Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 242))

  • 934 Accesses

Summary

This chapter describes the use of genetic programming to evolve a fuzzy rule base to model gene expression. We describe the problem of genetic regulation in details and offer some reasons as to why many computational methods have difficulties in modeling it. We describe how a fuzzy rule base can be applied to this problem as well as how genetic programming can be used to evolve a fuzzy rule base to extract explanatory rules from microarray data obtained in the real experiments, which give us data sets that have thousands of features, but only a limited number of measurements in time. The algorithm allows for the insertion of prior knowledge, making it possible to find sets of rules that include the relationships between genes that are already known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Johnson, A., Lewis, J., et al.: Molecular biology of the cell, 5th edn. Garland Science (2007)

    Google Scholar 

  2. Arnone, M.I., Davidson, E.H.: The hardwiring of development: organization and function of genomic regulatory systems. Development 124, 1851–1864 (1997)

    Google Scholar 

  3. Bansal, M., della Gatta, G., di Bernardo, D.: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22(7), 815–822 (2006)

    Article  Google Scholar 

  4. Brazma, A., Rukliza, D., Viksna, J.: Reconstruction of gene regulatory networks under the finite state linear model. Genome Informatics 16(2), 225–236 (2005)

    Google Scholar 

  5. Carmona-Saez, P., Chagoyen, M., Rodriguez, R., et al.: Integrated analysis of gene expression by association rules discovery. BMC Bioinformatics 7(54) (2006)

    Google Scholar 

  6. Chen, J.J., Chen, C.-H.: Encyclopedia of biopharmaceutical statistics. In: Microarray Gene Expression, pp. 599–613. Informa Healthcare (2003)

    Google Scholar 

  7. Creighton, C., Hanash, S.: Mining gene expression databases for association rules. Bioinformatics 19(1), 79–86 (2003)

    Article  Google Scholar 

  8. Dasgupta, D., Gomes, J.: Evolving fuzzy classifiers for intrusion detection. In: Proceedings of the 2002 IEEE Workshop on Information Assurance, US Military Academy (2002)

    Google Scholar 

  9. De Jong, H., Gouze, J.L., Hernandez, C., et al.: Qualitative simulation of genetic regulation models using piecewise-linear models. Bulletion of Mathematical Biology 66(2), 301–340 (2004)

    Article  Google Scholar 

  10. Fogel, G.B., Corne, D.W.: Evolutionary computation in bioinformatics. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  11. Foteinu, P., Yang, E., Saharidis, G.K., et al.: A mixed-integer optimization framework for the synthesis and analysis of regulatory networks. Journal of Global Optimization (online) (2007)

    Google Scholar 

  12. Freedman, D., Pisani, R., Purves, R.: Statistics, 4th edn. W. W. Norton Publisher (2007)

    Google Scholar 

  13. Freitas, A.A.: A survey of evolutionary algorithms for data mining and knowledge discovery. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computation, pp. 819–845. Springer, Heidelberg (2003)

    Google Scholar 

  14. Gardner, T.S., Fainth, J.J.: Reverse-engineering transcription control networks. Physics of Life Reviews 2(1), 65–88 (2005)

    Article  Google Scholar 

  15. Gardner, T.S., Faith, J.J.: Reverse-engineering transcription control networks. Physics of Life Reviews 2(65), 88 (2005)

    Google Scholar 

  16. Georgii, E., Richter, L., Ruckert, U., Kramer, S.: Analyzing microarray data using quantitative association rules. Bioinformatics 21(suppl. 21), ii123–ii129 (2005)

    Google Scholar 

  17. Hannah, M.A., Heyer, A.G., Hincha, D.K.: A global survey of gene regulation during cold acclimation in Arabidopis thaliana. PLoS Genet. 1(2), 26–43 (2005)

    Article  Google Scholar 

  18. Heaton, J.T.: Introduction to neural networks with java, 1st edn. Heaton Research, Inc. (2005)

    Google Scholar 

  19. Koza, J.R., Keane, M.A., Streeter, M.J., et al.: Genetic programming iv: Routine human-competitive machine intelligence (genetic programming), 1st edn. Springer, Heidelberg (2005)

    Google Scholar 

  20. Krishnan, A., Giuliani, A., Tomita, M.: Indeterminacy of reverse engineering of gene regulatory networks: The curse of gene elasticity. PLOS One (6), e652 (2007)

    Google Scholar 

  21. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse engineering of gene regulatory networks. Journal of Theoretical Biology (229), 523–537 (2004)

    Article  MathSciNet  Google Scholar 

  22. Linden, R.: Algoritmos geneticos (genetic algorithms). Brasport (2006)

    Google Scholar 

  23. Linden, R., Bhaya, A.: Evolving fuzzy rules to model gene expression. BioSystems 88(1), 76–91 (2007)

    Article  Google Scholar 

  24. Martinek, D.: A tree representation of fuzzy inference rules. In: Proceedings of 40th Spring International Conference MOSIS 2006, Prerov, CZ, p. 6 (2006)

    Google Scholar 

  25. Mistra, J., Schmitt, W., et al.: Iterative explorations of microarray gene expression patterns in a reduced dimensional space. Genome Research, 1112–1120 (2002)

    Google Scholar 

  26. Nuber, U. (ed.): DNA microarrays, 1st edn. Advanced Methods Series. Taylor and Francis, Inc., Abington (2005)

    Google Scholar 

  27. Pal, R., Datta, A., Bittner, M.L., Dougherty, E.: Intervention in context-sensitive probabilistic boolean networks. Bioinformatics 21(7), 1211–1218 (2005)

    Article  Google Scholar 

  28. Ross, T.H.: Fuzzy logic with engineering applications. Wiley, Chichester (2004)

    MATH  Google Scholar 

  29. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinformatics 8(suppl. 6), 9 (2007)

    Article  Google Scholar 

  30. Tegner, J., Yeung, M.K.S., Hasty, J., Collins, J.J.: Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. PNAS 100(10), 5944–5949 (2003)

    Article  Google Scholar 

  31. Van Someren, E.P., Wessels, L.F.A., Reinders, M.J.T.: Linear modeling of genetic networks from experimental data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 355–366. AAAI Press, Menlo Park (2000)

    Google Scholar 

  32. Wahde, M., Hertz, J.: Coarse-grained reverse engineering of genetic regulatory networks. BioSystems 55(1), 129–136 (2000)

    Article  Google Scholar 

  33. Wang, L., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man and Cybernetics 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  34. Wang, Y., Tetko, I.V., Hall, M.V., et al.: Gene selection from microarray data for cancer classification–a machine learning approach. Computational Biology and Chemistry 29(1), 37–46 (2005)

    Article  MATH  Google Scholar 

  35. Wehrli, A.V., Grzegorczyk, M., Husmeier, D.: Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 22(20), 2523–2531 (2006)

    Article  Google Scholar 

  36. Yang, Z.R., Thomson, R., et al.: Searching for discrimination rules in protease proteolytic cleavage activity using genetic programming with a min-max scoring function. BioSystems 72, 159–176 (2003)

    Article  Google Scholar 

  37. Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes and Dev. 21, 1010–1024 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Linden, R., Bhaya, A. (2009). Evolving a Fuzzy Rulebase to Model Gene Expression. In: Jin, Y., Wang, L. (eds) Fuzzy Systems in Bioinformatics and Computational Biology. Studies in Fuzziness and Soft Computing, vol 242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89968-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89968-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89967-9

  • Online ISBN: 978-3-540-89968-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics