
The DLV Project: A Tour from Theory and Research
to Applications and Market⋆

Nicola Leone and Wolfgang Faber

Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{leone,faber}@mat.unical.it

Abstract. DLV is one of the most succesful and widely used ASP systems. It
is based on stable model semantics, and supports a powerful languageextending
Disjunctive Logic Programming with many expressive constructs, including ag-
gregates, strong and weak constraints, functions, lists, and sets. In thispaper, we
describe the long tour from basic research on languages and semantics, studies
on algorithms and complexity, design and implementation of prototypes, up to
the realization of a powerful and efficient system, which won the last ASPcom-
petition, is employed in industrial applications, and is even ready for marketing
and commercial distribution. We report on the experience we got in morethan
twelve years of work in the DLV project, focusing on most recent developments,
industrial applications, trends, and market perspectives.

1 Introduction

Disjunctive Logic Programming [1] under the stable model semantics [2, 3] (DLP,
ASP)1 is a powerful formalism for Knowledge Representation and Reasoning. Dis-
junctive logic programs are logic programs where disjunction is allowed in the heads of
the rules and negation may occur in the bodies of the rules. Disjunctive logic programs
under stable model semantics are very expressive: they allow us to express, in a precise
mathematical sense,every property of finite structures over a function-free first-order
structure that is decidable in nondeterministic polynomial time with an oracle in NP
[4]. The high knowledge modeling power of DLP has implied a renewed interest in
this formalism in the recent years, due to the need for representing and manipulating
complex knowledge, arising in Artificial Intelligence and in other emerging areas, like
Knowledge Management and Information Integration.

In this paper, we overview the DLV project, which has been active for more than
twelve years, and has led to the development of the DLV system– the state-of-the-art
implementation of disjunctive logic programming. DLV is widely used by researchers
all over the world, and it is competitive, also from the viewpoint of efficiency, with
the most advanced ASP systems. Indeed, at the First Answer Set Programming Sys-
tem Competition [5]2, DLV won in the Disjunctive Logic Programming category. And
⋆ Supported by M.I.U.R. within projects “Potenziamento e Applicazioni dellaProgrammazione

Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazione di conoscenza:
estensioni e tecniche di ottimizzazione.”

1 ASP stands for Answer Set Programming, with answer-set being an alternative name for
stable-model, which is more frequently used than the latter today.

2 See also http://asparagus.cs.uni-potsdam.de/contest /.

DLV finished first also in the general category MGS (Modeling,Grounding, Solving
— also called royal competition, which is open to all ASP systems). Importantly, DLV
is profitably employed in many real-word applications, and has stimulated quite some
interest also in industry (see Section 7). The key reasons for the success of DLV can be
summarized as follows:
Advanced knowledge modeling capabilities.DLV provides support for declarative
problem solving in several respects:

– High expressiveness of its knowledge representation language, extending disjunc-
tive logic programming with many expressive constructs, including aggregates,
weak constraints, functions, lists, and sets. These constructs not only increase the
expressiveness of the language; but they also improve its knowledge modeling
power, enhancing the usability in real-world contexts.

– Full declarativeness: ordering of rules and subgoals is immaterial, the computation
is sound and complete, and its termination is always guaranteed.

– A number of front-ends for dealing with specific AI applications [6–9], information
extraction [10], Ontology Representation and Reasoning [11, 12].

Solid Implementation. Much effort has been spent on sophisticated algorithms and
techniques for improving the performance, including

– Database optimization techniques: indexing, join ordering methods [13], Magic
Sets [14, 15].

– Search optimization techniques: heuristics [16–18], backjumping techniques [19,
20], pruning operators [21].

DLV is able to solve complex problems and can deal with data-intensive applications
by evaluating the program in mass-memory on a language subset [22, 23].

Interoperability. A number of powerful mechanisms have been implemented to allow
DLV to interact with external systems:

– Interoperability with Semantic Web reasoners: DLVHEX [24].
– Interoperability with relational DBMSs: ODBC interface [25, 22].
– Calling external (C++) functions from DLV programs: DLVEX [26].
– Calling DLV from Java programs: Java Wrapper [27].

In the following, we report on the long tour which has led to the DLV system imple-
mentation, focusing on most recent developments, industrial applications, trends, and
market perspectives.

2 Ancestry

Probably the earliest relevant roots of DLV are to be found inthe 1950ies, when Mc-
Carthy proposed the use oflogical formulas as a basis for a knowledge representation
language [28, 29]. It was soon realized, however, that classical logic is not always ade-
quate to model commonsense reasoning [30]. As an alternative, it has been suggested

to represent commonsense reasoning using logical languages with nonmonotonic con-
sequence relations, which allow new knowledge to invalidate some of the previous con-
clusions. This observation has led to the development and investigation of new logi-
cal formalisms, nonmonotonic logics, on which nonmonotonic logic programming has
been based.

In the 1980ies, Minker proposed Disjunctive Logic Programming (DLP) [1], which
allows for disjunctions instead of just atoms in rule heads,yielding (in general) a more
expressive language. Early methods for implementations have been proposed already in
the book by Lobo, Minker, and Rajasekar [31]. In the early 1990ies nonmonotonic and
disjunctive logic programming have been succesfully merged in the semantic proposals
by Gelfond and Lifschitz [3] and Przymusinski [32], called Stable Model Semantics,
and yielding what is today known as Answer Set Programming (ASP),3 Stable Logic
Programming, ASP-Prolog, or simply Disjunctive Logic Programming (DLP).

After a few early attempts on implementing DLP [33–35], the foundation of what
would become the DLV system was laid in the seminal works [36]and [37]. These
articles essentially contain an abstract description of the basic DLV algorithm.

3 Implementing the Core System

The core system of DLV works on a set of disjunctive rules, i.e., clauses of the form

a1 v · · · v an :- b1, · · · , bk,not bk+1, · · · ,not bm

where atomsa1, . . . , an, b1, . . . , bm may contain variables and each ofn, k,m may be
0. If n = 0, then the clause is referred to as an integrity constraint, as the empty head
acts like falsity. Ifn = 1 andk = m = 0, the rule is referred to as a fact, and for facts
:- is usually omitted. The intuitive reading of such a rule is “If all b1, . . . , bk are true
and none ofbk+1, . . . , bm is true, then at least one atom ina1, . . . , an must be true.”
Additionally, there is a stability criterion [2, 3], which also implies minimality of truth.

Disjunctive logic programming is strictly more expressivethat disjunction-free logic
programming, it can represent some problems which cannot beencoded in OR-free
programs, and cannot be translated even to SAT in polynomialtime. We next show an
example of a problem, calledstrategic companies, where disjunction is strictly needed.

Example 1. Suppose there is a collectionC = {c1, . . . , cm} of companiesci owned by
a holding, a setG = {g1, . . . , gn} of goods, and for eachci we have a setGi ⊆ G of
goods produced byci and a setOi ⊆ C of companies controlling (owning)ci. Oi is
referred to as thecontrolling set of ci. This control can be thought of as a majority in
shares; companies not inC, which we do not model here, might have shares in compa-
nies as well. Note that, in general, a company might have morethan one controlling set.
Let the holding produce all goods inG, i.e.G =

⋃
ci∈C Gi.

A subset of the companiesC ′ ⊆ C is aproduction-preserving set if the following
conditions hold: (1) The companies inC ′ produce all goods inG, i.e.,

⋃
ci∈C′ Gi = G.

3 Stable Models are also called Answer Sets, and we will often use the latter name which is
more frequently used today.

(2) The companies inC ′ are closed under the controlling relation, i.e. ifOi ⊆ C ′ for
somei = 1, . . . ,m thenci ∈ C ′ must hold.

A subset-minimal setC ′, which isproduction-preserving, is called astrategic set.
A companyci ∈ C is calledstrategic, if it belongs to some strategic set ofC.

In the following, we adopt the setting from [38] where each product is produced
by at most two companies (for eachg ∈ G |{ci | g ∈ Gi}| ≤ 2) and each company
is jointly controlled by at most three other companies, i.e.|Oi| ≤ 3 for i = 1, . . . ,m
(in this case, the problem is stillΣP

2 -hard). For a given instance of STRATCOMP, the
program will contain the following facts:

– company(c) for eachc ∈ C,
– prod by(g, cj , ck), if {ci | g ∈ Gi} = {cj , ck}, wherecj andck may possibly

coincide,
– contr by(ci, ck, cm, cn), if ci ∈ C andOi = {ck, cm, cn}, whereck, cm, andcn

are not necessarily distinct.

Given this instance representation, the problem itself canbe represented by the fol-
lowing two rules:

s1 : strat(Y) v strat(Z):- prod by(X,Y,Z).
s2 : strat(W):- contr by(W,X, Y, Z), strat(X), strat(Y), strat(Z)

Herestrat(X) means that companyX is a strategic company.
DLV today can solve instances with thousands of companies inreasonable time.

The main tasks for computing a DLP program in a (by now) typical architecture
are eliminating variables by instantiation (grounding), creating candidate answer sets
(generation), and finally checking their stability (checking). It is worthwhile noting that,
due to the higher expressiveness of DLP, the (stability)checking is a co-NP-complete
task for disjunctive programs, while it is polynomially doable for OR-free programs.

In November 1996 the DLV project started in Vienna, its goal being the production
of a performant system for computing answer sets of disjunctive logic programs. A
working system was produced fairly quickly, and the first description of the system was
presented at LPNMR 1997 [39]. The basic architecture of the system as presented in
that paper stands until today more or less unchanged. The paper also introduced the
grounding module, which proved to be a strong component of the system. Along with
the basic model generator, it also described the model checker (a key module which is
not needed for dealing with nondisjunctive programs) and various forms of dependency
graphs.

The following major publication about the system was at KR 1998 [40], in which
the newly created front-ends (brave and cautious reasoning, various forms of diagnostic
reasoning, and a subset of the then-unpublished SQL-3 (later SQL98) language (see also
Section 4), which allows for recursion in SQL. Another main focus of this work were
the benchmarks. DLV was compared to two of the most competitive systems of the era,
Smodels [41] (as yet without Lparse) and DeReS [42], and found to be competitive.

The computational core modules of DLV continued to be improved. A major step
was the move to a more goal-oriented computation, by introducing a new truthvalue

or atom class named “must-be-true” [43] together with a suitable heuristic. These fea-
tures proved to boost the system’s performance on many benchmarks. In fact, work on
tuning the heuristics has been continued ever since, givingrise to a number of signif-
icant improvements [16, 44, 45]. Other enhancements of the model generator were the
comparison of various pruning operators [46, 21] employed during model construction,
which also yields considerable performance gains on certain kinds of problem.

