Skip to main content

A Study in Granular Computing: On Classifiers Induced from Granular Reflections of Data

  • Chapter
Transactions on Rough Sets IX

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 5390))

Abstract

Granular Computing as a paradigm in the area of Approximate Reasoning/Soft Computing, goes back to the idea of L. A. Zadeh (1979) of computing with collections of similar entities. Both fuzzy and rough set theories are immanently occupied with granules as atomic units of knowledge are inverse images of fuzzy membership functions in the first and indiscernibility classes in the other set theory.

Research on granulation in the framework of rough set theory has started soon after Zadeh’s program manifest (T.Y. Lin, L.Polkowski, Qing Liu, A.Skowron, J.Stepaniuk, Y.Y.Yao) with various tools from general theory of binary relations (T.Y.Lin, Y.Y.Yao), rough mereology (L.Polkowski, A.Skowron), approximation spaces (A. Skowron and J. Stepaniuk), logics for approximate reasoning (L.Polkowski, M. Semeniuk-Polkowska, Qing Liu).

The program of granular computing requires that granules formed from entities described by data should enter computing process as elementary units of computation; this program has been pursued in some aspects of reasoning under uncertainty like fusion of knowledge, rough–neural computing, many agent systems.

In this work, granules of knowledge are exploited in tasks of classification of data. This research is a follow–up on the program initiated by the first author in plenary talks at IEEE International Conferences on Granular Computing in Beijing, 2005, and Atlanta, 2006. The idea of this program consists in granulating data and creating a granular data set (called the granular reflection of the original data set); due to expected in the process of granulation smoothing of data, eliminating of outliers, and averaging of attribute values, classification on the basis of granular data is expected to be of satisfactory quality, i.e., granulation should preserve information encoded in data to a satisfactory degre. It should be stressed, however, that the proposed process of building a granular structure involves a few random procedures (factoring attributes through a granule, selection of a granular covering of the universe of objects) which makes it difficult for a rigorous analysis.

It is the aim of this work to verify the program of granular classification on the basis of experiments with real data.

Granules of knowledge are in this work defined and computed on lines proposed by Polkowski in teh framework of rough mereology: it does involve usage of similarity measures called rough inclusions along with techniques of mereological theory of concepts. In consequence, definitions of granules are invariant with respect to the choice of the underlying similarity measure.

Granules of knowledge enter the realm of classification problems in this work from a three–fold perspective: first, granulated data sets give rise to new data sets on which classifiers are tested and the results are compared to results obtained with the same classifiers on the original data sets; next, granules of training objects as well as granules of rules obtained from the training set vote for value of decision at a test object; this is repeated with granules of granular reflections of granules and with granules of rules obtained from granulated data sets. Finally, the voting is augmented with weights resulting from the distribution of attribute values between the test object and training objects.

In the first case, the rough inclusion based on Hamming’s metric is applied (or, equivalently, it is the rough inclusion produced from the archimedean t–norm of Łukasiewicz); in the last two cases, rough inclusions are produced on the basis of residual implications induced from continuous t–norms of Łukasiewicz, the product t–norm, and the minimum t–norm, respectively.

In all cases results of experiments on chosen real data sets, most often used as a test data for rough set methods, are very satisfactory, and, in some cases, offer results better than many other rough set based classification methods.

This work is an extended and augmented with new results version of the plenary talk by the first author at RSEISP07 International Conference [32].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Polkowski, L., Artiemjew, P.: On classifying mappings induced by granular structures. In this volume (submitted)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge U. Press, Cambridge (2004)

    Google Scholar 

  3. Bazan, J.G.: A comparison of dynamic and non–dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 321–365. Physica Verlag, Heidelberg (1998)

    Google Scholar 

  4. Bazan, J.G., Son, N.H., Hoa, N.S., Synak, P., Wróblewski, J.: Rough set algorithms in classification problems. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica Verlag, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons, New York (2001)

    MATH  Google Scholar 

  6. Grzymala–Busse, J.W.: LERS – a system for learning from examples based on rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Advances and Applications of the Rough Sets Theory, pp. 3–18. Kluwer, Dordrecht (1992)

    Chapter  Google Scholar 

  7. Grzymala–Busse, J.W.: Data with missing attribute values: Generalization of rule indiscernibility relation and rule induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Grzymała-Busse, J.W., Hu, M.: A comparison of several approaches to missing attribute values in Data Mining. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2003)

