correctness in statically-typed object-oriented
languages is mainly supported by the type system. The compiler will enforce
at design-time that the method to be called exists (no “Method not found”
exception at run-time) and that the formal and actual parameters are type-
compatible. Hence the control is done at design-time. Other languages (such
as Spec#, JML, etc.) allow for behavioral specification by the use of con-
tracts. Contracts are assertions that can be be checked at run-time, or, in
some specific cases, verified at compile-time. As an example, we could add

232 P. Sestoft and S. Vaucouleur

a post-condition to the After virtual method to ensure that the customized
variant of Invoice returns a non-negative value.

public abstract class Invoice {

protected abstract void After(ref double result)

ensures result >= 0;

...

}

– Resilience to Kernel Evolution. When the abstract class Invoice evolves,
customized versions of the software system might stop functioning correctly
or not even compile any longer. For example, using C#, if the type of the
formal parameter result in the abstract method After in class Invoice is
changed from double to int, the compiler will reject the existing customized
versions. The current version of C# does not allow any form of variance in
the redefinition of formal parameters in subclasses. Now consider the case
that the signature of the abstract method After does not change in the
new version of that base class, but that its post-condition now requires that
the result is positive. We say that the postcondition of the abstract base
method was strengthened in its new version. Existing customized version of
the Invoice class that assign zero to result now fail to satisfy the post-
condition specified in the abstract method. This is likely to only be discovered
at runtime, typically resulting in an exception. One may argue that this is
the only acceptable output in such a case.

– Support for Multiple Customizations. Single inheritance here restricts the
customizations to sequential development. More complex design patterns are
required to support the composition of independently developed customiza-
tions of Invoice. The decorator design pattern for example will allow for
more flexibility than does inheritance, allowing responsibilities to be added
and removed at runtime [13]. Also, a variant of the proxy pattern allows to
chain proxies, which provides support for multiple successive customizations.
Note that the order in which proxies execute can be crucial for correctness.

The chief advantage of the virtual method approach to customization is that
it is well understood and supported by mainstream programming languages such
as Java and C#. Evolution of the base class does not require any changes to the
customizations (subclasses) so long as no base class customization points are
removed and no customization point data types are changed. In particular it is
not necessary to edit the same section of source code, so one avoids the attendant
risks of one customization overwriting another one, and difficulties in upgrading
that section of source code.

The chief disadvantages of this approach to customization are that it requires
foresight as to which customization points may be needed, and that multiple
serial customizations of the same class cannot be developed independently of
each other: one customization must be a subclass of the other customization,
and hence must be aware of the existence of that other customization.

Technologies for Evolvable Software Products 233

5.2 Information Hiding Using Interfaces

Interfaces allow one to hide some of the design decisions that are not relevant to
clients. Since implementation details are unknown to clients, they do not become
dependent on them, and it is much easier to evolve the specific implementation –
hence thepopular slogan, “Programtoan interface, not to an implementation” [13].
Also, by combining information hiding and inheritance, programmers can extend
existing interfaces in a subtype with new operations without breaking existing
clients. This is the traditional approach to evolution in a object-oriented setting.

Even if interfaces support evolution of their implementations, one has to keep
in mind that the interfaces themselves may need to evolve. Even if some design
decisions can be hidden behind an interface, as proposed by Parnas [32], the
published interfaces themselves cannot be changed without taking the risk of
breaking a large number of external software systems that depend on them.
An apparently harmless modification, such as adding a new operation to an
interface in C#, can cause great trouble: all the existing classes that implement
the previous version of the interface will have to be modified to support the
new operation. Abstract classes, as found for example in Java and C#, are
more interesting in this respect as they can sometimes meaningfully provide
a default implementation for a new operation. Consider the following abstract
class Invoice:

public abstract class Invoice {

public abstract ICollection<Item> Items { get; }

}

It is possible to add a method GrandTotal to this abstract class without breaking
the existing concrete subclasses:

public abstract class Invoice {

public abstract ICollection<Item> Items { get; }

public virtual double GrandTotal() {

return Items.Sum(item => item.Price * item.Quantity);

}

}

Note that if there is already a (non-virtual) method with the same name in the
subclass, the compiler will give a warning that the subclass implementation of
GrandTotal hides the inherited member. Note also that the default implemen-
tation provided by Invoice can be sub-optimal. For example a subclass that
maintains the current total in an instance variable will gain from overriding
GrandTotal and directly returning the instance variable.

public class InvoiceImp : Invoice {

...

public override double GrandTotal() {

return currentTotal; // instance variable

}

}

234 P. Sestoft and S. Vaucouleur

The problem with abstract classes is that a class can only have one base class
(in Java and C#), whereas it can implement multiple interfaces. This is not the
case for languages that support multiple inheritance. But multiple inheritance
tends to be criticized for its complexity and the problems that it brings along –
such as the infamous diamond inheritance problem.

The Component Object Model (COM) [36] uses interfaces to support evolu-
tion of components as well as client programs. A component can be used only
through its functions (operations, methods) as originally advocated by Parnas
[31]. An interface is a set of functions, where each function is described by its
signature: its name, its parameters (number, order and types), and its return
type.

The following restrictions on COM components and their interfaces help mit-
igate evolution problems:

– An interface (with a given interface identifier) must remain forever un-
changed once it has been published.

– A component may support any number of interfaces, and the set of interfaces
it supports may change over time.

– A client program can, at runtime, ask a component whether it supports
a particular interface (using its interface identifier) and hence whether the
component supports particular methods.

The restrictions support evolution of components, because an updated compo-
nent may exhibit new functionality through an additional interface, while contin-
uing to support its old interfaces. The updated component will continue to work
with existing client code, because such code will continue to ask the component
for its old interface and will be unaffected by new functionality.

The restrictions also support evolution of the client code. Obviously, any
change to the client that does not require new component behavior, will just
work with old and new components alike. If a client is updated so that it would
prefer to get some new behavior from a component, but can work with old client
behavior (only less efficiently, say), then the updated client simply asks the com-
ponent whether it supports the most desirable new interface that exhibits new
behavior, and failing that, asks it whether it supports the second-most desirable
interface, and so on. Hence this supports any number of steps of evolution.

If an updated component stops supporting some functionality (for instance,
because it has been deprecated for security reasons), it will have to stop support-
ing some old interface. Client code will discover that at runtime when asking for
the interface. Depending on the robustness of the client design, and the amount
of foresight that went into the design of the interfaces, the client may be able
to fall back on some other interface supported by the component; if not, it must
give up.

The latter scenario shows one drawback of the COM model: mismatches in
component evolution will not be discovered at compile time or deployment time,
only at runtime, when the client asks the component whether it supports the
requisite interfaces.

Technologies for Evolvable Software Products 235

– Need to Anticipate Customizations. Following the concepts of information
hiding, the designer has to come up with a list of design decisions which are
likely to change. Hence there is a strong requirement to anticipate changes.

– Control over Customizations. One of the famous epigrams by Perlis [33]
reads: “Wherever there is modularity there is the potential for misunder-
standing: Hiding information implies a need to check communication”. Types
allow for a limited form of checking. Contracts, mentioned previously, are
sometimes used to extend checking – but most of the control over customiza-
tions is typically done at design-time, through the use of static type checking.

– Resilience to Kernel Evolution. As long as the new version of the kernel
conforms to the published interface, the program will still compile. Of course
more guarantees than just type-conformance are typically needed to ensure
correctness of the software system (as explained in the criteria section 4).

– Support for Multiple Customizations. There is no direct support for inde-
pendently developed customizations, since the implementation of a specific
interface is provided by a single class. Using a combination of inheritance
and information hiding would allow for multiple sequential customizations
(in the context of single inheritance), but using information hiding alone will
not.

5.3 Parametric Polymorphism

Parametric polymorphism supports evolution because it can decouple some de-
sign decisions. For example, the designer of a new class Stack<T> will not have
to foresee the possible kinds of elements that will be contained in the stack, and
yet can enjoy type safety. Without parametric polymorphism, the designer of
the class Stack would have to either make a new version of the class for each
possible kind of element contained, such as StackOfPerson, StackOfInt, and
so on, or he would have to compromise type safety by losing type information
and using type casts, as in Person p = (Person)myStack.Top.

However, with parametric polymorphism or generic types as in Java, C# and
ML, the behaviour of a parametrized type or method is the same for all type
parameter instances — as implied by the term “parametric”. Hence parametric
polymorphism may support evolution but not really behavioural customization.
This is in contrast to templates in C++ [37] and polytypic programming and
generalized abstract data types in Haskell and extensions of C# [20], but we
shall say no more about those mechanisms here.

– Need to Anticipate Customizations. In the previous Stack example, para-
metric polymorphism does not depend on anticipation of customization of
the classes of the various element that will be stored in the stack – if the class
Person changes, the class Stack does not have to change. But very often, we
have to do more that just storing and retrieving objects from a collection:
we need to use constraints on the formal generic types. For example if a class
Invoice is seen as container of priced items, it is reasonable to require the
first generic type to be constrained by an interface IPriced. But if such a

236 P. Sestoft and S. Vaucouleur

constraint is used on the formal type parameter, then we are back on the
some problem as for information hiding: the interface IPriced can evolve.
(Also one should note that the choice of using a generic type for a specific
type declaration represents a form of anticipation itself.) For example, using
C#:

public interface IPriced { double Price { get; } }

public class Invoice<T> : Stack<T> where T : IPriced { ... }

– Control over Customizations. Similarly to other language based techniques
presented above, the type system ensures some degree of correctness. The
control over customizations is performed at design-time.

– Resilience to Kernel Evolution. A class Stack<T>with an unconstrained type
parameter, as above, need not change when the item type T changes. How-
ever, a generic type Painting<U> where U : Drawable with a constrained
type parameter U may need to change to be applicable to a new argument
type.

– Support for Multiple Customizations. Parametric classes can have several for-
mal type parameters, each of which can act as a placeholder until a runtime
type is used [1, page 76]. One could devise a solution where each of these
placeholders is used for a different customization.

5.4 Synchronous Events

In C#, so-called synchronous events, or callbacks, provide a flexible way to
customize behaviour when one can foresee where customizations are needed. To
add a customization point, one first declares a suitable delegate type (that is,
function type), such as After:

public delegate void After(ref double result);

Then to prepare a class for customizations, we add an event field such as after
to the class, and insert a conditional call to that event at the customization
point:

public class Invoice {

public static event After after;

public double GrandTotal(int input) {

double total = ...;

if (after != null)

after(ref total); // Event raised here

return total;

}

}

Now assume we need a customization to give a 5 per cent discount on invoices
over 10,000 Euros. The customization is added as a suitable anonymous method
to the static event field of the Invoice class:

Technologies for Evolvable Software Products 237

Invoice invoice = new Invoice();

Invoice.after += delegate(ref double result) {

if (result >= 10000)

result *= 0.95;

};

When the GrandTotal method of the Invoice class reaches the customization
point, it will raise the event and call the anonymous method, which will reduce
the total variable by 5 percent if it exceeds 10,000 Euros.

In the above example we associated the event with the class (as a static field)
and hence obtain class-level customizability as in the object-oriented approach in
section 5.1. Alternatively, one might use an instance field to obtain instance-level
customizability.

– Need to Anticipate Customizations. There is a strong need to anticipate cus-
tomizations, because one must create the necessary events and raise each
event at all appropriate places, in the right order. Also, the type of the event
being sent requires some insight into the forthcoming customizations.

– Control over Customizations. On one hand, the event argument types impose
restrictions that support design-time control over customizations. One the
other hand, triggering of events can be turned off at run-time providing a
form of run-time control over customizations.

– Resilience to Kernel Evolution. The event model is quite fragile under changes
to the base program: existing events may have to be raised at more or fewer
places.