Also DLV’s model checker has been improved by introducing a new, lightweight
technique which permits the use of a SAT solver to decide model stability [47]. It has
been shown that the introduction of this technique significantly improves performance
on the hardest (ΣP

2 -complete) problems that DLV can handle in a uniform way.
The grounding module is a very important part of DLV, as on theone hand it solves

a difficult problem and on the other hand it should output a program that is as small
as possible, as the efficiency of all subsequent computations will in general depend
on this size. Thus, grounding optimizations are very important and often have a pro-
found impact on the overall system performance, cf. [48, 13,20, 17]. The enhancement
of grounding by “porting” optimization techniques from relational databases to DLP,
has been one of the most effective improvements of DLV for real-world applications.

4 Language Extensions and their Optimization

Early on, extensions of the basic language were a main focus of DLV. The first of
these was the introduction of support for brave and cautiousquery answering, first de-
scribed in [49]. In nonmonotonic reasoning, these are the two major modes for answer-
ing queries. In DLV, a program with a query is transformed into a program the structure
and meaning of which depends on the reasoning mode. Answer sets are then computed
for the transformed program: For brave reasoning, each answer set supports the truth of
the query, while for cautious reasoning, an answer set is a witness for the falsity of the
query.

Example 2. In order to check whether a companyc is strategic in Example 1, one can
write a querystrat(c)?. Brave reasoning on this query decides whetherc is strategic,
while cautious reasoning decides whetherc is contained in each strategic set.

For query evaluation, an adaption of the Magic Sets method to(fragments of) the
DLV language has been introduced as an optimization [15, 14]. The basic idea is to
make the process more query oriented, and consider only a fragment of the program
which is sufficient to answer the query. In addition, if constants are present in the query,
this optimization attempts to minimize also the rule instantiations to those that are nec-
essary to answer the query correctly.

The introduction of weak constraints [50, 51] was the next major language exten-
sion. A weak constraint is a construct of the form

:∼ b1, · · · , bk,not bk+1, · · · ,not bm.[w : l]

where form ≥ k ≥ 0, b1, . . . , bm are atoms, whilew (the weight) and l (the level)
are positive integer constants or variables occuring inb1, . . . , bm. For convenience,w

and/orl might be omitted and are set to 1 in this case. The idea is that weak constraints
should preferably be satisfied, with the weight and level specifying a penalty in case a
weak constraint is not satisfied. Basically, for each answerset we can associate a vector
of weights, which are the sum of weights of unsatisfied weak constraints of a specific
level. Optimal answer sets are then selected by first choosing those answer sets having
the least weight for the highest level, among these those having the least weight for the
next highest level and so on (that is, the optimum of a lexicographical ordering).

Example 3. For instance, if one wants to avoid scenarios in which company c is con-
tained in a strategic set (and thus be bound to sold), we may add a weak constraint

:∼ strat(c). [1 : 1]

in this way, if strategic sets exist which do not containc, then only those will be com-
puted. However, this is a preference criterion: if there exists no one missingc, then the
other answer sets will be anyway computed.

Having weak constraints actually increases the expressiveness of the language and
incurred some fairly crucial modifications of the core system. For instance, the model
generator potentially is activated twice in the presence ofweak constraints: Once for
determining the optimal value of answer sets and a second time for enumerating the
optimal answer sets.

Especially with the advent of data-intensive applications, it became clear that some
interface to databases is necessary, as extracting data from a database and putting it
into a temporary text file is not a very practical option. After initial trials with propri-
etary interfaces, eventually an ODBC interface has been provided, which abstracts from
the actual database used, and allows for both importing input data from and exporting
answer set data to an external database.

A major language extension was the introduction of aggregates [52]. Aggregate
atoms consist of an aggregation function (currently one of cardinality, sum, product,
maximum, minimum), which is evaluated over a multiset of terms, which are deter-
mined by the truthvalues of standard (non-aggregate) atoms. The syntax is

L ≺1 F{Vars :Conj} ≺2 U

whereF is a function#count, #min, #max, #sum, #times, ≺1,≺2∈ {=, <, ≤, >

,≥}, andL andU , the guards, are integers or variables.
Intuitively, a symbolic set{X,Y :a(X,Y),not p(Y)} stands for the set of pairs

(X,Y) making the conjunctiona(X,Y),not p(Y) true, i.e.,S = {(X,Y) | ∃Y such
that a(X,Y) ∧ not p(Y) is true}. When evaluating an aggregate function over it, the
projection on the first elements of the pairs is considered, which yields a multiset in
general. The value yielded by the function application is compared against the guards
in order to determine the truth value of the aggregate. DLV comes with full support for
non-recursive aggregates, as described in [52]. To this end, specialized data structures
were introduced, and the model generation algorithm was significantly enhanced in
order to deal with aggregates.

In presence of recursion through aggregates, special care is needed for defining the
semantics of aggregates.

Example 4. Consider a(1):-#count{X:a(X)} < 1.

we see that in this examplea(1) can be true only ifa(1) is false. Therefore, any an-
swer set containinga(1) should not includea(1), and any answer set not containing
a(1) should includea(1), which are both infeasible conditions and therefore no answer
should exist for this program.

However, looking at a(1):-#count{X:a(X)} > 0.

intuitively, a(1) can become true only ifa(1) is true, which would thus be a self-support
for a(1). One would expect that in any answer seta(1) is false.

In a way, the first program behaves just likea(1):- not a(1). while the second one
is like a(1):- a(1). Thus, “easy” approaches treating aggregate atoms like negative
atoms are bound to give incorrect results on programs such asthe second.

In [53, 54] a semantics has been presented, which deals with these issues in a sim-
ple, but effective way. Later, in [55, 56], characterizations of this semantics using an
adapted version of unfounded sets has been presented, whichpaved the way for a rea-
sonable implementation for recursive aggregates. Currently, a special version of DLV
exists, which supports an ample class of programs with recursive aggregates under this
semantics. This will eventually be integrated in the main distribution of DLV.

The latest extension of DLV language is the addition of functions, lists, and sets,
along with a rich library of built-in functions for their manipulation [57]. This is a
very relevant extension, which lifts up the expressive power of the language allowing
to encode any computable function. Even if the integration in the main distribution of
DLV is under development, this extension is already spread and succesfully used in
many universities and research institutes.4

5 Frontends, Backends and Research-Applications

DLV has been succesfully integrated as a computational engine in systems which use it
as an oracle, usually acting as frontends and/or backends toDLV. Also the implemen-
tation of brave and cautious query answering described in Section 4 can be viewed as
such a frontend, but since it seamlessly integrates into thelanguage we have described
it as a language extension.

The first major frontend was the diagnosis frontend [6], which is now integrated into
the DLV distribution. It supports various modes of abductive- and consistency-based
diagnosis by transforming the input into a DLV program and extracting the diagnoses
of the answer sets. Later, also diagnosis with penalization[9] has been studied and
implemented using DLV.

The second frontend which became included in the DLV distribution supported ob-
ject programs which can be linked via inheritance constructs, as described in [58]. Also
this could be viewed as a language extension by considering programs not in any object
as belonging to a special, isolated object. Also in this casethe input is transformed into
a standard DLV program and the resulting answer sets are cleaned of the intermediate
symbols introduced by the translation.

4 We refrain from providing further details, since the paper describing theextension of DLV
with functions is reported in this book.

The last major frontend to be included into the DLV distribution was the support
for finding plans for domains formulated in the action languageK [59, 7, 60]. In this
case, the interaction with DLV is somewhat more complex, andalso the extraction of
plans from answer sets is slightly more involved than in the frontends discussed so far.

There are several other systems which wrap around DLV; a few of these can also
use other ASP systems in place of DLV.

There are actually two such systems for ASP with preferences, where the prefer-
ences are expressed between rules. The systemplp [61] transforms these programs into
a standard ASP program and extracts the preferred answer sets from the answer sets of
the transformed program. A different approach has been presented in [62], which uses
a metainterpretation technique. In this context, this means that the propositional atoms
of the preference programs become terms in the transformed program, where the exten-
sional database defines the program structure and an intensional fixed part characterizes
the semantics.

The systemnlp is an implementation for computing answer sets for programswith
nested expressions, which relax the structural requirements for connectors occurring in
rules [63]. Also here the program with nested expressions istransformed, introducing
several intermediate predicates on the way, which are finally filtered from the output.

The system A-POL provides a solver for programs with partialorder constructs by
transforming them to standard DLV programs [64].

A major endeavor and interdisciplinary success has been thecoupling between An-
swer Set Programming and Description Logic. SystemNLP-DL [65, 66] uses DLV on
its ASP side. It turned out that for certain tasks DLV can perform much better than
Description Logic systems in this sort of coupling.

DLV has also been used inside a system for strong equivalencetesting and associ-
ated program simplification [67]. Also in this case, it is used as a backend for deciding
whether some rule is redundant or can be simplified.

Two systems have been devised which work on action descriptions in the language
K and on plans, one for monitoring plan execution (KMonitor) [68], and another one
which diagnoses plan execution failures (KDiagnose) [69].Another system implements
query answering on action descriptions (AD-Query) [70]. All of these systems use DLV
for solving various computational tasks arising during their execution.

Recently, a system for Answer Set Optimization [71] has beenpresented, which
handles programs with preferences expressed among atoms (rather than rules as for
plp described earlier). In this case, DLV is used for producing candidate answer sets,
which are then tested for optimality by other software.

Finally, we mentionspock, a system for debugging ASP programs [72, 73], which
may be configured to use DLV as its computational core.

6 Spin-Off Projects

Several projects have spun off DLV over the time. A fairly early one was the DLV Java
wrapper, described in [27]. Since industrial applications(cf. Section 7) are frequently
developed in a Java environment, some means had to be found tointeract with DLV
from Java. The DLV Java wrapper project provides interfaces, which are in some way

inspired by ODBC or JDBC. They allow for creating DLV programs, passing them to
DLV, invoking DLV and getting back and analyzing the answer sets produced. This
software has been succesfully applied in industrial settings described in Section 7.

DLVT [74] is a project which enhances DLV by so-called templates. These tem-
plates can be viewed as abstractions for programs, which canthen be used by instan-
tiating them for a particular setting. The semantics for these constructs is defined by
expanding the respective templates, and allows for modularprogramming in DLV.

