
Uncertainty Reasoning for Ontologies with

General TBoxes in Description Logic

Volker Haarslev, Hsueh-Ieng Pai, and Nematollaah Shiri

Concordia University
Dept. of Computer Science & Software Engineering

Montreal, Quebec, Canada
{haarslev, hsueh pa, shiri}@cse.concordia.ca

Abstract. We present a reasoning procedure for ontologies with un-
certainty described in Description Logic (DL) which include General
TBoxes, i.e., include cycles and General Concept Inclusions (GCIs). For
this, we consider the description language ALCU , in which uncertainty
parameters are associated with ABoxes and TBoxes, and which allows
General TBoxes. Using this language as a basis, we then present a tableau
algorithm which encodes the semantics of the input knowledge base as
a set of assertions and linear and/or nonlinear arithmetic constraints on
certainty variables. By tuning the uncertainty parameters in the knowl-
edge base, different notions of uncertainty can be modeled and reasoned
with, within the same framework. Our reasoning procedure is determin-
istic, and hence avoids possible empirical intractability in standard DL
with General TBoxes. We further illustrate the need for blocking when
reasoning with General TBoxes in the context of ALCU .

1 Introduction

Over the last few years, a number of ontology languages have been developed to
help make Web resources more machine-interpretable by giving Web resources
a well-defined meaning. Among these languages, the OWL Web Ontology Lan-
guage [26] is the most recent W3C Recommendation. One of its species, OWL
DL, is named because of its correspondence with Description Logics (DLs) [1].

The family of DLs is mostly a subset of first-order logic (FOL) that is consid-
ered to be attractive because it keeps a good compromise between the expressive
power and the computational tractability [1]. The standard DLs, such as the
one that OWL DL is based on, focus on the classical logic, which is more suit-
able to describe concepts that are crisp and well-defined in nature. However, in
real-world applications, uncertainty is everywhere. In the context of this paper,
uncertainty refers to a form of deficiency or imperfection in the information for
which the truth of such information is not established definitely [15]. The need
to model and reason with uncertainty in DLs has been found in many different
Semantic Web contexts, such as Semantic Web services, multimedia annotation,
and bioinformatics. For example, in an online medical diagnosis system, one
might want to express that the certainty of an obese person having a parent

who is obese lies between 0.7 and 1, and John is an obese person with a degree
between 0.8 and 1. Such knowledge cannot be expressed nor be reasoned with
the standard DLs.

Over the last decade, a number of frameworks have been proposed which ex-
tend the standard DLs with uncertainty [5–7, 13, 14, 19–25]. Some of them deal
with only vagueness while others deal with only probabilistic knowledge. Since
different applications may require to model different notions of uncertainty, and
there may be situations in which one needs to model different notions of uncer-
tainty within the same application, we are interested in developing a framework
such that different forms of uncertainty knowledge can be represented and rea-
soned with, in a generic way.

In this paper, we propose a reasoning procedure for uncertainty knowledge
bases with General TBoxes by taking a generic approach. As in the standard
description languages, a General TBox augments the expressive power of the lan-
guage by allowing cycles and General Concept Inclusions (GCIs) in the TBox,
which in turn allows statements such as domain and range restrictions to be
expressed. The proposed reasoning procedure is based on the DL ALCU , which
extends the standard DL ALC with uncertainty. Inspired by the approach of the
parametric framework [16] which incorporates uncertainty in the standard logic
programming and deductive databases, the interesting feature of our approach is
that, by tuning the uncertainty parameters that are associated with the axioms
and assertions in the ALCU knowledge bases, different notions of uncertainty
can be modeled and reasoned with, using a single reasoning procedure. In addi-
tion, since the proposed reasoning procedure is deterministic, it avoids possible
empirical intractability in standard DL reasoning when dealing with General
TBoxes.

This paper is an extension of our previous work as follows. In [8], we pre-
sented a generic framework for representing DLs with uncertainty. That work
was further extended in [10] with a core reasoning procedure. A reasoning pro-
cedure for dealing with acyclic uncertainty knowledge bases was presented in [9].
In this paper, we further extend [9] by presenting a reasoning procedure that
supports uncertainty knowledge bases with General TBoxes.

The rest of this paper is organized as follows. We next review the standard
DL ALC and related work. Section 3 presents the DL ALCU and the proposed
tableau reasoning algorithm. A detailed example is provided in Section 4 to
illustrate the need for blocking when reasoning with ALCU knowledge bases
which contain General TBoxes. Concluding remarks together with future works
are discussed in Section 5.

2 Background and Related Work

In this section, we first review the standard DL language ALC, which is the basis
for ALCU , a generic DL language we proposed which unifies DL frameworks with
uncertainty. We will also review related work in this context.

2.1 Overview of the DL ALC

Description logics form a family of knowledge representation languages that can
be used to represent the knowledge of an application domain using concept
descriptions and have logic-based semantics [1, 3]. The DL fragment on which
we focus in this paper is called ALC, which corresponds to the propositional
multi-modal logic K(m) [18]. As shown in Fig. 1, the ALC framework consists

of three main components – the description language, the knowledge base, and
the reasoning procedure.

Fig. 1. The ALC Framework

1. ALC Description Language: Every description language has elementary de-
scriptions which include atomic concepts (unary predicates) and atomic roles
(binary predicates). Complex descriptions can then be built inductively from
concept constructors. The description language ALC consists of a set of lan-
guage constructors that are of practical interest. Specifically, let R be a role
name, the syntax of a concept description (denoted C or D) in ALC is de-
scribed as follows, where the name of each rule is given in parenthesis.

C, D → A (Atomic Concept) |
¬C (Concept Negation) |
C ⊓ D (Concept Conjunction) |
C ⊔ D (Concept Disjunction) |
∃R.C (Role Exists Restriction) |
∀R.C (Role Value Restriction)

For example, let Person be an atomic concept and hasParent be a role.
Then ∀hasParent .Person is a concept description. We use ⊤ as a synonym
for A ⊔ ¬A, and ⊥ as a synonym for A ⊓ ¬A.
The semantics of the description language is defined using the notion of
interpretation. An interpretation I is a pair I = (∆I , ·I), where ∆I is a
non-empty domain of the interpretation, and ·I is an interpretation function
that maps each atomic concept A to a set AI ⊆ ∆I , each atomic role R to

a binary relation RI ⊆ ∆I × ∆I , and each individual name a to an element
a ∈ ∆I . The interpretations of concept descriptions are shown below:

(¬C)I = ∆I\CI

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(∃R.C)I = {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI}
(∀R.C)I = {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ RI → b ∈ CI}