– Support for Multiple Customizations. Multiple customizations can be made
simply by attaching multiple event handlers, so simultaneous development of
customizations is straightforward. This of course does not prevent unwanted
interactions between customizations as mentioned in the criteria section 4.
Moreover, the order of event handler invocation may be significant, yet it
may not be feasible to control the order in which handlers are invoked.

The chief disadvantage is that the event model is very dynamic—events can
be attached and removed at runtime—so it is difficult to determine statically
the properties of a system built with event listeners.

A less obvious disadvantage is that it is difficult to provide a complete specifi-
cation of the contract between the listened-to object (the one raising the event)
and the listening objects (those installing the event handlers). Namely, the in-
stallation y.Event+=x.h of an event handler x.h on object y is the beginning of
a potentially long-lasting interaction between objects x and y.

Hence to understand and correctly use an event model, one must consider at
least the following questions:

– What data can an event handler read, and what data can it modify? In Mi-
crosoft’s Windows Forms framework, unlike Java’s Abstract Window Toolkit,
it is customary to pass the entire “sender” object y to the event handler,
which seems to invite abuse by the event handler.

238 P. Sestoft and S. Vaucouleur

– What can the event handler assume about the consistency of data in the
sender y when it is called, and what must it guarantee about the state of
data in y when it returns?

– Could an event handler, directly or indirectly, call operations that would
cause further events to be raised, and potentially lead to an infinite chain of
events?

– At what points should an event be raised? This central design decision should
be based on semantic considerations, since it strongly influences the correct-
ness of upgrades of the kernel. For instance, it is better to specify that “the
event is raised after a change to the account’s balance” than to say that
“the event is raised after one of the methods Deposit or Withdraw has been
called”. The former gives better guidance when new methods are added, or
when considering bulk transactions such as DepositAll(double[]) whose
argument may be an empty array and hence perform no change to the ac-
count at all.

– What is guaranteed about multiplicity and uniqueness of events? For in-
stance, consider a class Customer derived from class Entity, where method
Customer.M() calls base.M(), and both implement an interface method
specified to raise some event E. Should a call to Customer.M() raise the
event once or twice?

5.5 Partial Methods as Statically Bound Events

The partial types and partial methods of the C# 3.0 programming language
offer a statically bound alternative to events. Wherever there would be a call to
an event handler, a call to a partial method is made instead. For instance, we
may declare a partial method called after and call it as in this example:

public partial class Invoice {

partial void after(ref double result);

public double GrandTotal(int input) {

double total = input * 1.42;

after(ref total);

return total;

}

}

If the method call is needed, that is, if there is a customization at the call point,
the partial method’s body may be declared in a different source file:

public partial class Invoice {

partial void after(ref double result) {

if (result >= 10000)

result *= 0.95;

}

}

Technologies for Evolvable Software Products 239

Then the two source files simply have to be compiled together, like this:

csc PartialMethod.cs PartialAfter.cs

If no customization is needed at the after(...) call point, one simply leaves
out the PartialAfter.cs file when compiling PartialMethod.cs, and then the
after(...) call will be ignored completely.

– Need to Anticipate Customizations. There is a strong need to anticipate cus-
tomization points, because one must create the necessary partial methods
and call them at all appropriate places.

– Control over Customizations. The partial method argument types impose
restrictions that supports control of customizations at design-time to some
degree.

– Resilience to Kernel Evolution. Similarly to events, the partial method cus-
tomization model is rather fragile under changes to the base program: exist-
ing partial methods may have to be raised at more or fewer places.

– Support for Multiple Customizations. Partial methods offer no explicit sup-
port for multiple customizations since there can be only one implementation
of a given partial method.

The chief disadvantage of partial methods, however, is that they are not dynam-
ically configurable; unlike events they cannot be added and removed at runtime
under program control. This provides poor support for the fluid way in which
developers prefer to interact with e.g. Dynamics NAV, mentioned in section 3.6.

There is a position between that of dynamically-bound events that may be
added and removed under program control (section 5.4) on the one hand, and
the partial methods that require recompiling and reloading the application (as
described above) on the other hand. Namely, one may use metadata to specify
the association of event handlers with events, and prevent the running program
from changing this association. This is the approach taken by Dynamics NAV.
The approach would enable the development environment to tell which event
handlers may be executed when raising a given event, and to discover potential
event cycles by analyzing the metadata and the code of the event handlers.
However, the other concerns and questions about events listed in section 5.4
must still be addressed.

5.6 Mixins and Traits

A mixin provides certain functionalities to the classes that inherit from it. It
is sometimes said that the mixin “export its services” to the child class. When
mixin composition is implemented using inheritance, mixins are composed lin-
early. Ducasse et al. [11] report several problems traditionally associated with
mixins. For example, it is reported that class hierarchies are often fragile to
changes since simple changes may impact many parts of the hierarchy. Traits
can be seen as an attempt to solve some of the problems caused by mixins.
A trait is, simply, a set of methods. A trait is not coupled with the class

240 P. Sestoft and S. Vaucouleur

hierarchy. Traits can be composed in arbitrary order (in their original definition)
and can be used to increment the behavior of an existing class. Ducasse et al.
emphasize that, using traits, the two roles of “unit of reuse” and “generator of
instances” can be respectively assumed by traits and classes, whereas both roles
are traditionally assumed by classes in object-oriented languages [11]. And since
traits are divorced from the class hierarchy, they do not suffer from the problems
associated with multiple inheritance.

Scala uses both mixins and traits to solve the code reuse limitations posed
by single inheritance [29]. Its mixin class composition mechanism allows for the
reuse of the delta of a class definition. The following example defines a trait
Invoice with an abstract method GrandTotal. The class InvoiceImpl will pro-
vide the implementation for this abstract method. Note that the two are, for
now, completely unrelated: Invoice and InvoiceImpl can be compiled indepen-
dently. For the sake of simplicity for the example, the method implementation
returns a constant.

trait Invoice {

def GrandTotal: double // Abstract definition

}

class InvoiceImpl {

def GrandTotal: double = 10 // Candidate implementation

}

A different developer (for example, in a partner company), can provide a cus-
tomization of the method GrandTotal.

trait DiscountInvoice extends Invoice {

abstract override def GrandTotal: double = super.GrandTotal * 0.95

}

Note that the developer implementing this customization does not have to know
about the concrete implementation; his customization extends the trait Invoice
and not the implementation class InvoiceImpl. Method GrandTotal is declared
above as abstract since it overrides a method which is not defined. Similarly,
another developer, (e.g., at another partner company), can define another cus-
tomization implementing a simple 1 Euro tax rule:

trait OneEuroTax extends Invoice {

abstract override def GrandTotal: double = super.GrandTotal + 1

}

Finally, a customer might want to combine the implementation InvoiceImpl
with the two traits DiscountInvoice and OneEuroTax that customize the be-
havior of GrandTotal:

class DiscountFirst extends InvoiceImpl

with DiscountInvoice

with OneEuroTax

Technologies for Evolvable Software Products 241

object Test {

def main(args : Array[String]) : Unit = {

// (10 * 0.95) + 1

println("Total " + (new DiscountFirst).GrandTotal)

}

}

Note that in this particular example, the order of the with clauses is significant,
due to the linearization of the super calls. In this case, the discount will first be
applied on the grand total, and then the one Euro tax will be added.

One of the problem with traits is that they usually do not give direct support
for state. Traits must be stateless, which imposes some strict limitations on their
use. Note that the traits community is actively working on stateful traits but
the current proposals also have some limitations (instance variables are local to
the scope of traits, with some exceptions), see [9].

– Need to Anticipate Customizations. Traits are attractive in our case since
they allow for fine-granularity code reuse. But some foresight is required to
design the collection of traits in a way that will be be most convenient for
the person performing the customizations, especially the specific grouping
of methods into traits.

– Control over Customizations. The compiler ensures type correctness. Using
traits, the control over customizations is performed at design-time.

– Resilience to Kernel Evolution. We showed in our example that the cus-
tomizations are decoupled from InvoiceImpl since they do not even need
to know about its existence. One the other hand, if the base trait Invoice
changes, the customizations will have to be adapted.

– Support for Multiple Customizations. The previous example demonstrated
that InvoiceImpl, DiscountInvoice and OneEuroTax can all be developed
independently, and finally composed together by the end-developer.

5.7 Aspect-Oriented Programming

Aspect-oriented programming [21] provides an alternative to the event models
described in sections 5.4 and 5.5. Although some realizations of aspect-oriented
programming restrict the insertion of extra code to the beginning or end of
a method body, others allow code to be inserted at arbitrary (but previously
identified) places in a method body [12]. Clearly the latter is equivalent to raising
events at those places in the method.

One concern that speaks against this approach is that a well-designed method
should encapsulate a state change that results in a coherent object state, so it
seems to go against software engineering principles to permit arbitrary mod-
ifications to a method’s body. This concern is similar to the concern that an
event handler should not modify the event sender object in arbitrary ways; see
section 5.4.

Here we consider only a rather special case of aspect-oriented programming,
namely aspect-like static program rewriting. We use Yiihaw, a static aspect

242 P. Sestoft and S. Vaucouleur

weaver for C# that works by rewriting of bytecode files [18]. It reduces run-
time overhead relative to event-based customization and permits static checks.
However, while Yiihaw’s pointcut language permits some quantification, it is
not particularly expressive. Other aspect weavers, such as AspectJ [22], would
provide more fine-grained customization, which would be an advantage compared
to event-based customization.

Customization Using Aspects. Consider again customization of the Invoice
example already seen in sections 5.1 and 5.4. Assume the Invoice class is de-
clared on a lower layer with an instance method GrandTotal:

public class Invoice {

public virtual double GrandTotal() {

double total = ...;

return total;

}

... other members ...

}

As before, assume that at the higher layer we want to customize this to give a
discount when the grand total exceeds 10,000 Euros. To do this, we separately
declare an advice method as follows:

public class MyInvoiceAspect {

public double DoDiscountAspect() {

double total = JoinPointContext.Proceed<double>();

// Customization point

return total * (total < 10000 ? 1.0 : 0.95);

}

}

and compile it, and then write an interception pointcut:

around * * double Invoice:GrandTotal()

do MyInvoiceAspect:DoDiscountAspect;

The target assembly and the advice assembly are compiled using the C# com-
piler and then woven by an aspect weaver. In the resulting woven assembly, the
GrandTotal method of the Invoice class will behave as if declared like this:

public class Invoice {

public virtual double GrandTotal() {

... complicated code ...

return total * (total < 10000 ? 1.0 : 0.95);

}

... other members ...

}

The resulting woven method has the exact same signature as the original target
method.

Technologies for Evolvable Software Products 243

Sequential Customization by Further Weaving. The woven method can
be used as target for further weaving. For instance, we may want to further
modify the Invoice class and its GrandTotal method to count the number of
times the GrandTotal method has been called. This involves adding a field int
count to the class and making further advice on the method.

The additional pointcut file must contain an introduction and an interception:

insert field private instance int MyNewInvoiceAspect:count

into Invoice;

around * * double Invoice:GrandTotal()

do MyNewInvoiceAspect:DoCountAspect;

We need to declare an advice class with a field and an advice method as follows:

public class MyNewInvoiceAspect {

private int count;

public double DoCountAspect() {

count++;

return JoinPointContext.Proceed<double>();

}

}

After compiling the advice and weaving it into the previously woven assembly,
we get a class Invoice that will behave as if declared like this:

public class Invoice {

private int count;

public virtual double GrandTotal() {

count++;

... complicated code ...

return total * (total < 10000 ? 1.0 : 0.95);

}

... other members ...