Again experiences with industrial applications motivatedthe creation of DLVEX
[26]. The main observation was that it is often necessary to delegate certain compu-
tational tasks in programs to functions evaluated outside of DLV’s proper language.
This requirement arises because ASP is not well-suited for certain tasks such as string-
handling, various numeric computations and similar features. Moreover it allows for
easy language extensions, the idea being to define a suitablesemantics for a generic ex-
tension, the semantics for a particular extension then being automatically provided by
the generic definition. It can also be seen as an easy means forproviding new data types
and associated operations. Several libraries have alreadybeen provided for DLVEX, in-
cluding numeric operations, string handling, manipulation of biological data, and more.
It is planned that these features will be merged into standard DLV in the near future.

A system which is similar in spirit is dlvhex [24], which alsoallows for external
calls. However, while DLVEX is situated at the grounding level, in dlvhex these exter-
nal predicates may be evaluated at an arbitrary stage of the computation. For instance,
the truthvalue of an atom may be determined by the answer thata Description Logic
reasoner provides for a query, where the state of the Description Logic reasoner itself
may be determined by the truthvalue of atoms occurring in thedlvhex program. This
project has received a lot of attention by the Semantic Web community.

A spin-off of DLV which seems very attractive for real-worldapplications, where
large amount of data are to be dealt with, isDLVDB . The basic idea undelyingDLVDB

[23, 22] is to create a close interaction between DLV and databases, delegating some
computational tasks to the database engine. The motivationis that if some data is ob-
tained from a database anyway, it might be more efficient to reason on it directly where
it resides; this becomes particularly important if the datasize does not fit main memory
(which is a typical case in real world applications). Moreover, if input data is spread
over different databases,DLVDB provides suitable constructs to reason on them trans-
parently. Finally, as many database engines give the possibility to attach stored function
calls to queries,DLVDB allows for attaching such function calls to declarative pro-
grams, allowing for solving procedural sub-tasks directlyon the database.

Essentially forming a language extension, a system for supporting parametric con-
nectives [75] in the language of DLV has been implemented, which should eventually
be integrated into regular DLV. Parametric connectives allow for dynamically creating
disjunctions and conjunctions during grounding. This is especially useful if one does
not know in advance which or how many options there will be in aparticular instance
of a program. For instance, for the well-known 3-colorability problem it is known in ad-
vance that there are exactly three colors available, and onecan exploit this knowledge
for writing a concise program that includes a disjunction involving the three colors.
When one is interested in n-colorability instead, one cannotwrite a similar disjunction,

as it depends on the problem instance how many colors will be available. With paramet-
ric disjunctions, this can be done as the disjunction will bedynamically created based
on the extension of some predicate. The following program encodes n-colorability by
means of parametric disjunction:

∨
{col(X,C) : color(C)} :- vertex(X)
:- col(X,C), col(Y,C), edge(X,Y),X 6= Y

A project for improving runtimes of basic DLV is to endow the model generator
with a reason calculus and backjumping [19]. These techniques are quite well-known
in SAT solving, and in this project those methods have been considerably adapted to
suit the ASP world, and the DLV system in particular. It has been shown that these
techniques are beneficial with respect to runtime, and they will eventually be included
in mainline DLV.

Based on the reason calculus discussed above, another side project has been estab-
lished that defines VSIDS-like heuristics for ASP, and DLV inparticular [76]. This kind
of heuristics tries to look back on the computation and guidechoices based on previous
experiences. Standard DLV does the opposite, it looks aheadby performing a tentative
computational step and analyzing the output. Eventually itis planned to integrate also
this kind of heuristics into DLV.

A recent effort to improve the scalability of DLV has been theparallelization of
DLV’s grounding module [77]. The original implementation was sequential, but con-
ceptually the grounding procedure has potential for parallel processing. The implemen-
tation is done having a multiprocessor machine with shared memory in mind.

7 Industry-level Applications and Commerce

Unlike many other ASP systems, DLV has a history of applications on the industrial
level. An important application area, in which DLV has been succesfully applied, is
Information Integration. The European Commission funded aproject on Information
Integration, which produced a sophisticated and efficient data integration system, called
INFOMIX, which uses DLV at its computational core [78]. The powerful mechanisms
for database interoperability, together with magic sets [15, 14] and other database op-
timization techniques [13, 79], which are implemented in DLV, make DLV very well-
suited for handling information integration tasks. And DLV(in INFOMIX) was succes-
fully employed in an advanced real-life application, in which data from various legacy
databases and web sources must be integrated for the information system of the Univer-
sity of Rome “La Sapienza”.

The DLV system has been experimented also with an application for Census Data
Repair [80], in which errors in census data are identified andeventually repaired. This
application includes a formalization of error models and hypothetical reasoning on pos-
sible repairs. DLV has been employed at CERN, the European Laboratory for Particle
Physics, for an advanced deductive database application that involves complex knowl-
edge manipulation on large-sized databases. The Polish company Rodan Systems S.A.
has exploited DLV in a tool for the detection of price manipulations and unauthorized
use of confidential information, which is used by the Polish Securities and Exchange

Commission. In the area of self-healing Web Services5 the most recent extension of
DLV with function symbols is succesfully exploited for implementing the computation
of minimum cardinality diagnoses [81]. Function symbols are employed to replace ex-
istential quantification, which is needed to model the existence of values in case the
semantics of Web Services is unknown, e.g., because of faulty behaviors.