2. ALC Knowledge Base: The knowledge base is composed of a Terminological
Box (TBox) and an Assertional Box (ABox). A TBox T is a set of statements
about how concepts in an application domain are related to each other. Let
C and D be concept descriptions. The TBox is a finite, possibly empty, set of
terminological axioms that could be a combination of concept inclusions of
the form 〈C ⊑ D〉 (that is, C is subsumed by D) and concept equations of the
form 〈C ≡ D〉 (that is, C is equivalent to D). A General Concept Inclusion
(GCI) is a special kind of concept inclusion where the left hand side of the
axiom is not restricted to be a concept name but can be an arbitrary concept
description. An interpretation I satisfies 〈C ⊑ D〉 if CI ⊆ DI , and it satisfies
〈C ≡ D〉 if CI = DI . An interpretation I satisfies a TBox T iff I satisfies
every axiom in T .
An ABox is a set of statements that describe a specific state of affairs in an
application domain, with respect to some individuals, in terms of concepts
and roles. Let a and b be individuals, C be a concept, R be a role, and let “:”
denote “is an instance of”. An ABox includes of a set of assertions that could
be a combination of concept assertions of the form 〈a : C〉 and role assertions
of the form 〈(a, b) : R〉. An interpretation I satisfies 〈a : C〉 if aI ∈ CI , and
it satisfies 〈(a, b) : R〉 if (aI , bI) ∈ RI . An interpretation I satisfies an ABox
A, iff it satisfies every assertion in A with respect to a TBox T .
An interpretation I satisfies (or is a model of) a knowledge base Σ = 〈T ,A〉
(denoted I |= Σ), iff it satisfies both components of Σ. The knowledge base
Σ is consistent if there exists an interpretation I that satisfies Σ. We say
that Σ is inconsistent otherwise.

3. ALC Reasoning Procedure: Most DL systems use tableau-based reasoning
procedure (called tableau algorithm) to provide reasoning services [1]. The
main reasoning services include (i) the consistency problem which checks if
the ABox is consistent with respect to the TBox, (ii) the entailment problem
which checks if an assertion is entailed by a knowledge base, (iii) the concept
satisfiability problem which checks if a concept is satisfiable with respect to
a TBox, and (iv) the subsumption problem which checks if a concept is
subsumed by another concept with respect to a TBox. All these reasoning
services can be reduced to the consistency problem [1]. The tableau algo-
rithm can be used to check consistency of the knowledge base Σ. It tries
to construct a model by iteratively applying a set of so-called completion
rules in arbitrary order. Each completion rule application adds one or more
additional inferred assertions to the ABox to make it explicit the knowledge
that was previously present implicitly. The algorithm terminates when no
further completion rule is applicable. If one could arrive a completion that

contains no contradiction (also known as clash), then the knowledge base is
consistent. Otherwise, the knowledge base is inconsistent.

2.2 Related Work

Incorporating uncertainty reasoning in DL frameworks has been the topic of
numerous research for more than a decade [5–7, 13, 14, 19–25]. Some research
extended the tableau-based reasoning procedure used in standard DLs, some
transformed the uncertainty knowledge bases into standard DL knowledge bases,
while others employed completely different reasoning procedures such as the in-
ference algorithm developed for Bayesian networks. A survey of these frameworks
can be found in Chapter 6 of [1] and in [12].

Although General TBoxes were supported in [4, 5, 19, 20, 24], there are some
major differences between these works and the one we present in this paper.
Unlike our reasoning procedure which encode the semantics of the knowledge
base as uncertainty constraints, the one proposed in [4] transforms the fuzzy
knowledge bases into standard knowledge bases. On the other hand, the reason-
ing procedure presented in [19, 20] deal with the certainty values directly within
the tableau algorithm. Finally, although constraint-based reasoning procedures
were also proposed in [5, 24], the main difference between these two and ours is
that, while our approach is to develop one reasoning procedure for dealing with
uncertainty with different mathematical foundations, these works mainly consid-
ered one form. Specifically, [5] supports only product t-norm, and [24] supports
only Lukasiewicz semantics.

3 A Reasoning Procedure for ALCU Knowledge Bases

with General TBoxes

In this section, we present a reasoning procedure for ALCU knowledge bases
with General TBoxes. For this, we first introduce the DL ALCU , which extends
the standard DL ALC with uncertainty, by presenting the syntax and semantics
of its description language and knowledge base. We then present the proposed
ALCU reasoning procedure. After that, we illustrate through an example the
various extended components of the ALCU framework.

3.1 The Description Language ALCU

The description language refers to the language used for building concepts. The
syntax of the ALCU description language is identical to that of the standard
ALC, while the corresponding semantics is extended with uncertainty.

In order to model different notions of uncertainty, we assume that the cer-
tainty values form a complete lattice L = 〈V ,�〉, where V is the certainty do-
main, and � is the partial order on V . Also, ≺, �, ≻, and = are used with their
obvious meanings. We use l to denote the least element in V , t for the greatest
element in V , ⊕ for the join operator (the least upper bound) in L, and ⊗ for

the meet operator (the greatest lower bound). We also assume that there is only
one underlying certainty lattice for the entire knowledge base.

The semantics of the description language is based on the notion of an in-
terpretation. An interpretation I is defined as a pair (∆I , ·I), where ∆I is the
domain and ·I is an interpretation function that maps each

– atomic concept A into a certainty function CFC , where CFC : ∆I → V
– atomic role R into a certainty function CFR, where CFR : ∆I × ∆I → V
– individual name a to an element a ∈ ∆I

where V is the certainty domain. For example, let John be an individual name
and Obese be an atomic concept. Then, ObeseI(JohnI) gives the certainty that
John is an instance of the concept Obese. The syntax and semantics of the
description language ALCU are summarized in Table 1.

Table 1. Syntax and Semantics of the Description Language ALCU

Name Syntax Semantics (a ∈ ∆I)

Top Concept ⊤ ⊤I(a) = t

Bottom Concept ⊥ ⊥I(a) = l

Concept Negation ¬C (¬C)I(a) =∼CI(a)

Concept Conjunction C ⊓ D (C ⊓ D)I(a) = fc(C
I(a), DI(a))

Concept Disjunction C ⊔ D (C ⊔ D)I(a) = fd(CI(a), DI(a))

Role Exists Restriction ∃R.C (∃R.C)I(a) = ⊕b∈∆I{fc(R
I(a, b), CI(b))}

Role Value Restriction ∀R.C (∀R.C)I(a) = ⊗b∈∆I{fd(∼RI(a, b), CI(b))}

The interpretation of the top concept ⊤ is the greatest element in the cer-
tainty domain V , that is, ⊤I(a) = t, for all a ∈ ∆I . For instance, the interpreta-
tion of ⊤ is 1 (or true) in the standard logic with V = {0, 1}, as well as in other
logics with V = [0, 1]. Similarly, the interpretation of the bottom concept ⊥ is the
least element in the certainty domain V , that is, ⊥I(a) = l, for all a ∈ ∆I . For
example, this corresponds to 0 (or false) in the standard logic with V = {0, 1},
as well as in other logics with V = [0, 1].

The semantics of the concept negation ¬C is defined as (¬C)I(a) =∼CI(a),
for all a ∈ ∆I . The symbol ∼ denotes the negation function, where ∼: V → V
must satisfy the following properties:

– Boundary Conditions: ∼ l = t and ∼ t = l.

– Double Negation: ∼(∼α) = α, for all α ∈ V .

For example, a common interpretation of ¬C is 1 − CI(a).
In addition, fc and fd in Table 1 denote the conjunction and disjunction

functions, respectively, both of which we refer as the combination functions.
They are used to specify how one should interpret a given description language.
A combination function f is a binary function from V × V to V . This function
combines a pair of certainty values into one. A combination function must satisfy
some properties as listed in Table 2 [16].

Table 2. Combination Function Properties

ID Property Name Property Definition

P1 Monotonicity f(α1, α2) � f(β1, β2) if αi � βi, for i = 1, 2

P2 Bounded Above f(α1, α2) � αi, for i = 1, 2

P3 Bounded Below f(α1, α2) � αi, for i = 1, 2

P4 Boundary Condition (Above) ∀α ∈ V, f(α, l) = α and f(α, t) = t

P5 Boundary Condition (Below) ∀α ∈ V, f(α, t) = α and f(α, l) = l

P6 Continuity f is continuous w.r.t. each of its arguments

P7 Commutativity ∀α, β ∈ V, f(α, β) = f(β, α)

P8 Associativity ∀α, β, δ ∈ V, f(α,f(β, δ))= f(f(α, β), δ)

A conjunction function fc is a combination function that satisfies properties
P1, P2, P5, P6, P7, and P8 as described in Table 2. The monotonicity property
asserts that increasing the certainties of the arguments in f improves the cer-
tainty that f returns. The bounded value and boundary condition properties are
included so that the interpretation of the certainty values makes sense. The com-
mutativity property allows reordering of the arguments of f , say for optimization
purposes. Finally, the associativity of f ensures that different evaluation orders of
concept conjunctions will not yield different results. Some common conjunction
functions are the well-known minimum function and the algebraic product.

A disjunction function fd is a combination function that satisfies properties
P1, P3, P4, P6, P7, and P8 as described in Table 2. These properties are en-
forced for similar reasons as in the conjunction case. Some common disjunction
functions are the maximum and the probability independent functions.

In Table 1, the semantics of the Role Exists Restriction ∃R.C is defined as
(∃R.C)I(a) = ⊕b∈∆I{fc(R

I(a, b), CI(b))}, for all a ∈ ∆I . The intuition here is
that ∃R.C is viewed as the open first order formula ∃b. R(a, b) ∧ C(b), where ∃
is viewed as a disjunction over certainty values associated with R(a, b) ∧ C(b).
Specifically, the semantics of R(a, b) ∧ C(b) is captured using the conjunction
function fc(R

I(a, b), CI(b)), and ∃b is captured using the join operator in the
certainty lattice ⊕b∈∆I .

Similarly, the semantics of the Role Value Restriction ∀R.C is defined as
(∀R.C)I(a) = ⊗b∈∆I{fd(∼RI(a, b), CI(b))}, for all a ∈ ∆I . The intuition here
is that ∀R.C is viewed as the open first order formula ∀b. R(a, b) → C(b), where
R(a, b) → C(b) is equivalent to ¬R(a, b) ∨ C(b), and ∀ is viewed as a conjunction
over certainty values associated with the implication R(a, b) → C(b). To be more
precise, the semantics of R(a, b) → C(b) is captured using the disjunction and
the negation functions as fd(∼RI(a, b), CI(b)), and ∀b is captured using the
meet operator in the certainty lattice ⊗b∈∆I .

We say a concept is in negation normal form (NNF) if the negation operator
appears only in front of concept names. The following two inter-constructor
properties allow the transformation of concept descriptions into NNFs.

– De Morgan’s Rule: ¬(C ⊔ D) ≡ ¬C ⊓ ¬D and ¬(C ⊓ D) ≡ ¬C ⊔ ¬D.
– Negating Quantifiers Rule: ¬∃R.C ≡ ∀R.¬C and ¬∀R.C ≡ ∃R.¬C.

3.2 ALCU Knowledge Base

The knowledge base Σ in the ALCU framework is a pair 〈T ,A〉, where T is
a TBox and A is an ABox. An interpretation I satisfies (or is a model of)
Σ (denoted I |= Σ), if and only if it satisfies both T and A. The knowledge
base Σ is consistent if there exists an interpretation I that satisfies Σ, and is
inconsistent otherwise.

ALCU TBox An ALCU TBox T consists of a set of terminological axioms
defining how concepts are related to each other. Each axiom is associated with
a certainty value as well as a conjunction function and a disjunction function
which are used to interpret the concept descriptions in the axiom. Specifically, an
ALCU TBox consists of axioms that could be a combination of GCIs of the form
〈C ⊑ D | α, fc, fd〉 and concept equations of the form 〈C ≡ D | α, fc, fd〉, where
C and D are concept descriptions, α ∈ V is the certainty that the axiom holds,
fc is the conjunction function used as the semantics of concept conjunction and
part of the role exists restriction, and fd is the disjunction function used as the
semantics of concept disjunction and part of the role value restriction. In case
the choice of the combination function in the current axiom is immaterial, “−”
is used as a place holder. The concept equation 〈C ≡ D | α, fc, fd〉 is equivalent
to the two concept inclusions 〈C ⊑ D | α, fc, fd〉 and 〈D ⊑ C | α, fc, fd〉.

For example, the axiom 〈Rich ⊑ ((∃owns.ExpensiveCar ⊔ ∃owns.Airplane)
⊓Golfer) | [0.8, 1], min, max〉 states that the concept Rich is subsumed by own-
ing expensive car or owning an airplane, and being a golfer. The certainty of this
axiom is at least 0.8, with all the concept conjunctions interpreted using min

function, and all the concept disjunctions interpreted using max.
In order to transform an axiom of the form 〈C ⊑ D | α, fc, fd〉 into its nor-

mal form, 〈⊤ ⊑ ¬C ⊔ D | α, fc, fd〉, the semantics of the concept subsumption
is restricted to be fd(∼CI(a), DI(a)), for all a ∈ ∆I , where ∼CI(a) captures
the semantics of ¬C, and fd captures the semantics of ⊔ in ¬C ⊔ D. Hence, an
interpretation I satisfies 〈C ⊑ D | α, fc, fd〉 if fd(∼CI(a), DI(a)) = α, for all
a ∈ ∆I .

ALCU ABox An ALCU ABox A consists of a set of assertions, each of which
is associated with a certainty value and a pair of combination functions used to
interpret the concept description(s) in the assertion. Specifically, these assertions
could include concept assertions of the form 〈a : C | α, fc, fd〉 and role assertions
of the form 〈(a, b) : R | α,−,−〉, where a and b are individuals, C is a concept,
R is a role, α ∈ V, fc is the conjunction function, fd is the disjunction function,
and − denotes that the corresponding combination function is not applicable.

For instance, the assertion “Mary is either tall or thin, and smart with proba-
bility between 0.6 and 0.8” can be expressed as 〈Mary : (Tall ⊔Thin) ⊓ Smart |
[0.6, 0.8],×, ind〉. Here, the concept conjunction is interpreted using the algebraic
product (×), and the disjunction function is interpreted using the probability
independent function (ind). Note that, since reasoning with probability often

requires extra information/knowledge about the events and facts in the world,
we are investigating ways to model knowledge base with more general proba-
bility theory, such as positive/negative correlation, ignorance, and conditional
independence.

In terms of the semantics of the assertions, an interpretation I satisfies
〈a : C | α, fc, fd〉 if CI(aI) = α, and I satisfies 〈(a, b) : R | α,−,−〉 if RI(aI , bI)
= α.

There are two types of individuals that could be in an ABox - defined in-
dividuals and generated individuals, defined as follows. We also introduce the
notion of predecessor and ancestor in Definition 2.

Definition 1. (Defined/Generated Individual) Let I be the set of all individuals
in an ABox. We call individuals whose names explicitly appear in the input
ABox “defined individuals” (ID), and those generated by the reasoning procedure
“generated individuals” (IG).

Definition 2. (Predecessor/Ancestor) An individual a is a “predecessor” of an
individual b (or b is a R-successor of a) if the ABox A contains the asser-
tion 〈(a, b) : R | α,−,−〉. An individual a is an “ancestor” of b if it is either
a predecessor of b or there exists a chain of assertions 〈(a, b1) : R1 | α1,−,−〉,
〈(b1, b2) : R2 | α2,−,−〉,..., 〈(bk, b) : Rk+1 | αk+1,−,−〉 in A.

Note 1. Since each axiom/assertion in the ALCU knowledge base is associated
with a pair of combination functions, different notions of uncertainty (such as
fuzzy and simple probability) can be modeled within the same knowledge base,
if desired by the user.

3.3 ALCU Reasoning Procedure

Let Σ = 〈T ,A〉 be an ALCU knowledge base. Fig. 2 gives an overview of the
ALCU tableau reasoning procedure. The rectangles represent data or knowledge
bases, the arrows show the data flow, and the gray rounded boxes show where
data processing is performed.

In what follows, we present the ALCU tableau algorithm in detail. We first
introduce the reasoning services offered, and then present the pre-processing
phase and the completion rules.

ALCU Reasoning Services The ALCU reasoning services include the consis-
tency, the entailment, and the subsumption problems as described below.

Consistency Problem: To check if an ALCU knowledge base Σ = 〈T ,A〉
is consistent, we first apply the pre-processing steps (see Section 3.3) to obtain
the initial extended ABox, AE

0 . In addition, the constraints set C0 is initialized
to the empty set {}. We then apply the completion rules (see Section 3.3) to de-
rive implicit knowledge from explicit ones. Through the application of each rule,
we add any assertions that are derived to the extended ABox AE

i . In addition,

Fig. 2. Reasoning Procedure for ALCU

constraints which denote the semantics of the assertions are added to the con-
straints set Cj , in the form of linear or nonlinear inequations. The completion
rules are applied in arbitrary order as long possible, until either AE

i contains
a clash or no further rule could be applied to AE

i . If AE
i contains a clash, the

knowledge base is inconsistent. Otherwise, the system of inequations in Cj is fed
into the constraint solver to check its solvability. If the system of inequations is
unsolvable, the knowledge base is inconsistent. Otherwise, the knowledge base
is consistent.

Entailment Problem: Given an ALCU knowledge base Σ, the entailment
problem determines the degree to which an assertion X is true. Like in standard
DLs, the entailment problem can be reduced to the consistency problem. That is,
let X be an assertion of the form 〈a : C | xa:C , fc, fd〉. The degree that Σ entails
X is the degree of xa:C such that Σ ∪ {〈a : ¬C, xa:¬C〉〈fc, fd〉} is consistent.

Subsumption Problem: Let Σ = 〈T ,A〉 be an ALCU knowledge base,
and 〈C ⊑ D | xC⊑D, fc, fd〉 be the subsumption relationship to be checked. The
subsumption problem determines the degree to which C is subsumed by D

with respect to the TBox T . Like in standard DLs, this problem can be re-
duced to the consistency problem by finding the degree of xa:¬C⊔D such that
Σ ∪ {〈a : C ⊓ ¬D | xa:C⊓¬D, fc, fd〉} is consistent, where a is a new, generated
individual name.
As in standard DLs, the model being constructed by the ALCU tableau algorithm
can be thought of as a forest.

Definition 3. (Forest, Node Label, Node Constraint, Edge Label) A “forest”
is a collection of trees, with nodes corresponding to individuals, edges corre-
sponding to relationships/roles between individuals, and root nodes correspond-
ing to individuals present in the initial extended ABox. Each node is associated
with a “node label”, L(individual), to show the concept assertions associated
with a particular individual, as well as a “node constraint”, C(individual), for

the corresponding constraints. Unlike in the standard DL where each element
in the node label is a concept, each element in our node label is a quadruple,
〈Concept, Certainty, fc, fd〉. Finally, unlike in the standard DL where each edge
is labeled with a role name, each edge in our case is associated with an “edge
label”, L(〈individual1, individual2〉) which consists of a pair of elements 〈Role,

Certainty〉. In case the certainty is a variable, “−” is used as a place holder.

Pre-processing Phase The ALCU tableau algorithm starts by applying the
following pre-processing steps, which maintains the equivalence of the result with
the original knowledge base.

1. Replace each axiom of the form 〈C ≡ D | α, fc, fd〉 with the following two
axioms: 〈C ⊑ D | α, fc, fd〉 and 〈D ⊑ C | α, fc, fd〉.

2. Transform every axiom in the TBox into its normal form. That is, replace
each axiom of the form 〈C ⊑ D | α, fc, fd〉 with 〈⊤ ⊑ ¬C ⊔ D | α, fc, fd〉.

3. Transform every concept (the TBox and the ABox) into its NNF. Let C and
D be concepts, and R be a role. The NNF can be obtained by applying the
following rules:
– ¬¬(C) ≡ C

– ¬(C ⊔ D) ≡ ¬C ⊓ ¬D

– ¬(C ⊓ D) ≡ ¬C ⊔ ¬D

– ¬∃R.C ≡ ∀R.¬C

– ¬∀R.C ≡ ∃R.¬C

4. Augment the ABox A with respect to the TBox T . That is, for each indi-
vidual a in A and each axiom 〈⊤ ⊑ ¬C ⊔ D | α, fc, fd〉 in T , we add to A,
the assertion 〈a : ¬C ⊔ D | α, fc, fd〉.

We call the resulting ABox after the pre-processing phase the initial extended
ABox, denoted by AE

0 .

ALCU Completion Rules Let T be a TBox obtained after the pre-processing
phase, AE

0 be the initial extended ABox, and C0 be the initial constraints set.
Also, let α and β be certainty values, and Γ be either a certainty value in
the certainty domain or the variable xX denoting the certainty of assertion X .
The ALCU completion rules are listed in Fig. 3. Since the application of the
completion rules may lead to nontermination (see Section 4 for an example), we
introduce the notion of blocking to handle this situation.

Definition 4. (Blocking) Let a, b ∈ IG be generated individuals in the extended
ABox AE

i , AE
i (a) and AE

i (b) be all the concept assertions for a and b in AE
i . An

individual b is blocked by some ancestor a (or a is the blocking individual for b)
if AE

i (b) ⊆ AE
i (a).

The purpose of the Clash Triggers is to detect possible inconsistencies in
the knowledge base. For example, suppose the certainty domain is V = C[0, 1],
i.e., the set of closed subintervals [α, β] in [0, 1] where α � β. If a knowledge

base contains both assertions 〈John : Tall | [0, 0.2],−,−〉 and 〈John : Tall | [0.7,

1],−,−〉, then the third clash trigger will detect this as an inconsistency.
The Concept Assertion and Role Assertion rules simply add the certainty

value of each atomic concept/role assertion and its negation to the constraints
set Cj . For example, suppose we have the assertion 〈John : Tall | [0.6, 1],−,−〉
in the extended ABox. If the certainty domain is V = C[0, 1] and if the negation
function is ∼(x) = t − x, where t is the top certainty in the lattice, then we
add the constraints (xJohn:Tall = [0.6, 1]) and (xJohn:¬Tall = [0, 0.4]) to the set
of constraints Cj.

Clash Triggers: then AE
i+1 = AE

i ∪ {〈a : Ψ | xa:Ψ , −, −〉}

〈a : ⊥ | α, −, −〉 ∈ AE
i , with α ≻ l else if Ψ is not atomic and 〈a : Ψ | xa:Ψ , fc, fd〉 /∈ AE

i
〈a : ⊤ | α, −, −〉 ∈ AE

i , with α ≺ t then AE
i+1 = AE

i ∪ {〈a : Ψ | xa:Ψ , fc, fd〉}

{〈a : A | α, −, −〉, 〈a : A | β, −, −〉} ⊆ AE
i , if (fd(xa:C , xa:D) = Γ) /∈ Cj ,

with ⊗(α, β) = l then Cj+1 = Cj ∪ {(fd(xa:C, xa:D) = Γ)}

{〈(a, b) : R | α, −, −〉, 〈(a, b) : R | β, −, −〉} ⊆ AE
i ,

with ⊗(α, β) = l Role Exists Restriction Rule:

if 〈a : ∃R.C | Γ, fc, fd〉 ∈ AE
i and a is not blocked

Concept Assertion Rule: then if ∄ individual b such that

if 〈a : A | Γ, −, −〉 ∈ AE
i (fc(x(a,b):R, xb:C) = xa:∃R.C) ∈ Cj

then if (xa:A = Γ) /∈ Cj and Γ is not a variable then let b be a new individual

then Cj+1 = Cj ∪ {(xa:A = Γ)} AE
i+1 = AE

i ∪ {〈(a, b) : R | x(a,b):R, −, −〉}

if (xa:¬A =∼Γ) /∈ Cj if C is atomic

then Cj+1 = Cj ∪ {(xa:¬A =∼Γ)} then AE
i+1 = AE

i ∪ {〈b : C | xb:C , −, −〉}

else AE
i+1 = AE

i ∪ {〈b : C | xb:C, fc, fd〉}

Role Assertion Rule: Cj+1 = Cj ∪ {(fc(x(a,b):R, xb:C) = xa:∃R.C)}

if 〈(a, b) : R | Γ, −, −〉 ∈ AE
i for each axiom 〈⊤ ⊑ ¬C ⊔ D | α, fc, fd〉 in T

then if (x(a,b):R = Γ) /∈ Cj and Γ is not a variable AE
i+1 = AE

i ∪ {〈b : ¬C ⊔ D | α, fc, fd〉}

then Cj+1 = Cj ∪ {(x(a,b):R = Γ)} if Γ is not the variable xa:∃R.C

if (x¬(a,b):R =∼Γ) /∈ Cj then if (xa:∃R.C = Γ ′) ∈ Cj

then Cj+1 = Cj ∪ {(x¬(a,b):R =∼Γ)} then if Γ 6= Γ ′
and Γ is not an element in Γ ′

then Cj+1 = Cj \ {(xa:∃R.C = Γ ′)}

Negation Rule: ∪{(xa:∃R.C = ⊕(Γ, Γ ′))}

if 〈a : ¬A | Γ, −, −〉 ∈ AE
i else Cj+1 = Cj ∪ {(xa:∃R.C = Γ)}

then if 〈a : A |∼Γ, −, −〉 /∈ AE
i

then AE
i+1 = AE

i ∪ {〈a : A |∼Γ, −, −〉} Role Value Restriction Rule:

if {〈a : ∀R.C | Γ, fc, fd〉, 〈(a, b) : R | Γ ′, −, −〉} ⊆ AE
i

Conjunction Rule: then if C is atomic and 〈b : C | xb:C, −, −〉 /∈ AE
i

if 〈a : C ⊓ D | Γ, fc, fd〉 ∈ AE
i then AE

i+1 = AE
i ∪ {〈b : C | xb:C, −, −〉}

then for each Ψ ∈ {C, D} else if C is not atomic and 〈b : C | xb:C, fc, fd〉 /∈ AE
i

if Ψ is atomic and 〈a : Ψ | xa:Ψ , −, −〉 /∈ AE
i then AE

i+1 = AE
i ∪ {〈b : C | xb:C, fc, fd〉}

then AE
i+1 = AE

i ∪ {〈a : Ψ | xa:Ψ , −, −〉} if (fd(x¬(a,b):R, xb:c) = xa:∀R.C) /∈ Cj

else if Ψ is not atomic and 〈a : Ψ | xa:Ψ , fc, fd〉 /∈ AE
i then Cj+1 = Cj ∪ {(fd(x¬(a,b):R, xb:c) = xa:∀R.C)}

then AE
i+1 = AE

i ∪ {〈a : Ψ | xa:Ψ , fc, fd〉} if Γ is not the variable xa:∀R.C
if (fc(xa:C, xa:D) = Γ) /∈ Cj , then if (xa:∀R.C = Γ ′′) ∈ Cj
then Cj+1 = Cj ∪ {(fc(xa:C , xa:D) = Γ)} then if Γ 6= Γ ′′

and Γ is not an element in Γ ′′

then Cj+1 = Cj \ {(xa:∀R.C = Γ ′′)}

Disjunction Rule: ∪{(xa:∀R.C = ⊗(Γ, Γ ′′))}

if 〈a : C ⊔ D | Γ, fc, fd〉 ∈ AE
i else Cj+1 = Cj ∪ {(xa:∀R.C = Γ)}

then for each Ψ ∈ {C, D}

if Ψ is atomic and 〈a : Ψ | xa:Ψ , −, −〉 /∈ AE
i

Fig. 3. Completion Rules for ALCU

The intuition behind the Negation Rule is that, if we know an assertion
has a certainty value Γ , then the certainty of its negation can be obtained by
applying the negation function to Γ . For example, suppose the certainty do-
main is V = [0, 1], and the negation function is defined as ∼(x) = 1 − x. If we

have the assertion 〈John : ¬Tall | 0.8,−,−〉 in the ABox, we could also infer
〈John : Tall | 0.2,−,−〉, which is added to the extended ABox.

The Conjunction and Disjunction rules capture the semantics of concept con-
junction (resp. disjunction) by applying the conjunction (resp. disjunction) func-
tion to the interpretations of a : C and a : D. An interesting thing to note is that,
in the standard DL, the Disjunction Rule is non-deterministic, since it can be ap-
plied in different ways to the same ABox. However, the ALCU disjunction rule is
deterministic. This is because the semantics of the concept disjunction is encoded
in the disjunction function in the form of a constraint. For example, suppose the
extended ABox includes the assertion 〈Mary : Tall ⊔ Thin | 0.8,min,max〉, then
we infer that 〈Mary : Tall | xMary:Tall ,−,−〉 and 〈Mary : Thin | xMary :Thin ,−,

−〉. Moreover, the constraint max (xMary:Tall , xMary :Thin) = 0.8 must be satisfied,
which means that either xMary:Tall = 0.8, or xMary:Thin = 0.8, or xMary:Tall =
xMary :Thin = 0.8.

Note 2. Like in standard DLs, our tableau algorithm treats each axiom in T
as a meta constraint. That is, for each individual a in A and each axiom
〈C ⊑ D | α, fc, fd〉 in T , we add 〈a : ¬C ⊔ D | α, fc, fd〉 to A. This results in
a large number of assertions with concept disjunction be added to A. In stan-
dard DLs, this would dramatically extend the search space and is the main
cause for empirical intractability, since the disjunction rule in standard DLs is
non-deterministic. Therefore, optimization technique like lazy unfolding was in-
troduced in [2]. However, since the disjunction rule in ALCU is deterministic,
large number of assertions with concept disjunction does not cause problems in
our context.

The Role Exists Restriction and Role Value Restriction rules have a similar
structure, although they have different semantics. The intuition behind the Role
Exists Restriction Rule is that, if we know that an individual a is in ∃R.C, there
must exist at least one individual, say b, such that a is related to b through the
relationship R, and b is in the concept C. If no such individual b exists in the
extended ABox, then we create such a new individual, and assert that this indi-
vidual satisfies all the axioms in the TBox. As usual, the semantics of the Role
Exists Restriction is encoded as constraints. On the other hand, the intuition
behind the Role Value Restriction Rule is that, if we know that an individual a

is in ∀R.C, and if there is an individual b such that a is related to b through the
relationship R, then b must be in the concept C. The semantics of the Role Value
Restriction is also encoded as constraints. For example, suppose the assertion
〈Tom : ∃hasDisease.Diabetes | [0.4, 0.6],min,max 〉 is in the extended ABox and
the axiom 〈⊤ ⊑ ¬Obese ⊔ ∃hasDisease.Diabetes | [0.7, 1],×, ind〉 is in the TBox.
Assume also that the ABox originally does not contain any individual b such that
Tom is related to b through the role hasDisease , and b is in the concept Diabetes .
Then, we could infer 〈(Tom , d1) : hasDisease | x(Tom,d1):hasDisease ,−,−〉 and 〈d1
: Diabetes | xd1:Diabetes ,−,−〉, where d1 is a new individual. In addition, since d1
must satisfy the axioms in the TBox, the assertion 〈d1 : ¬Obese ⊔ ∃hasDisease.

Diabetes | [0.7, 1],×, ind〉 is added to the extended ABox. Finally, the constraints

(min(x(Tom,d1):hasDisease , xd1:Diabetes) = xTom:∃hasDisease.Diabetes) as well as (x

Tom:∃hasDisease.Diabetes = [0.4, 0.6]) must be satisfied.
The correctness of the ALCU tableau algorithm can be established by showing

that it is sound, complete, and it terminates, as shown in [17].

4 An Illustrative Example

To illustrate the ALCU tableau algorithm and the need for blocking, let us
consider a cyclic fuzzy knowledge base Σ = 〈T ,A〉, where:

T = {〈ObesePerson ⊑ ∃hasParent .ObesePerson | [0.7, 1],min,max 〉}
A = {〈John : ObesePerson | [0.8, 1],−,−〉}

Note that the fuzzy knowledge bases can be expressed in ALCU by setting the
certainty lattice as L = 〈V ,�〉, where V = C[0, 1] is the set of closed subintervals
[α, β] in [0, 1] such that α � β. We also set the meet operator in the lattice as
inf (infimum), the join operator as sup (supremum), and the negation function
as ∼(x) = t − x, where t = [1, 1] is the greatest value in the certainty lattice.
Finally, the conjunction function is set to min , and the disjunction function is
set to max .

To find out if Σ is consistent, we first apply the pre-processing steps. For
this, we transform the axiom into its normal form:

T = {〈⊤ ⊑ (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],min,max〉}

We then augment the ABox with respect to the TBox. That is, for each
individual a in the ABox (in this case, we have only John) and for each ax-
iom of the form 〈⊤ ⊑ ¬C ⊔ D | α, fc, fd〉 in the TBox, we add an assertion
〈a : ¬C ⊔ D | α, fc, fd〉 to the ABox. Hence, in this step, we add the following
assertion to the ABox:

〈John : (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],min,max 〉}

Now, we can initialize the extended ABox to be:

AE
0 = {〈John : ObesePerson | [0.8, 1],−,−〉,

〈John : (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],min,max〉}

and the constraints set to be C0 = {}.
Once the pre-processing phase is over, we are ready to apply the com-

pletion rules. The first assertion is 〈John : ObesePerson | [0.8, 1],−,−〉. Since
ObesePerson is an atomic concept, we apply the Concept Assertion Rule, which
yields:

C1 = C0 ∪ {(xJohn:ObesePerson = [0.8, 1])}
C2 = C1 ∪ {(xJohn:¬ObesePerson = t − xJohn:ObesePerson)}, where t is the greatest

element in the lattice, [1, 1].

The other assertion in AE
0 is 〈John : (¬ObesePerson ⊔ ∃hasParent .ObesePerson

| [0.7, 1],min,max 〉}. Since this assertion includes a concept disjunction, the Dis-
junction Rule applies. This yields:

AE
1 = AE

0 ∪ {〈John : ¬ObesePerson | xJohn:¬ObesePerson ,−,−〉}
AE

2 = AE
1 ∪ {〈John : ∃hasParent .ObesePerson | xJohn:∃hasParent.ObesePerson ,

min ,max 〉}
C3 = C2 ∪ {(max (xJohn:¬ObesePerson , xJohn:∃hasParent.ObesePerson) = [0.7, 1])}

The assertion 〈John : ¬ObesePerson | xJohn:¬ObesePerson ,−,−〉 in AE
1 triggers

the Negation Rule, which yields:

AE
3 = AE

2 ∪ {〈John : ObesePerson | xJohn:ObesePerson ,−,−〉}

The application of the Concept Assertion Rule to the assertion 〈John : Obese
Person | xJohn:ObesePerson ,−,−〉 in AE

3 does not derive any new assertion nor
constraint. Next, we apply the Role Exists Restriction Rule to the assertion in
AE

2 , and obtain:

AE
4 = AE

3 ∪ {〈(John, ind1) : hasParent | x(John,ind1):hasParent ,−,−〉}
AE

5 = AE
4 ∪ {〈ind1 : ObesePerson | xind1 :ObesePerson ,−,−〉}

C4 = C3 ∪ {(min(x(John,ind1):hasParent , xind1 :ObesePerson) = xJohn:∃hasParent.

ObesePerson)}
AE

6 = AE
5 ∪ {〈ind1 : (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],min,

max 〉}

The application of the Role Assertion Rule to the assertion in AE
4 yields:

C5 = C4 ∪ {(x(John,ind1):¬hasParent = t − x(John,ind1):hasParent)}

After applying the Concept Assertion Rule to the assertion 〈ind1 : ObesePerson |
xind1 :ObesePerson ,−,−〉} in AE

5 , we obtain:

C6 = C5 ∪ {(xind1 :¬ObesePerson = t − xind1 :ObesePerson)}

The assertion in AE
6 triggers the Disjunction Rule, which yields:

AE
7 = AE

6 ∪ {〈ind1 : ¬ObesePerson | xind1 :¬ObesePerson ,−,−〉}
AE

8 = AE
7 ∪ {〈ind1 : ∃hasParent .ObesePerson | xind1 :∃hasParent.ObesePerson ,

min ,max 〉}
C7 = C6 ∪ {(max (xind1 :¬ObesePerson , xind1 :∃hasParent.ObesePerson) = [0.7, 1])}

Next, the application of the Negation Rule to the assertion in AE
7 yields:

AE
9 = AE

8 ∪ {〈ind1 : ObesePerson | xind1 :ObesePerson ,−,−〉}

We then apply the Concept Assertion Rule to the assertion in AE
9 , and obtain:

C8 = C7 ∪ {(xind1 :¬ObesePerson = t − xind1 :ObesePerson)}

The application of the Role Exists Restriction Rule to the assertion in AE
8 yields:

AE
10 = AE

9 ∪ {〈(ind1 , ind2) : hasParent | x(ind1 ,ind2):hasParent ,−,−〉}
AE

11 = AE
10 ∪ {〈ind2 : ObesePerson | xind2 :ObesePerson ,−,−〉}

C9 = C8 ∪ {(min(x(ind1 ,ind2):hasParent , xind2 :ObesePerson) = xind1 :∃hasParent.

ObesePerson)}
AE

12 = AE
11 ∪ {〈ind2 : (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],min,

max 〉}

Next, the Role Assertion Rule is applied to the assertion in AE
10 yields:

C10 = C9 ∪ {(x(ind1 ,ind2):¬hasParent = t − x(ind1 ,ind2):hasParent)}

After applying the Concept Assertion Rule to the assertion in AE
11, we obtain:

C11 = C10 ∪ {(xind2 :¬ObesePerson = t − xind2 :ObesePerson)}

The assertion in AE
12 triggers the Disjunction Rule, which yields:

AE
13 = AE

12 ∪ {〈ind2 : ¬ObesePerson | xind2 :¬ObesePerson ,−,−〉}
AE

14 = AE
13 ∪ {〈ind2 : ∃hasParent .ObesePerson | xind2 :∃hasParent.ObesePerson ,

min ,max 〉}
C12 = C11 ∪ {(max (xind2 :¬ObesePerson , xind2 :∃hasParent.ObesePerson) = [0.7, 1])}

Next, the application of the Negation Rule to the assertion in AE
13 yields:

AE
15 = AE

14 ∪ {〈ind2 : ObesePerson | xind2 :ObesePerson ,−,−〉}

We then apply the Concept Assertion Rule to the assertion in AE
15, and obtain:

C13 = C12 ∪ {(xind2 :¬ObesePerson = t − xind2 :ObesePerson)}

Next, consider the assertion in AE
14. Since ind1 is an ancestor of ind2 and

L(ind2) ⊆ L(ind1), individual ind2 is blocked. Therefore, we will not continue
applying the Role Exists Restriction Rule to the assertion in AE

14, and the com-
pletion rule application terminates at this point. Note that without blocking, the
tableau algorithm would never terminate since new individual will be generated
for each application of the Role Exists Restriction Rule.

Since there is no more rule applicable, the set of constraints in C13 is fed into
the constraint solver to check its solvability. Since the constraints are solvable,
the knowledge base is consistent.