}

Evaluation of Aspects for Customization

– Need to Anticipate Customizations. Aspect-orientation does not require fore-
sight as to where events need to be raised, but there is an analogous though
less stringent need for foresight. Namely, customization points must be ex-
pressible as join points. In the case where only “around” interceptions are
expressible, foresight is needed to factorize the kernel so that all customiza-
tion points are methods, but it is not necessary to foresee which ones will
be customized.

– Control over Customizations. The type system of the implementation lan-
guage, combined with weave-time checks performed by the aspect weaver,
give some assurance that customizations are meaningful, and can point out
incompatible changes when one attempts to upgrade the base system.

244 P. Sestoft and S. Vaucouleur

– Resilience to Kernel Evolution. Aspect-oriented customization is fairly in-
sensitive to evolution of the base code so long as the names and parameters
of methods remain unchanged. However, if customized methods or their pa-
rameters get renamed, then the weaving may fail to customize a method it
should have, or may wrongly customize one that it should not.

– Support for Multiple Customizations. Aspect-oriented customization sup-
ports independently developed customizations just as well as do events.

Some research indicates that an aspect approach to cross-cutting concerns makes
software evolution harder, not easier, at least based on theoretical considerations
[39]. It is not clear that those results extend to our use of aspects. When us-
ing aspects for cross-cutting concerns, join points are likely to be described by
quantification, using only few pointcuts. However, when customizing software
products, the join points are customization points and are more likely to be
explicitly enumerated, using many pointcuts. Which gives more resilience to
evolution is unclear.

Aspects for Customization in Dynamics AX. Static aspect weaving, as
outlined above, offers a plausible way to perform customization of Dynamics AX
applications (section 3):

– It preserves the layer model of Dynamics AX. This in turn offers several
advantages. First, the overall philosophy will be readily understandable to
the current developers at the Dynamics core development team, as well at
partners and customers. Second, there is a likely upgrade path from the
current AX implementation to an AX implementation based on layers and
aspects.

– The aspect weaver can check, at weave time, the consistency of the modifi-
cations of upper layers with lower layers.

– Aspects can be statically woven so that they incur no performance penalty
at all, and hence would perform no worse than the existing source code based
customizations.

To express customizations as aspects we have used the Yiihaw aspect weaver
[19] described by another paper in this volume [18]. Although several aspect
weavers for .NET have been proposed, Yiihaw seems to be especially suited: it
introduces no runtime overhead at all, it statically checks aspect code ahead of
weave-time, it statically checks consistency of weaving, and it can further weave
an already woven assembly as indicated above. This is necessary in the Dynamics
AX scenario where lower layer code gets customized in a higher layer, and the
result gets further customized in an even higher layer; see figure 1 on page 225.
The limitations of the Yiihaw pointcut language and its notion of aspect mean
that some will consider it a tool for feature composition rather than a full-blown
aspect weaver, but it seems adequate for the purposes considered here.

5.8 Software Product Lines Using AHEAD

Feature-oriented programming has been developed over many years by Batory
and coworkers [7,8,6,35]. Part of the motivation for this work is the insight that

Technologies for Evolvable Software Products 245

future software development techniques will synthesize code and related arti-
facts (such as documentation) extensively. The research efforts have focused on
structural manipulation of these artifacts. These ideas can be seen as part of the
metaprogramming research field: programs are treated as data, and transforma-
tions are used to map programs to programs.

These ideas gave rise to concrete tools, among which GenVoca and AHEAD
[5] are prime examples. These tools were used to synthesize product lines for
various domains such as database systems and graph libraries. More concretely,
using a product line, a user can select among a set of predefined features and the
tool will combine artifacts to generate a program that implements the desired
functionality. The user typically uses a declarative domain-specific language to
express the feature selection he wants.

Among the various artifacts handled by these tools we henceforth focus our
attention on source code. The mixin is one of the core object-oriented concepts
that underpin this approach to code composition. In this context, a mixin is
a class whose superclass is specified as a parameter. Using the variant of Java
proposed by AHEAD, we can write a customization for the invoice example from
section 5.6:

layer tax;

refines class invoice {

overrides public double grandTotal() {

return Super().grandTotal() + 1;

}

}

This customization adds one Euro, a “tax”, to the grand total computed in
the base code (omitted for the sake of brevity). Note that the customization
is defined in a named layer “tax”. The discount customization, that we saw
previously, can be programmed similarly in a layer “discount”. The discount is
unconditional in this case to make the example a bit shorter.

layer discount;

refines class invoice {

overrides public double grandTotal() {

return Super().grandTotal() * 0.95;

}

}

To compose the base code invoice with the customizations, the programmer
can choose between two tools. The first one, called “mixin”, will transform the
composition into a class hierarchy. Using this tool, each customization will be
turned into an abstract class that extends another abstract class, with the ex-
ception of the last customization, discount in our case, which is turned into
a concrete class. Each class name in the hierarchy is a mangling of the name
invoice with the name of the originating layer – again with the exception of
the class that corresponds to the last customization (since it is the one that will
be instantiated).

246 P. Sestoft and S. Vaucouleur

package invoice;

abstract class invoice$$invoice implements invoice {

public double grandTotal() {

return ...;

}

}

abstract class invoice$$tax extends invoice$$invoice {

public double grandTotal() {

return super.grandTotal() + 1;

}

}

public class invoice extends invoice$$tax {

public double grandTotal() {

return super.grandTotal() * 0.95;

}

}

The other tool, called “jampack”, offers a more compact encoding of the code
composition. In this case, the base code and the customizations are turned into
static methods, with the exception of the last customization which is mapped
into a non-static method. The name mangling for method names is very similar
to the name mangling for class names performed by the other tool.

package invoice;

public class invoice {

public final double grandTotal$$invoice() {

return ...;

}

public final double grandTotal$$tax() {

return grandTotal$$invoice() + 1;

}

public double grandTotal() {

return grandTotal$$tax() * 0.95;

}

}

Mixins are often not conceived in isolation, but rather “carefully designed with
other mixins and base classes so that they are compatible” [5]. It is easy to see
in the above example that overriding grandTotal might break some other code
that relies on its initial semantics.

A particularly interesting feature of this work is the composition algebra and
design rule checking. The design rules are necessarily domain-specific, for in-
stance, for the domain of efficient data structures. Batory’s feature-oriented pro-
gramming for product lines [4] seems highly relevant and makes many points of
value for evolvable software products.

– Need to Anticipate Customizations. Similarly to classical object-oriented pro-
gramming, it seems that product-line engineering requires that the program-
mer has a good understanding of the domain. Classes must be designed in
such way to accommodate for mixin composition conveniently.

Technologies for Evolvable Software Products 247

– Control over Customizations. The AHEAD tools suite will check that the
types are conforming, but no guarantee is given on the semantics. It is up
to the designer to ensure that the prescribed composition of code artifacts
is meaningful for the domain.

– Resilience to Kernel Evolution. If we assume the closed-world assumption
that is common within software product lines, all the potential customiza-
tions and their possible interactions are known. Therefore an evolved kernel
can be organized in such way that any existing choice of features will con-
tinue to work as intended. This does not mean that upgradability comes
for free: the kernel developer must understand these interactions and handle
them.

– Support for Multiple Customizations. The product line is the family of classes
created by mixin composition. As noted before, the mixin approach requires
that mixins are not created in isolation, but rather carefully designed to-
gether, which basically assumes a closed world of possible customizations.
Therefore there is no support for independently developed customizations.

5.9 Software Product Lines Using Multi-dimensional Separation of
Concerns

The Hyper/J framework and tool developed by Tarr, Ossher and others at IBM
Research [30] support multi-dimensional separation and integration of concerns
in Java programs, which may be used to implement software product lines. A
Hyper/J prototype implementation [16] is publicly available, but is not currently
actively supported. In particular, the prototype does not seem to work with
the latest version of the Java runtime environment, which seriously limits its
usability. Hyper/J shares many goals with aspect-oriented programming, such
as the decomposition of software systems into modules, each of which deals with
a particular concern.

A dimension of concern is a class, a feature, or a software artifact. For exam-
ple, a class in a code base represents a class concern. Each dimension of concern
gives a different approach to software decomposition. Tarr and others coined the
term “the tyranny of the dominant decomposition” to signify that a program-
ming language typically supports only one (dominant) decomposition, such as
classes in case of object-oriented languages. Consequently some concerns cannot
be implemented in a modular manner, and the code fragments implementing
them will be scattered across the modules that arose from the dominant decom-
position [30, page 5]. For instance, logging (of method calls) is an example of
such as cross-cutting concern, often cited in aspect-oriented programming.

Using Hyper/J, decomposition can be done simultaneously along multiple di-
mensions of concern: The class is no longer the main decomposition mechanism
in an object-oriented language, putting class, package, and functional decompo-
sition on a more equal footing. The Hyper/J tool takes care of the interaction
across those different decompositions. The goal is to encapsulate into new mod-
ules those concerns that were previously scattered over the classes.

248 P. Sestoft and S. Vaucouleur

By combining selected concerns into a program, a programmer can create
a version of the software containing only selected features, even if the original
software system was not written with separation of features in mind [30].

Units are organized in a multi-dimensional matrix, where each axis is a di-
mension of concern, and each point on the axis is a concern in that dimension.
The main units in Hyper/J are functions, class variables, and packages. Concern
specifications are used to specify the coordinate of each unit within the matrix,
using the notation:

x: y.z

where x is a unit name, y a dimension and z a concern.
We now give a Hyper/J solution to the invoice example from section 5.6. Once

again there is a base implementation of Invoice, now in Java. The method
GrandTotal computes the sum of the items of the invoice, and another method
called GetTotal will return that total.

package lipari.base;

public class Invoice {

private double total;

public void GetTotal() {

return total;

}

public void GrandTotal() {

total = 10; // Dummy implementation

}

}

In another package, a developer defines a discount as a customization of the base
implementation by writing the following class:

package lipari.discount;

public class Invoice {

double total;

public double GrandTotal(double x) {

total = total * 0.95;

}

}

Note that the name used for the method and for the instance variable mimic the
ones from the base code, but the package name is different. The “one Euro tax
customization” can be specified similarly to the discount customization above,
in a separate package. Note that both the customizations and the base class can
be compiled completely independently.

A programmer can then compose the base code with the two customizations
by writing the following Hyper/J specification (some parts were omitted for
brevity). First, we specify the concerns:

Technologies for Evolvable Software Products 249

-concerns

package lipari.base : Feature.Base

package lipari.tax : Feature.Tax

package lipari.discount : Feature.Discount

In this case the mapping is simple since each concern is implemented by its own
package. Then we specify that we want to compose a software system, here called
LipariHypermodule, using the concerns specified above:

-hypermodules

hypermodule LipariHypermodule

hyperslices: Feature.Base, Feature.Discount, Feature.Tax;

relationships:

mergeByName;

merge class Feature.Base.Invoice,

Feature.Discount.Invoice,

Feature.Tax.Invoice;

end hypermodule;

Note the composition relationship mergeByName, which indicates that units in
different hyperslices that have the same name will be fused. Using the composi-
tion specification above, the tool can generate a new software system with the
selected features. The code below will correctly display the expected total, 10
Euros with a 5% discount, followed by a one Euro tax – that is, 10.5 Euros.

package lipari.base;

public class Main {

public static void main(String[] args) {

lipari.base.Invoice i = new lipari.base.Invoice();

i.GrandTotal();

System.out.println("Total = " + i.GetTotal());

}

}

– Need to Anticipate Customizations. Some foresight is required to identify the
dimensions of concern because they determine how concerns can be combined
into systems. It seems that concerns may be added to a dimension as needed.

– Control over Customizations. Types provide some protection against mean-
ingless compositions at design-time.

– Resilience to Kernel Evolution. If we have a closed-world assumption, simi-
larly to what was mentioned in section 5.8, the evolution of the kernel can
be done in such way that any existing choice of features continue to work.
Of course, the same constraints mentioned in section 5.8 apply here.

– Support for Multiple Customizations. Again as it was mentioned before, un-
der a close-world assumption there is no support for other independently
developed customizations other than those that could be foreseen when de-
signing the kernel.

250 P. Sestoft and S. Vaucouleur

Table 1. Summary evaluation of customization technologies. Legend: Need to An-
ticipate Customizations: (1) none, (2) customization points, (3) customization kinds.
Control over Customizations: (a) design-time control, (b) run-time control, (c) none.
Resilience to Kernel Evolution: (i) some resilience, (ii) restricted resilience, (iii) no
resilience. Support for Multiple Customizations: (I) for parallel development, (II) for
sequential development, (III) no support.

Technique Sec. Impl. Refs. Need to
Anticipate
Customiza-
tions

Control over
Customiza-
tions

Resilience to
Kernel
Evolution

Support for
Multiple Cus-
tomizations

Inheritance 5.1 C# [1] (2) (a) (ii) (II)

Inform.
hiding

5.2 C# [32,1] (2) (a) (ii) (III)

Param.
polymor-
phism

5.3 C# [1] (2) (a) (ii) (II)

Events 5.4 C# [1] (2) (a) and (b) (ii) (I)

Partial
methods

5.5 C# [1] (2) (a) (ii) (III)

Mixins,
traits

5.6 Scala [11,29] (2) (a) (ii) (I)

Aspects 5.7 Yiihaw [19] (1) (c) (iii) (I)

SPL using
AHEAD

5.8 AHEAD [5] (3) (a) (i) (III)

SPL using
MSC

5.9 Hyper/J [30] (3) (a) (i) (III)

AX layers 5.10 Dynamics [14] (1) (a) (iii) (II)

5.10 The Dynamics AX Layer Model

The source-code based layered customization models of Dynamics AX was de-
scribed in section 3.8. Here we just give a brief assessment of it for comparison
with the other technologies surveyed in the following sections.

– Need to Anticipate Customizations. There is no need to anticipate customiza-
tions, since any lower layer application element can be copied to a higher
layer and customized there.

– Control over Customizations. A customization can include any edits, so there
is no support for controlling customizations.

– Resilience to Kernel Evolution. The customizations are very fragile to base
program evolution; it is entirely up to the developer to identify what changes
need to be made to the customizations.

– Support for Multiple Customizations. The support is very good if the changes
are made sequentially, for instance, if a customized component is further
customized at a higher layer.

Technologies for Evolvable Software Products 251

5.11 Summary Evaluation

Table 1 summarizes the properties of the technologies surveyed.

6 Conclusion

We defined the upgrade problem as the conflict between customization and evo-
lution of flexible software products. We have presented the Dynamics enterprise
resource planning systems as prime examples of such software products, and dis-
cussed how they are structured and customized, underscoring that the upgrade
problem is a real one and the focus of much attention also in industrial contexts.

We then considered a number of software technologies and practices that
are traditionally used for customization and for creation of families of related
software systems. For each one, we have given a description, an example, and
an evaluation in relation to four criteria: need for foresight, control over cus-
tomizations, resilience to kernel evolution, and support for multiple independent
customizations.

A tentative conclusion of this investigation is that static aspects (in the Yiihaw
guise [18]) and traits offer good static correctness guarantees and good support
for independent customization. They fit well with the structure of Dynamics AX
(section 3.9) but rely too much on build-time software composition to fit well
with the development practices around the Dynamics NAV (section 3.6). Also,
they both require some foresight in defining the customization points, which
must be classes and methods, and they are rather fragile in case class names or
method names in the kernel are changed as a consequence of kernel evolution.

Software product lines offer some interesting potential to deal with the up-
grade problem but their closed-world assumption does not fit the domain of
enterprise resource planning (ERP) systems that we took for a case study here.
Such systems must be customizable to unforeseeable legislation and new business
models, and this poses additional upgrade challenges.

Acknowledgements. Thanks to the anonymous referees whose comments led to
many improvements and clarifications. This work is part of the project Designing
Evolvable Software Products, sponsored by NABIIT under the Danish Strategic
Research Council, Microsoft Development Center Copenhagen, DHI Water and
Environment, and the IT University of Copenhagen. For more information, see
http://www.itu.dk/research/sdg.

References

1. C# language specification. ECMA Standard 334 (June 2005)
2. Allen, E.: Object-oriented programming in Fortress. FOOL/WOOD 2007, (January

2007), http://www.cs.hmc.edu/
3. Allen, E., et al.: The Fortress language specification. Technical report, Sun Mi-

crosystems (March 2008), http://research.sun.com/projects/plrg/

http://www.itu.dk/research/sdg
http://www.cs.hmc.edu/
http://research.sun.com/projects/plrg/

252 P. Sestoft and S. Vaucouleur

4. Batory, D.: Feature oriented programming for product-lines. Slide set for tutorial,
OOPSL 2004, Vancouver, Canada (October 2004)

5. Batory, D.: Multilevel models in model-driven engineering, product lines, and
metaprogramming. IBM Systems Journal 45(3), 527–539 (2006)

6. Batory, D., Lofaso, B., Smaragdakis, Y.: JTS, tools for implementing domain spe-
cific languages. In: Fifth International Conference on Software Reuse, pp. 143–153
(1998)

7. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Transactions on Software Engineering
and Methodology 1(4), 355–398 (1992)

8. Batory, D., Singhal, V., Sirkin, M., Thomas, J.: Scalable software libraries. In:
SIGSOFT, pp. 191–199 (1993)

9. Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Stateful traits and their formal-
ization. Computer Languages, Systems & Structures 34(2-3), 83–108 (2008)

10. Dittrich, Y., Vaucouleur, S.: Customization and upgrading of ERP systems. an em-
pirical perspective. Technical Report TR-2008-105, IT University of Copenhagen,
Denmark (March 2008)

11. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: A mech-
anism for fine-grained reuse. ACM Transactions on Programming Languages and
Systems 28(2), 331–388 (2006)

12. Eaddy, M., Aho, A.: Statement annotations for fine-grained advising. In: ECOOP
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE
2006), Nantes, France, (July 2006)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)

14. Greef, A., et al.: Inside Microsoft Dynamics AX 4.0. Microsoft Press (2006)

15. JSR-277 Expert Group. Jsr-277: Java module system. Technical report, Sun Mi-
crosystems (October 2006), http://jcp.org/en/jsr/detail?id=277

16. Hyper, J.: Home page, http://www.alphaworks.ibm.com/tech/hyperj

17. Software Engineering Institute.Software product lines,
http://www.sei.cmu.edu/productlines/

18. Johansen, R., Sestoft, P., Spangenberg, S.: Zero-overhead composable aspects for
.NET. In: Börger, E., Cisternino, A. (eds.) Software Engineering. LNCS, vol. 5316,
pp. 185–215. Springer, Heidelberg (2008)

19. Johansen, R., Spangenberg, S.: Yiihaw. an aspect weaver for .NET. Master’s the-
sis, IT University of Copenhagen, Denmark (February 2007), http://www.itu.dk/
people/sestoft/itu/JohansenSpangenberg-Aspects-2007.pdf

20. Kennedy, A., Russo, C.: Generalized algebraic data types and object-oriented pro-
gramming. In: OOPSLA, San Diego, California, October 2005, pp. 21–40 (2005)

21. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

23. Lehman, M.M.: Rules and tools for software evolution planning and management.
Annals of Software Engineering 11(1), 15–44 (2001)

24. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9), 1060–1076 (September 1980)

http://jcp.org/en/jsr/detail?id=277
http://www.alphaworks.ibm.com/tech/hyperj
http://www.sei.cmu.edu/productlines/
http://www.itu.dk/people/sestoft/itu/JohansenSpangenberg-Aspects-2007.pdf
http://www.itu.dk/people/sestoft/itu/JohansenSpangenberg-Aspects-2007.pdf

Technologies for Evolvable Software Products 253

25. Mens, T., Buckley, J., Zenger, M., Rashid, A.: Towards a taxonomy of software evo-
lution. In: International Workshop on Unanticipated Software Evolution, Warsaw,
Poland (April 2003)

26. Microsoft. Microsoft Dynamics AX. Homepage,
http://www.microsoft.com/dynamics/ax/

27. Microsoft. Microsoft Dynamics NAV. Homepage,
http://www.microsoft.com/dynamics/nav/

28. Mortensen, F.: Software development with Navision. Talk, ERP Crash Course,
University of Copenhagen, January 31 (2007),
http://www.3gerp.org/Documents/ERP

29. Odersky, M.: The Scala language specification, version 2.0. Technical report, École
Polytechnique Féderale de Lausanne, Switzerland (January 2007),
http://www.scala-lang.org/

30. Ossher, H., Tarr, P.: Hyper/J: multi-dimensional separation of concerns for Java.
In: ICSE 2001: 23rd International Conference on Software Engineering, Toronto,
Canada, pp. 821–822. IEEE Computer Society, Los Alamitos (2001)

31. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

32. Parnas, D.L.: On the design and development of program families. IEEE Transac-
tions on Software Engineering SE2(1), (1976)

33. Perlis, A.J.: Epigrams on programming. SIGPLAN Notices 17(9), 7–13 (1982)
34. Pontoppidan, M.F.: Smart customizations. Screen cast (2006),

http://channel9.msdn.com/Showforum.aspx?forumid=38&tagid=94

35. Prehofer, C.: Feature-oriented programming: A fresh look at objects. In: Aksit,
M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 419–443. Springer,
Heidelberg (1997)

36. Rogerson, D.: Inside COM. Microsoft’s Component Object Model. Microsoft Press
(1997)

37. Stroustrup, B.: The C++ programming language. Addison-Wesley, Reading (2000)
38. D. Studebaker. Programming Microsoft Dynamics NAV. Packt Publishing (2007)
39. Tourwé, T., Brichau, J., Gybels, K.: On the existence of the AOSD-evolution para-

dox. In: AOSD 2003 Workshop on Software-engineering Properties of Languages
for Aspect Technologies, Boston, USA (2003)

http://www.microsoft.com/dynamics/ax/
http://www.microsoft.com/dynamics/nav/
http://www.3gerp.org/Documents/ERP
http://www.scala-lang.org/
http://channel9.msdn.com/Showforum.aspx?forumid=38&tagid=94

	Technologies for Evolvable Software Products: The Conflict between Customizations and Evolution
	Introduction and Definitions
	The Upgrade Problem
	Customizable Software
	Software Evolution
	The Evolution of Specifications
	Upgrade Problems in Operating Systems
	Conclusion on the Upgrade Problem

	Case Study: Dynamics AX and NAV
	Add-ons and Customizations
	Dynamics NAV Versus Dynamics AX
	The Dynamics Ecosystem
	What Constitutes an Upgrade
	Upgrade Problems in Dynamics NAV and Dynamic AX
	Constraints on a Solution to the Dynamics Upgrade Problem
	Handling Upgrade in Dynamics NAV
	The Layered Structure of a Dynamics AX Application
	Customization Using AX Layers
	Mitigating Code Upgrade Problems in Dynamics AX

	Evaluation Criteria
	Need to Anticipate Customizations
	Control over Customizations
	Resilience to Kernel Evolution
	Support for Multiple Customizations
	Runtime Performance Penalty
	Illustration of the Criteria

	Survey of Software Customization Methods
	Inheritance
	Information Hiding Using Interfaces
	Parametric Polymorphism
	Synchronous Events
	Partial Methods as Statically Bound Events
	Mixins and Traits
	Aspect-Oriented Programming
	Software Product Lines Using AHEAD
	Software Product Lines Using Multi-dimensional Separation of Concerns
	The Dynamics AX Layer Model
	Summary Evaluation

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