Thanks to the high expressivity of the language and to its solid implementation DLV
has been attractive for many other similar applications. However, the most valuable ap-
plications from a commercial viewpoint are those in the areaof Knowledge Manage-
ment, which have been realized by the company EXEURA s.r.l.,with the support of the
DLVSYSTEM s.r.l. (see below).

The experience gained in these real-world settings confirmed plans to promote DLV
also commercially. To this end, the key people involved in DLV founded the company
DLVSYSTEM s.r.l. in September 2005. This company is locatedin Calabria, Italy, and
its main goal is to license DLV to interested partners in industry as well as to provide
consultancy and support for its use in an industrial context.

The main licensee so far has been EXEURA, a spin-off company of the Univer-
sity of Calabria having a branch also in Chicago, which extensively uses DLV in its
Knowledge Management (KM) products. Three main industrialprototypes of Exeura,
currently in production, are strongly based on DLV: OntoDLV, Olex, and HiLeX.

OntoDLV is a system for ontology specification and reasoning [82, 11]. The sys-
tem supports a powerful ontology representation language,called OntoDLP, extending
Disjunctive Logic Programming with all the main ontology features including classes,
inheritance, relations, and axioms. OntoDLP is strongly typed, and includes also com-
plex type constructors, like lists and sets. Importantly, OntoDLV supports powerful
rule-based reasoning on ontologies, by incorporating the DLV system. The semantic
peculiarities of DLP, like the Closed World Assumption (CWA) and the Unique Name
Assumption (UNA), allow to overcome some limits of OWL, making OntoDLV very
suitable for Enterprise Ontologies. It is worth noting thatOntoDLV supports a powerful
interoperability mechanism with OWL, allowing the user to retrieve information from
OWL ontologies, and build rule-based reasoning on top of OWL ontologies. Moreover,
through the exploitation ofDLVDB , OntoDLV is able to deal also with data-intensive
applications, by working in mass-memory when main memory isnot sufficient. The
system is already used in a number of real-world applications including agent-based
systems, information extraction, and text classification.

HiLeX [10] supports a semantic-aware approach to information extraction from
unstructured data (i.e., documents in several formats, e.g., html, txt, doc, pdf, etc). In
HiLeX information extraction is “Ontology driven”, and exploits a domain description
expressed through an OntoDLP ontology. A pre-processing phase transforms the input
document in a set of logical facts, extraction patterns are rewritten into logical rules, and
the whole process of information extraction amounts to answer set computation, which
is carried out by the DLV system. The HiLex system has been succesfully applied for
the extraction of clinical data (stored in flat text format inItalian language) from an
Electronic Medical Record (EMR), and for the extraction of data from balance sheets.

5 http://wsdiamond.di.unito.it

Olex is a rule-based system for text classification [83, 84]. Roughly, given an on-
tology of the domain, Olex assigns each input document to theclasses of the ontology
which are relevant for it (by recognizing and analyzing the concepts treated in the doc-
ument). For instance, Olex can automatically classify ANSAnews according with their
contents (Sport, Economy, Politics, etc.). Olex classifiers are learned automatically in
a “training phase”, and expressed by DLP rules. The documentclassification process
amounts to answer set computation, which is performed by theDLV system. Olex has
been succesfully applied in a number of real world applications in various industries
including health-care, tourism, and insurance.

Exeura is currently concentrating its efforts on the implementation of a data-mining
suite, where DLV will be employed for reasoning on top of the results of data mining.

References

1. Minker, J.: On Indefinite Data Bases and the Closed World Assumption.In: CADE’82.
LNCS 138, New York, (1982) 292–308

2. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
ICLP/SLP 1988, Cambridge, Mass., MIT Press (1988) 1070–1080

3. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs andDisjunctive Databases.
NGC 9 (1991) 365–385

4. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS22(3) (1997) 364–418
5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub,T., Truszczýnski, M.: The first

answer set programming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17
6. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The Diagnosis Frontend of thedlv System. AI

Communications12(1–2) (1999) 99–111
7. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming Approach to

Knowledge-State Planning, II: the DLVK System. AI144(1–2) (2003) 157–211
8. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Answer Set Planning under Action

Costs. In: JELIA 2002. LNCS 2424, Cosenza, Italy (2002) 186–197
9. Perri, S., Scarcello, F., Leone, N.: Abductive Logic Programs with Penalization: Semantics,

Complexity and Implementation. TPLP5(1–2) (2005) 123–159
10. Ruffolo, M., Manna, M., Gallucci, L., Leone, N., Saccà, D.: A Logic-Based Tool for Seman-

tic Information Extraction. In: JELIA 2006. LNCS 4160, (2006) 506–510
11. Ricca, F., Leone, N.: Disjunctive Logic Programming with types andobjects: The DLV+

System. Journal of Applied Logics5(3) (2007) 545–573
12. Ricca, F., Leone, N., De Bonis, V., Dell’Armi, T., Galizia, S., Grasso, G.: A DLP System

with Object-Oriented Features. In: LPNMR’05. LNCS 3662, (2005) 432–436
13. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiatorsby Join-Ordering Methods.

In: LPNMR’01. LNCS 2173, (2001) 280–294
14. Faber, W., Greco, G., Leone, N.: Magic Sets and their Application toData Integration. JCSS

73(4) (2007) 584–609
15. Cumbo, C., Faber, W., Greco, G.: Enhancing the magic-set method for disjunctive datalog

programs. In: ICLP 2004. LNCS 3132
16. Faber, W., Leone, N., Pfeifer, G.: Experimenting with Heuristics for Answer Set Program-

ming. In: IJCAI 2001) 635–640
17. Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancing DLV instantiator by backjumping

techniques. AMAI51(2–4) (2007) 195–228

18. Faber, W., Leone, N., Ricca, F.: Heuristics for Hard ASP Programs. In: IJCAI 2005. (2005)
1562–1563

19. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Program-
ming. AI Communications19(2) (2006) 155–172

20. Leone, N., Perri, S., Scarcello, F.: BackJumping Techniques for Rules Instantiation in the
DLV System. In: NMR 2004. (2004) 258–266

21. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Disjunctive Logic
Programming Systems. FI71(2–3) (2006) 183–214

22. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting withrecursive queries in
database and logic programming systems. TPLP8 (2008) 129–165

23. Terracina, G., De Francesco, E., Panetta, C., Leone, N.: Enhancing a DLP system for ad-
vanced database applications. In: RR 2008, Karlsruhe, Germany, (2008)

24. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: IJCAI 2005, Edin-
burgh, UK (2005) 90–96

25. Leone, N., Lio, V., Terracina, G.:DLV
DB : Adding Efficient Data Management Features to

ASP. In: LPNMR-7. LNCS 2923, (2004) 341–345
26. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic

programming. AMAI50(3–4) (2007) 333–361
27. Ricca, F.: The DLV Java Wrapper. In: ASP’03, Messina, Italy (2003) 305–316 Online at

http://CEUR-WS.org/Vol-78/.
28. McCarthy, J.: Programs with Common Sense. In: Proceedings ofthe Teddington Conference

on the Mechanization of Thought Processes, Her Majesty’s Stationery Office (1959) 75–91
29. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of Artificial In-

telligence. In: Machine Intelligence 4. Edinburgh University Press (1969) 463–502 reprinted
in [85].

30. Minsky, M.: A Framework for Representing Knowledge. In: The Psychology of Computer
Vision. McGraw-Hill (1975) 211–277

31. Lobo, J., Minker, J., Rajasekar, A.: Foundations of DisjunctiveLogic Programming. The
MIT Press, Cambridge, Massachusetts (1992)

32. Przymusinski, T.C.: Stable Semantics for Disjunctive Programs. NGC 9 (1991) 401–424
33. Subrahmanian, V., Nau, D., Vago, C.: WFS + Branch and Bound= Stable Models. IEEE

TKDE 7(3) (1995) 362–377
34. Seipel, D., Tḧone, H.: DisLog – A System for Reasoning in Disjunctive Deductive

Databases. In: DAISD’94, Universitat Politecnica de Catalunya (UPC)(1994) 325–343
35. Pfeifer, G.: Disjunctive Datalog — An Implementation by Resolution. Master’s thesis, TU

Wien, Wien,Österreich (1996) Supported by T. Eiter.
36. Leone, N., Rullo, P., Scarcello, F.: Declarative and Fixpoint Characterizations of Disjunctive

Stable Models. In: ILPS’95, Portland, Oregon, MIT Press (1995) 399–413
37. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint

Semantics and Computation. Information and Computation135(2) (1997) 69–112
38. Cadoli, M., Eiter, T., Gottlob, G.: Default Logic as a Query Language. IEEE TKDE9(3) (

1997) 448–463
39. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A Deductive System for Nonmono-

tonic Reasoning. In: LPNMR’97. LNCS 1265, Dagstuhl, Germany, (1997) 363–374
40. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: TheKR Systemdlv: Progress

Report, Comparisons and Benchmarks. In: KR’98,(1998) 406–417
41. Niemel̈a, I., Simons, P.: Efficient Implementation of the Well-founded and Stable Model

Semantics. In: ICLP’96, Bonn, Germany, MIT Press (1996) 289–303
42. Cholewínski, P., Marek, V.W., Truszczyński, M.: Default Reasoning System DeReS. In:

KR’96, Cambridge, Massachusetts, USA,(1996) 518–528

43. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In: LP-
NMR’99. LNCS 1730) 177–191

44. Faber, W., Leone, N., Pfeifer, G.: Optimizing the Computation of Heuristics for Answer Set
Programming Systems. In: LPNMR’01. LNCS 2173, (2001) 288–301

45. Faber, W., Leone, N., Ricca, F.: Solving Hard Problems for the Second Level of the Polyno-
mial Hierarchy: Heuristics and Benchmarks. Intelligenza Artificiale2(3) (2005) 21–28

46. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Answer Set Program-
ming Systems. In: NMR’2002. (2002) 200–209

47. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. AI15(1–2) (2003) 177–212

48. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Techniques for
Nonmonotonic Reasoning. In: DDLP’99, Prolog Association of Japan (1999) 135–139

49. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: Progress Report on the Disjunctive
Deductive Database Systemdlv. In: FQAS’98. LNCS 1495, (1998) 148–163

50. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
TKDE 12(5) (2000) 845–860

51. Faber, W.: Disjunctive Datalog with Strong and Weak Constraints: Representational and
Computational Issues. Master’s thesis, TU Wien (1998)

52. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of
aggregate functions in the dlv system. TPLP8(5–6) (2008) 545–580

53. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Se-
mantics and complexity. In: JELIA 2004. LNCS 3229, (2004) 200–212

54. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in an-
swer set programming. AI (2008) Accepted for publication.

55. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational Properties of
Logic Programs with Aggregates. In: IJCAI 2005. (2005) 406–411

56. Faber, W.: Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates. In:
LPNMR’05. LNCS 3662, (2005) 40–52

57. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory and
Implementation. In: ICLP 2008, Udine, Italy (2008) To appear.

58. Buccafurri, F., Faber, W., Leone, N.: Disjunctive Logic Programs with Inheritance. TPLP
2(3) (2002)

59. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming Approach to
Knowledge-State Planning: Semantics and Complexity. ACM TOCL5(2) (2004) 206–263

60. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Answer Set Planning under Action
Costs. JAIR19 (2003) 25–71

61. Delgrande, J.P., Schaub, T., Tompits, H.: A Framework for Compiling Preferences in Logic
Programs. TPLP3(2) (2003) 129–187

62. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing Preferred and Weakly Preferred
Answer Sets by Meta-Interpretation in Answer Set Programming. In: AAAI 2001 Spring
Symposium on ASP, California, USA, AAAI Press (2001) 45–52

63. Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: A Polynomial Translation
of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary
Report. In: NMR’2002. (2002)

64. Osorio, M., Corona, E.: The A-Pol system. In: Answer Set Programming. (2003)
65. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Program-

ming with Description Logics for the Semantic Web. In: KR 2004, Whistler, Canada.
(2004) 141–151 Extended Report RR-1843-03-13, Institut für Informationssysteme, TU
Wien, 2003.

66. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description logic programs:
Implementation and experiments. In: LPAR 2004. (2004) 511–527

67. Eiter, T., Traxler, P., Woltran, S.: An Implementation for Recognizing Rule Replacements in
Non-ground Answer-Set Programs. In: JELIA 2006. LNCS 4160,(2006) 477–480

68. Eiter, T., Fink, M., Senko, J.: KMonitor - A Tool for Monitoring PlanExecution in Action
Theories. In: LPNMR’05. LNCS 3662, (2005) 416–421

69. Eiter, T., Erdem, E., Faber, W., Senko, J.: A Logic-Based Approach to Finding Explanations
for Discrepancies in Optimistic Plan Execution. FI79(1–2) (2007) 25–69

70. Eiter, T., Fink, M., Senko, J.: A Tool for Answering Queries on Action Descriptions. In:
JELIA 2006. LNCS 4160, (2006) 473–476

71. Caroprese, L., Trubitsyna, I., Zumpano, E.: Implementing prioritized reasoning in logic
programming. In: ICEIS 2007. (2007) 94–100

72. Brain, M., Gebser, M., P̈uhrer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging asp
programs by means of asp. In: LPNMR’07. LNCS 4483, (2007) 31–43

73. Gebser, M., P̈uhrer, J., Schaub, T., Tompits, H.: A Meta-Programming Techniquefor De-
bugging Answer-Set Programs. In: AAAI’08, AAAI Press (2008)448–453

74. Calimeri, F., Ianni, G., Ielpa, G., Pietramala, A., Santoro, M.C.:A system with template
answer set programs. In: JELIA. (2004) 693–697

75. Perri, S., Leone, N.: Parametric connectives in disjunctive logic programming. AI Commu-
nications17(2) (2004) 63–74

76. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in dlv: Im-
plementation, evaluation and comparison to qbf solvers. Journal of Algorithms in Cognition,
Informatics and Logics63(1–3) (2008) 70–89

77. Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism for the Instantiation of
ASP Programs. Journal of Algorithms in Cognition, Informatics and Logics 63(1–3) (2008)
34–54

78. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M.,Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
SIGMOD 2005, Baltimore, Maryland, USA, ACM Press (2005) 915–917

79. Calimeri, F., Citrigno, M., Cumbo, C., Faber, W., Leone, N., Perri, S., Pfeifer, G.: New dlv
features for data integration. In: JELIA. (2004) 698–701

80. Franconi, E., Palma, A.L., Leone, N., Perri, S., Scarcello, F.: Census Data Repair: a Chal-
lenging Application of Disjunctive Logic Programming. In: LPAR 2001. LNCS 2250, (2001)
561–578

81. Friedrich, G., Ivanchenko, V.: Diagnosis from first principles for workflow
executions. Tech. Rep., http://proserver3-iwas.uni-klu.ac.at/download area/Technical-
Reports/technicalreport200802.pdf.

82. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV:
an ASP-based System for Enterprise Ontologies. Journal of Logic andComputation (Forth-
coming)

83. Cumbo, C., Iiritano, S., Rullo, P.: Reasoning-Based Knowledge Extraction for Text Classi-
fication. In: Proceedings of Discovery Science, 7th International Conference, Padova, Italy
(2004) 380–387

84. Curia, R., Ettorre, M., Gallucci, L., Iiritano, S., Rullo, P.: TextualDocument Pre-Processing
and Feature Extraction in OLEX. In: Proceedings of Data Mining 2005, Skiathos, Greece
(2005)

85. McCarthy, J.: Formalization of Common Sense, papers by John McCarthy edited by V.
Lifschitz. Ablex (1990)