5 Conclusion and Future Work

In this paper, we presented a tableau reasoning procedure for the DL ALCU

that is capable of handling General TBoxes. The proposed tableau algorithm
derives a set of assertions as well as linear/nonlinear constraints that encode the
semantics of the knowledge base. The advantage of this approach is that it makes
the design of the ALCU tableau algorithm generic and uniform for computing
different semantics. That is, by simply tuning the uncertainty parameters that
are associated with the axioms and assertions in the knowledge base, different
notions of uncertainty can be modeled and reasoned with, using a single reason-
ing procedure. In addition, the proposed reasoning procedure can handle large
number of concept disjunctions caused by the introduction of General TBoxes

without blowing up the search space because our Disjunction Rule is determin-
istic. We also illustrated through a detailed example the need for blocking in
order to ensure termination of the reasoning procedure when General TBoxes
are present.

The optimization aspect of the ALCU reasoning procedure is beyond the
scope of this paper. However, a preliminary study in this regard can be found
in [11]. As future work, we plan to extend ALCU to support a more expres-
sive portion of DL (e.g., SHOIN , which the popular Web ontology language
OWL DL [26] is based on) so that constructors such as number restrictions and
transitive properties can be supported. It is also promising to extend the syntax
of the description language to support other forms of uncertainty, such as the
conditional probability. These additional expressivity would give us more power
to handle real-world applications.

Acknowledgement. This work was supported in part by Natural Sciences and
Engineering Research Council of Canada, and by ENCS Concordia University.

References

1. Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider,
P. F., editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

2. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., and Franconi, E. An empir-
ical analysis of optimization techniques for terminological representation systems
or “making KRIS get a move on”. In B. Nebel, W. Swartout, and C. Rich, edi-
tors, Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd
International Conference, pages 270–281, San Mateo, 1992. Morgan Kaufmann.

3. Baader, F., Horrocks, I., and Sattler, U. Description Logics. In Frank van Harme-
len, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge Repre-
sentation. Elsevier, 2007. To appear.

4. Bobillo, F., Delgado, M., and Gomez-Romero, J. A crisp representation for fuzzy
SHOIN with fuzzy nominals and general concept inclusions. In Proceedings of the
2nd Workshop on Uncertainty Reasoning for the Semantic Web (URSW), Athens,
Georgia, USA, November 2006.

5. Bobillo, F. and Straccia, U. A fuzzy description logic with product t-norm. In
Proceedings of the IEEE International Conference on Fuzzy Systems (Fuzz IEEE-
07), pages 652–657. IEEE Computer Society, 2007.

6. Dürig, M. and Studer, T. Probabilistic ABox reasoning: Preliminary results. In
Proceedings of the International Workshop on Description Logics (DL’05), pages
104–111, 2005.

7. Giugno, R. and Lukasiewicz, T. P-SHOQ(D): A probabilistic extension of
SHOQ(D) for probabilistic ontologies in the Semantic Web. In Proceedings of the
European Conference on Logics in Artificial Intelligence, pages 86–97, Cosenza,
Italy, 2002. Springer-Verlag. Lecture Notes In Computer Science; Vol. 2424.

8. Haarslev, V., Pai, H.I., and Shiri, N. A generic framework for description logics
with uncertainty. In Proceedings of the 2005 Workshop on Uncertainty Reasoning
for the Semantic Web (URSW) at the 4th International Semantic Web Conference,
pages 77–86, Galway, Ireland, November 2005.

9. Haarslev, V., Pai, H.I., and Shiri, N. Completion rules for uncertainty reasoning
with the description logic ALC. In Proceedings of the Canadian Semantic Web
Working Symposium - Semantic Web and Beyond: Computing for Human Experi-
ence, Vol. 4, pages 205–225, Quebec City, Canada, June 2006. Springer Verlag.

10. Haarslev, V., Pai, H.I., and Shiri, N. Uncertainty reasoning in description logics:
A generic approach. In Proceedings of the 19th International FLAIRS Conference,
pages 818–823, Melbourne Beach, Florida, May 2006. AAAI Press.

11. Haarslev, V., Pai, H.I., and Shiri, N. Optimizing tableau reasoning in ALC ex-
tended with uncertainty. In Proceedings of the International Workshop on Descrip-
tion Logics (DL’07), pages 307–314, Brixen-Bressanone, Italy, June 2007.

12. Haarslev, V., Pai, H.I., and Shiri, N. Semantic web uncertainty management.
In Encyclopedia of Information Science and Technology, 2nd edition. Information
Science Reference, 2009.

13. Jaeger, M. Probabilistic reasoning in terminological logics. In Proceedings of the
4th International Conference on Principles of Knowledge Representation and Rea-
soning (KR’94), pages 305–316, 1994.

14. Koller, D., Levy, A. Y., and Pfeffer, A. P-CLASSIC: A tractable probablistic
description logic. In Proceedings of the 14th National Conference on Artificial
Intelligence, pages 390–397, Providence, Rhode Island, July 1997. AAAI Press.

15. Lakshmanan, L.V.S. and Shiri, N. Logic programming and deductive databases
with uncertainty: A survey. In Enclyclopedia of Computer Science and Technology,
volume 45, pages 153–176. Marcel Dekker, Inc., New York, 2001.

16. Lakshmanan, L.V.S. and Shiri, N. A parametric approach to deductive databases
with uncertainty. IEEE Transactions on Knowledge and Data Engineering,
13(4):554–570, 2001.

17. Pai, H.I. Uncertainty Management for Description Logic-Based Ontologies. PhD
thesis, Concordia University, 2008.

18. Schild, K. A correspondence theory for terminological logics: preliminary report.
In Proceedings of IJCAI-91, 12th International Joint Conference on Artificial In-
telligence, pages 466–471, Sidney, AU, 1991.

19. Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., and Horrocks, I. Reasoning with
very expressive fuzzy description logics. Journal of Artificial Intelligence Research,
30:273–320, 2007.

20. Stoilos, G., Straccia, U., Stamou, G., and Pan, J.Z. General concept inclusions
in fuzzy description logics. In Proceedings of the 17th European Conference on
Artificial Intelligence (ECAI 06), 2006.

21. Straccia, U. Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research, 14:137–166, 2001.

22. Straccia, U. Uncertainty in description logics: a lattice-based approach. In Pro-
ceedings of the 10th International Conference on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems, pages 251–258, 2004.

23. Straccia, U. Fuzzy description logic with concrete domains. Technical Report
2005-TR-03, Istituto di Elaborazione dell’Informazione, January 2005.

24. Straccia, U. and Bobillo, F. Mixed integer programming, general concept inclusions
and fuzzy description logics. In Proceedings of the 5th Conference of the European
Society for Fuzzy Logic and Technology (EUSFLAT-07), volume 2, pages 213–220,
Ostrava, Czech Republic, 2007. University of Ostrava.

25. Tresp, C. and Molitor, R. A description logic for vague knowledge. In Proceedings
of ECAI-98, pages 361–365, Brighton, UK, 1998. John Wiley and Sons.

26. W3C. OWL web ontology language overview, 2004.
URL: http://www.w3.org/TR/owl-features/.