    MATH  Google Scholar 

  11. Leśniewski, S.: Podstawy ogólnej teoryi mnogosci (On the foundations of set theory, in Polish). The Polish Scientific Circle, Moscow (1916) see also Topoi 2, 7–52 (1982)

    Google Scholar 

  12. Lin, T.Y.: Neighborhood systems and approximation in Database and Knowledge Based Systems. In: Proceedings of the 4th International Symposium on Methodologies of Intelligent Systems, Poster Session, pp. 75–86 (1989) [download]

    Google Scholar 

  13. Lin, T.Y.: Topological and fuzzy rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  14. Lin, T.Y.: From rough sets and neighborhood systems to information granulation and computing with words. In: Proceedings of the European Congress on Intelligent Techniques and Soft Computing, pp. 1602–1606. Verlag Mainz, Aachen (1997)

    Google Scholar 

  15. Lin, T.Y.: Granular computing: Examples, Intuitions, and Modeling. In: [39], pp. 40–44

    Google Scholar 

  16. Ling, C.-H.: Representation of associative functions. Publ. Math. Debrecen 12, 189–212 (1965)

    MathSciNet  MATH  Google Scholar 

  17. Łukasiewicz, J.: Jan Łukasiewicz. Selected Works. North Holland and Polish Scientific Publishers, Amsterdam (1970)

    MATH  Google Scholar 

  18. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough – Neural Computing. Techniques for Computing with Words. Springer, Berlin (2004)

    MATH  Google Scholar 

  19. Pawlak, Z.: Rough sets. Int. J. Computer and Information Sci. 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  21. Poincare, H.: Science and Hypothesis. Walter Scott Publ., London (1905)

    MATH  Google Scholar 

  22. Polkowski, L.: Rough Sets. Mathematical Foundations. Physica Verlag, Heidelberg (2002)

    Book  MATH  Google Scholar 

  23. Polkowski, L.: A rough set paradigm for unifying rough set theory and fuzzy set theory (a plenary lecture). In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 70–78. Springer, Heidelberg (2003); also Fundamenta Informaticae 54, 67–88 (2003)

    Chapter  Google Scholar 

  24. Polkowski, L.: Toward rough set foundations.Mereological approach (a plenary lecture). In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Polkowski, L.: A rough–neural computation model based on rough mereology. In: [18], pp. 85–108

    Google Scholar 

  26. Polkowski, L.: A note on 3–valued rough logic accepting decision rules. Fundamenta Informaticae 61, 37–45 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Polkowski, L., Semeniuk–Polkowska, M.: On rough set logics based on similarity relations. Fundamenta Informaticae 64, 379–390 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Polkowski, L.: Rough–fuzzy–neurocomputing based on rough mereological calculus of granules. Intern. J. Hybrid Intell. Systems 2, 91–108 (2005)

    Article  MATH  Google Scholar 

  29. Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: [39], pp. 57–62

    Google Scholar 

  30. Polkowski, L.: A model of granular computing with applications (a feature talk). In: [40], pp. 9–16

    Google Scholar 

  31. Polkowski, L.: The paradigm of granular rough computing. In: Proceedings ICCI 2007. 6th IEEE Intern. Conf. on Cognitive Informatics, Lake Tahoe NV, USA, August 2007, pp. 145–163. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  32. Polkowski, L.: Granulation of knowledge in decision systems: The approach based on rough inclusions. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 271–279. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Polkowski, L.: A Unified approach to granulation of knowledge and granular computing based on rough mereology: A Survey. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, ch. 16. John Wiley, New York (2008)

    Google Scholar 

  34. Polkowski, L.: On the idea of using granular rough mereological structures in classification of data. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 213–220. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  35. Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set approach to computation. Computational Intelligence. An International Journal 17(3), 472–492 (2001)

    Article  MathSciNet  Google Scholar 

  37. Polkowski, L., Skowron, A.: Grammar systems for distributed synthesis of approximate solutions extracted from experience. In: Paun, G., Salomaa, A. (eds.) Grammatical Models of Multi–Agent Systems, pp. 316–333. Gordon and Breach, Amsterdam (1999)

    Google Scholar 

  38. Polkowski, L., Skowron, A.: Towards an adaptive calculus of granules. In: Zadeh, L.A., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems, vol. 1, pp. 201–228. Physica Verlag, Heidelberg (1999)

    Chapter  Google Scholar 

  39. Proceedings of IEEE 2005 Conference on Granular Computing, GrC 2005, Beijing, China, July 2005. IEEE Press (2005)

    Google Scholar 

  40. Proceedings of IEEE 2006 Conference on Granular Computing, GrC 2006, Atlanta, USA, May 2006. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  41. Liu, Q., Sun, H.: Theoretical study of granular computing. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 92–102. Springer, Heidelberg (2006)

    Google Scholar 

  42. Skowron, A., et al.: RSES: A system for data analysis, http://logic.mimuw.edu.pl/~rses/

  43. Skowron, A., Rauszer, C.: The discernibility matrices and functions in decision systems. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 311–362. Kluwer, Dordrecht (1992)

    Google Scholar 

  44. Nguyen, S.H.: Regularity analysis and its applications in Data Mining. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 289–378. Physica Verlag, Heidelberg (2000)

    Chapter  Google Scholar 

  45. Skowron, A.: Boolean reasoning for decision rules generation. In: Komorowski, J., Ras, Z. (eds.) ISMIS 1993. LNCS (LNAI), vol. 689, pp. 295–305. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  46. Skowron, A.: Extracting laws from decision tables. Computational Intelligence. An International Journal 11(2), 371–388 (1995)

    Article  MathSciNet  Google Scholar 

  47. Skowron, A., Polkowski, L.: Synthesis of decision systems from data tables. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining, pp. 289–299. Kluwer, Dordrecht (1997)

    Google Scholar 

  48. Skowron, A., Stepaniuk, J.: Information granules: towards foundations of granular computing. International Journal for Intelligent Systems 16, 57–85 (2001)

    Article  MATH  Google Scholar 

  49. Stanfill, C., Waltz, D.: Toward memory–based reasoning. Communications of the ACM 29, 1213–1228 (1986)

    Article  Google Scholar 

  50. Stanford Encyclopedia of Philosophy: Transworld Identity, http://plato.stanford.edu/entries/~identity-transworld

  51. Stefanowski, J.: On rough set based approaches to induction of decision rules. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 500–529. Physica Verlag, Heidelberg (1998)

    Google Scholar 

  52. Stepaniuk, J.: Knowledge discovery by application of rough set models. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 138–233. Physica Verlag, Heidelberg (2000)

    Google Scholar 

  53. http://www.ics.uci.edu/~mlearn/databases/

  54. http://www.ics.uci.edu.pl/~mlearn/MLSummary.html

  55. Wilcoxon, F.: Individual comparisons by ranking method. Biometrics 1, 80–83 (1945)

    Article  MathSciNet  Google Scholar 

  56. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)

    MathSciNet  MATH  Google Scholar 

  57. Wojna, A.: Analogy–based reasoning in classifier construction. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 277–374. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  58. Wróblewski, J.: Covering with reducts – a fast algorithm for rule generation. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 402–407. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  59. Wróblewski, J.: Adaptive aspects of combining approximation spaces. In: [18], pp. 139–156

    Google Scholar 

  60. Yao, Y.Y.: Information granulation and approximation in a decision–theoretic model of rough sets. In: [18], pp. 491–516

    Google Scholar 

  61. Yao, Y.Y.: Perspectives of granular computing. In: [39], pp. 85–90

    Google Scholar 

  62. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North–Holland, Amsterdam (1979)

    Google Scholar 

  63. Zadeh, L.A.: Graduation and granulation are keys to computation with information described in natural language. In: [39], p. 30

    Google Scholar 

  64. Zeeman, E.C.: The topology of the brain and the visual perception. In: Fort, K.M. (ed.) Topology of 3–manifolds and Selected Topics, pp. 240–256. Prentice Hall, Upper Saddle River (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Polkowski, L., Artiemjew, P. (2008). A Study in Granular Computing: On Classifiers Induced from Granular Reflections of Data. In: Peters, J.F., Skowron, A., Rybiński, H. (eds) Transactions on Rough Sets IX. Lecture Notes in Computer Science, vol 5390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89876-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89876-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89875-7

  • Online ISBN: 978-3-540-89876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics