
Concurrent and Local Evaluation of Normal

Programs

Rui Marques1 and Terrance Swift2

1 CITI, Dep. Informática — FCT, Universidade Nova de Lisboa
2 CENTRIA — Universidade Nova de Lisboa

Abstract. Tabled evaluations can incorporate a number of features,
including tabled negation, reduction with respect to the well-founded
model, tabled constraints and answer subsumption. Many of these fea-
tures are most efficiently evaluated using the Local evaluation strategy,
which fully evaluates each mutually dependent set of tabled subgoals
before returning answers to other subgoals outside of that set. In this
paper, we introduce a formalism, Concurrent Local SLG by which multi-
ple threads of computation concurrently perform Local evaluation of the
well-founded semantics, and which is a framework for multi-threaded
tabling in the XSB system. We prove several properties of Local evalua-
tion within single-threaded tabled computation. We then extend SLG to
a model of concurrency and show that the completeness and complexity
of SLG are retained when computed by multiple threads. Finally, we ex-
tend Local evaluation to concurrent SLG, and show that the properties
of Local evaluation continue to hold under concurrency.

This paper provides an operational semantics for a type of concurrent TLP
that relies on a scheduling strategy called Local evaluation [4]. The model of
concurrency adopted is one in which threads of computation execute separate
subgoals while sharing completed tables. The main idea behind Local evaluation
is that it fully evaluates a single mutually dependent set of tabled subgoals before
performing operations (such as returning answers) to subgoals outside of that
set. Experiments in several implementations have shown that Local evaluation
utilizes space efficiently (see e.g. [4, 10]) and as a result it has been implemented
for several Prologs.

Another feature of Local evaluation is shown in an example in [4] in which
tabling was used to compute the shortest path between two nodes. When Local
evaluation was used the shortest path could be computed in a time proportional
to the number of nodes in the graph, while if a non-Local scheduling strategy
was used the time was proportional to the number of paths in the graph – i.e.
the time was exponential in the number of nodes. Comparing path lengths to
compute a shortest path can be considered as an instance of answer subsumption
in which answers are retained and propagated only if they are maximal over a
partial order or are a monotonic function of answers so far produced.

Using SLG resolution [1] as a basis, this paper presents the following results
about concurrent and Local evaluations.

– As analysis of Local evaluation in the literature has been mostly empirical,
Local SLG evaluation is formally defined in Section 2 and shown complete

for queries to normal programs. Properties are derived about dependencies
between subgoals in a Local evaluation, about the return of answers, and
about the extent of non-completed subgoals in an evaluation.

– Section 3 presents SLGC , an extension of SLG to concurrent evaluations
in which completed tables are shared among threads. SLGC is complete for
queries to normal programs, and its abstract complexity is the same as SLG.

– Concurrent Local SLG (Local SLGC) is then defined in Section 3.1. It
is shown that properties of Local SLG evaluations extend to the sub-
evaluations performed by each concurrently executing thread, and a property
is derived about the structure of dependencies between threads.

– Section 4 sketches the implementation of Local SLGC in XSB, where the
engine design is directly motivated by the preceding results for subgoal and
thread dependencies. In addition to having the properties of finite evaluations
presented in this paper, XSB’s implementation of Local SLGC has been
extended to support tabled constraints, answer subsumption, tabled dynamic
code, and space reclamation.

We begin with a review of SLG evaluation.

1 SLG Evaluation

This presentation of SLG reformulates the operations of [1] using the model
of a forest of trees. However, for reasons of space we make the following re-
strictions throughout this paper. First, the formal definitions in this paper
consider only finite evaluations, although the statements of theorems that are
true for transfinite evaluations are not restricted. Second, our definition of
Completely Evaluated (Definition 4) does not permit Early Completion. And
third, we do not formally define the concept of a supported answer. All of
this formalism can be found in the full version of this paper, available at
http://www.cs.sunysb.edu/~tswift/papers.html.

Terminology and assumptions We assume the standard terminology of
logic programming and an understanding of the well-founded semantics (see
[12]). All programs discussed are normal, and defined over a countable language
of predicates and function symbols. If L is a literal, the underlying subgoal of L

is L if L is positive and S if L = not S. A 3-valued interpretation I of a program
P is a set of literals defined over the Herbrand base of P , HP . For A ∈ HP , if
A ∈ I, A is true in I, and if not A ∈ I, A is false in I; otherwise A and not A

are undefined in I. When I is an interpretation and A is an atom, I|A refers to

{L | L ∈ I and (L = G or L = not G) and G is in the ground instantiation of A}

The well-founded model of a program P is denoted as WFM(P). In the following
sections, we use the terms goal, subgoal, and atom interchangeably. Variant terms
are considered to be identical.

The nodes in SLG trees are built from atoms and default literals along with
a special type of literal called a delay literal.

Definition 1 (Delay Literals). A negative delay literal has the form not A,

where A is a ground atom. A positive delay literal has the form A
Subg
Ans , where

A is an atom whose truth value is based on that of some answer Ans for the
subgoal Sub. If θ is a substitution, then (ASubg

Ans)θ = (Aθ)Subg
Ans .

The annotations in positive delay literals are used to propagate truth values
when a given answer to a given subgoal becomes unconditionally true or false.

Definition 2 (SLG Trees and Forest). An SLG forest consists of a set of
SLG trees. Nodes of SLG trees have the form:

Answer Template :- DelaySet|GoalList

or simply fail. In the first form, the Answer Template is an atom, DelaySet is
a set of delay literals and GoalList is a sequence of literals. The second form is
called a failure node.

An SLG tree T is associated with a (possibly empty) marking sequence, which
is a sequence of terms possibly preceded by the distinguished term complete. The
first element of the marking sequence for T is denoted as marking(T). For a
term t, setMark(T, t) prepends t to the marking sequence of T .

A node N is an answer when it is a leaf node for which GoalList is empty.
If the DelaySet of an answer is empty it is termed an unconditional answer,
otherwise, it is a conditional answer.

The root node of a given SLG tree has the form S :- |S where S is a subgoal
— a property ensured by Definition 6. Thus, within a forest each tree and subgoal
are uniquely associated, so when T is an SLG tree in a forest F whose root node
is S :- |S it is sometimes convenient to use the terminology S is the root node for
T ; T is the tree for S; and S is in F . If marking(T) = complete, we refer to both
S and T as completed. Until Section 3, marking sequences will either be empty
or will contain only the term complete. Literals in a GoalList are resolved by
an arbitrary but fixed literal selection strategy. For simplicity, throughout this
paper literals are always selected in a left-to-right order.

SLG operations transform one forest of trees into another. One of the oper-
ations, Answer Return is based on answer resolution, which is extended to
take account of delay literals.

Definition 3 (Answer Resolution). Let N be a node A :- D|L1, ..., Ln, where
n > 0, and Ans = A′ :- D′| an answer whose variables have been standardized
apart from N . N is SLG resolvable with Ans if ∃i, 1 ≤ i ≤ n, such that Li and
A′ are unifiable with an mgu θ. The SLG resolvent of N and Ans on Li is:

(A :- D|L1, ..., Li−1, Li+1, ..., Ln)θ

if D′ is empty; otherwise the resolvent has the form:

(A :- D, Li
Li

A′ |L1, ..., Li−1, Li+1, ..., Ln)θ

The SLG Completion operation marks a set of trees as complete when they
can produce no more useful answers – a condition captured as follows.

Definition 4 (Completely Evaluated). A set S of subgoals in a forest F is
completely evaluated if no S ∈ S is completed; and if for each S ∈ S, for each
node N in the tree for S:

1. The underlying subgoal of the selected literal of N is completed; or
2. There are no applicable New Subgoal, Program Clause Resolution,

Answer Return, Negation Return or Delaying operations (Defini-
tion 6) for N .

In order to prevent S from being repeatedly completed, the preceding definition
explicitly prohibits S from containing any completed subgoals.

SLG forests are related to interpretations in the following manner.

Definition 5. Let F be a forest. The interpretation induced by F , IF , is the
smallest set such that:

– A (ground) atom A ∈ IF iff A is in the ground instantiation of some uncon-
ditional answer Ans :- | in F .

– A (ground) literal not A ∈ IF iff A is in the ground instantiation of a
completely evaluated subgoal in F , and A is not in the ground instantiation
of any answer in F .

An atom S is successful in F if some tree in F has an unconditional answer
S. S is failed in F if S is completed and the tree for S contains no answers. An
atom S is successful (failed) in IF if S′ (not S′) is in IF for every S′ in the
ground instantiation of S. A negative delay literal not D is successful (failed)
in a forest F if D is failed (successful) in F . Similarly, a positive delay literal

D
Subg
Ans is successful in F if Subg has an unconditional answer Ans :- | and failed

if Subg has no answer with head Ans.

Given these concepts, the SLG operations themselves can be stated.

Definition 6 (SLG Operations). Given a forest Fn of a SLG evaluation of
program P , Fn+1 may be produced by one of the following operations.

1. New Subgoal: Let Fn contain a non-root node

N = Ans :- DelaySet|G, GoalList

where G is the selected literal S or not S. Assume Fn contains no tree with
root subgoal S. Then add the tree S :- |S to Fn.

2. Program Clause Resolution: Let Fn contain a root node N = S :- |S
and C be a program clause Head :- Body such that Head unifies with S with
mgu θ. Assume that in Fn, N does not have a child Nchild = (S :- |Body)θ.
Then add Nchild as a child of N .

3. Answer Return: Let Fn contain a non-root node

N = Ans :- DelaySet|S, GoalList

whose selected literal S is positive. Let Ans be an answer node for S in Fn

and Nchild be the SLG resolvent of N and Ans on S. Assume that in Fn, N

does not have a child Nchild. Then add Nchild as a child of N .

4. Negation Return: Let Fn contain a leaf node

N = Ans :- DelaySet|not S, GoalList.

whose selected literal not S is ground.
(a) Negation Success: If S is failed in Fn, then create a child for N of

the form: Ans :- DelaySet|GoalList.

(b) Negation Failure: If S succeeds in Fn, then create a child for N of
the form fail.

5. Delaying: Let Fn contain a leaf node N =
Ans :- DelaySet|not S, GoalList, such that the selected literal npt S

is ground, S is in Fn, but S is neither successful nor failed in Fn. Then
create a child for N of the form Ans :- DelaySet, not S|GoalList.

6. Simplification: Let Fn contain a leaf node N = Ans :- DelaySet|, and let
L ∈ DelaySet

(a) If L is failed in F then create a child fail for N .
(b) If L is successful in F , then create a child Ans :- DelaySet′| for N ,

where DelaySet′ = DelaySet− L.
7. Completion: Given a completely evaluated set S of subgoals (Definition 4),

for each S ∈ S, setMark(T, complete), where T is the tree for S.
8. Answer Completion: Given a set of unsupported answers UA, create a

failure node as a child for each answer Ans ∈ UA.

In the above definition, the Answer Completion operation relies on the
concept of unsupported answers. Unsupported answers are conditional answers
that are false in the well-founded model, and reflect certain unfounded sets in
that model. While necessary for completeness of SLG, the Answer Comple-

tion operation is not affected by local or concurrent evaluations, so for reasons
of space, we omit its formal definition (see the full version of this paper).

SLG Evaluations An SLG evaluation consists of a (possibly transfinite) se-
quence of forests. However as noted, we restrict definitions of evaluations to be
finite for reasons of space (see the full version of this paper for the general case).

Definition 7 (SLG Evaluation). Given a program P and goal G, an SLG
evaluation E is a sequence of SLG forests F0,F1,. . . ,Fβ , such that:

– F0 is the forest containing a single tree G :- | G
– For each successor ordinal, n + 1 ≤ β, Fn+1 is obtained from Fn by an

application of an SLG operation from Definition 6.

If no operation is applicable to Fβ, Fβ is called a final forest of E. If Fβ contains
a leaf node with a non-ground selected negative literal, it is floundered.

The correctness is formulated as follows for transfinite evaluations

Theorem 1 ([1]). Let E be an SLG evaluation of a goal to a program P . Then
E has a final forest F . Let A be an atom such that A :- |A is the root of some
tree in F . Then if F is non-floundered, WFM(P)|A = IF |A.

2 Local SLG Evaluations

As noted above, a Local SLG evaluation fully evaluates each mutually dependent
set of tabled subgoals before performing operations to subgoals outside of that
set. We begin to formalize that notion by defining what it means for one subgoal
to depend on another.

Definition 8 (Subgoal Dependency Graph). Let F be a forest, and let
S1 :- |S1 be the root of a non-completed tree in F . The subgoal S1 directly de-
pends on a subgoal S2 iff S2 is not completed in F , and there is some node N in
the tree for S1 such that S2 is the underlying subgoal of the selected literal of N .

The Subgoal Dependency Graph of F , SDG(F) = (V,E), is a directed graph
in which (Si, Sj) ∈ E iff subgoal Si directly depends on subgoal Sj, and V is the
underlying set of E. S1 “depends on” S2 in F is there is a path from S1 to S2

in SDG(F).

Since the SDG of a forest is a directed graph, it can be partitioned into
disjoint sets of strongly connected components, or SCCs, where a node with no
outgoing edges is considered to be in a trivial SCC. We refer to a given SCC by
the set of its vertices (subgoals), and distinguish independent SCCs.

Definition 9 (Independent SCC). A strongly connected component S is in-
dependent if ∀S ∈ S: if S depends on some S′, then S′ ∈ S.

By Definition 9 it is straightforward that a trivial SCC is independent, and
that each independent component is maximal — i.e. contained in no larger SCC.
Local evaluation, then, performs operations on independent SCCs. Formally:

Definition 10 (Local SLG Evaluation). Given a program P and goal G, a
Local SLG evaluation E is a sequence of SLG forests F0,F1,. . . ,Fβ , such that:

1. F0 is the forest containing a single tree G :- | G
2. For each successor ordinal, n + 1 ≤ β, Fn+1 is obtained from Fn by an

application of an SLG operation from Definition 6 such that:
(a) if a New Subgoal operation is applied to create a tree S :- |S then S

is the underlying subgoal of a selected literal in a tree whose root subgoal
is in an independent SCC of SDG(Fn);

(b) a Program Clause Resolution, Answer Return, Negation Re-

turn or Delaying operation is only applied to a node on a tree whose
root subgoal is in an independent SCC of SDG(Fn);

E is delay avoiding if no Delaying operation is performed in a forest if any
other operation is applicable.

In the transfinite extension of Definition 10, a Local (SLG) evaluation works
as an unrestricted SLG evaluation whenever an independent SCC does not exist
in a forest, leading to the following theorem.

Theorem 2 (Completeness of Local Evaluation). Let P be a program and
G a goal. Then there exists an SLG evaluation E of G against P with final forest
F if and only if there exists a local SLG evaluation EL of G against P with final
forest FL such that IF |G = IFL |G.

While Local evaluation is ideally complete for the well-founded semantics, its
importance arises from its efficiency for certain classes of programs, along with
properties that can be used to ensure the correctness of implementations. The
first such property is:

Theorem 3. Let EL be a finite Local SLG evaluation. For each F in EL

SDG(F) has one and only one independent SCC.

Theorem 3 implies the following corollary which will be used by the imple-
mentation described in Section 4.

Corollary 1. Let EL be a finite Local SLG evaluation. For each F in EL there
is at most one incoming edge for each maximal SCC in SDG(F).

The following corollary captures the notion that in a Local evaluation, a
subgoal may only return answers out of its SCC once its SCC has been completed.

Corollary 2. In any forest F of a Local SLG evaluation, if an answer A is used
in an Answer Return operation to a node in a tree with root subgoal S, then
the tree for A has been completed, or is in the same SCC as S in SDG(F).

Corollary 2 has practical importance for answer subsumption since it implies
that no answer A need be returned out of an SCC if the model entails an an-
swer that is preferred to A – only the preferred answer need be returned. In
addition, it is easy to see that if Local evaluation were extended to ensure that
all appropriate Simplification and Answer Completion operations are per-
formed for an independent SCC just after it has been completed, the following
statement also holds. If a forest in Local evaluation contains a conditional an-
swer A = S :- D| and S is successful or failed in F , A will never be propagated
outside of the SCC. This strategy reduces the overall number of Simplifica-

tion and Answer Completion operations and has been adopted by the XSB
engine when computing non-stratified programs. The space efficiency of Local
evaluation is stated as follows:

Theorem 4. Let EL be a finite delay-avoiding Local evaluation of a goal G to
a program P , and let E be an SLG evaluation of G to a P . Then for any forest
FL in EL, there exists a forest F in E such that SDG(FL) is a subgraph of
SDG(F).

3 Sharing Completed Tables in a Concurrent Evaluation

Rather than starting with a single top-level atomic query, a concurrent SLG,
SLGC , evaluation is initialized with a set of atomic queries, such that each
atomic query is evaluated by a different thread of computation. In this model
of concurrency, threads share only completed tables so that a thread is pre-
vented from consuming answers from a (non-completed) table owned by another
thread. This disallows consume-producer models of concurrency and implies that
different threads may not collaborate to evaluate subgoals within a single SCC.

However as discussed below, within a Local evaluation the restriction may not
be binding since Local evaluations prevent consumer-producer models by their
nature, and since the scope of an SCC in a Local evaluation is relatively small.

Formally, this model of concurrency marks every non-completed tree in a
given forest with a thread identifier (cf. Definition 2). As terminology, if N is
a node in a tree T , marking(N) denotes marking(T), and if S is a subgoal
marking(S) denotes marking(T), where T is the tree for S.

Definition 11 (Thread). A thread identifier is an element of a set of terms
that does not include the term complete. Given an SLG forest F in an evaluation
E, a thread state is the maximal set T of trees in F such that for all T ∈ T
marking(T) = t where t is a thread identifier. A thread in E is the sequence of
thread states for a given marking. A thread is active in F if its thread state in
F is non-empty.

Let S be a subgoal, T the tree for S, and N a node in a forest. N is thread
compatible with S if marking(T) = complete or marking(T) = marking(N).

SLGC uses SLG forests and other notions from Definitions 1-5, but differs in that
certain SLGC operations may create or change thread markings, and markings
may restrict the applicability of operations based on whether a node and subgoal
are thread compatible according to the previous definition. Definition 12 presents
a new operation called Usurpation, along with those operations that differ from
Definition 6 where the difference in each altered operation is underlined.

Definition 12 (SLGC Operations). Given an SLG forest Fn, Fn+1 may be
produced by one of the following operations.

1. New Subgoal: Let Fn contain a non-root node

N = Ans :- DelaySet|G, GoalList

where G is the selected literal S or not S. Assume Fn contains no
tree with root subgoal S. Then add the tree T = S :- |S to Fn,
and setMark(T, marking(N)).

2. Answer Return: Let Fn contain a non-root node

N = Ans :- DelaySet|S, GoalList

whose selected literal S is positive. Let Ans be an answer node for S in Fn

such that N is thread compatible with S and let Nchild be the SLG resolvent
of N and Ans on S. Assume that in Fn, N does not have a child Nchild.
Then add Nchild as a child of N .

3. Negation Return: Let Fn contain a leaf node

N = Ans :- DelaySet|not S, GoalList.

whose selected literal not S is ground where N is thread compatible with S.
(a) Negation Success: If S is failed in Fn, then create a child for N of

the form: Ans :- DelaySet|GoalList.

(b) Negation Failure: If S succeeds in Fn, then create a child for N of
the form fail.

4. Completion: Given a completely evaluated set S of sub-
goals such that for all S ∈ S, marking(S) = t, then for each S ∈
S, setMark(T, complete), where T is the tree for S.

5. Usurpation: Let S be a set of subgoals in deadlock (Definition 13), SU ∈ S,
and TU the tree for SU . For each S ∈ S, setMark(T, marking(TU)).

The thread compatibility restrictions can mean that an SLG operation is appli-
cable in a given forest, but that the corresponding SLGC operation is not. The
Usurpation operation is designed to address cases where SLGC operations
might get stuck – which are formalized as situations of deadlock.

Definition 13 (Deadlock). A set S of subgoals in a forest F is in deadlock
if:

1. For each S ∈ S there are no applicable New Subgoal, Program Clause

Resolution, Answer Return, Negation Return or Delaying oper-
ations of Definition 12; and

2. There exists no S′ such that S ⊆ S′ and S′ is completely evaluated in F .

Example 1. As defined, SLGC evaluations may use any scheduling strategy, and
are not restricted to Local evaluations. They also begin with a set of goals
rather than with a single goal. Figure 1 illustrates a simple, non-Local, SLGC

evaluation of the goal {a(X),b(X)} to the program P2, where a(X) is initially
marked with thread identifier 1 and b(X) with thread identifier 2. Through New

Subgoal operations, trees for c(X) and e(X) are created and associated with
thread identifier 1, while d(X) is created and associated with thread identifier
2. Evaluation continues until there is a deadlock, as shown in Figure 1b. Note
in Figure 1b, that while there is an answer that could be returned to the node
e(1):- |d(X) in a non-Local evaluation, the node is associated with thread
identifier 1, while the answer is associated with thread identifier 2 so that the
return is prohibited by the thread compatibility restrictions. Usurpation is the
only operation applicable to this forest; assume that thread identifier 1 performs
the Usurpation, marking trees for c(X), d(X), and e(X) with identifier 1.
Afterward, an answer for e(1) is derived, leading to Figure 1c. Further Answer

Return operations lead to Figure 1d.‘v All of the subgals in thread identifier
1 have been completely evaluated, but the subgoal b(X) in thread identifier 2
cannot be completely evaluated until the answer for d(X) is resolved with the
node b(X):- |d(X). Since a completed subgoal is thread compatible with any
thread, once d(X) is completed, the answer for d(X) can be resolved.

The definition of a SLGC evaluation is nearly the same as for SLG (Definition 7),
but is initialized so that each atomic query in the set of goals it is presented with
is marked with a different thread identifier (Its formal, transfinite, definition can
be found in the full version of this paper). In addition, SLGC forests are based on
Definition 2, so the definition of an interpretation induced by a forest is identical
in both frameworks, leading to the following theorem.

Theorem 5 (Correctness of SLGC). Let P be a program and G a finite non-
empty set of goals. Then a SLGC evaluation of G against P exists with final state

a(X):- c(X). b(X):- d(X). c(X):- e(1),d(X). d(X):- c(X).

d(1).

e(1):- d(X)

(a) The Program P2

a(X):− |a(X) [1]

e(1):− |d(X)

e(1):− |e(1) [1]

d(1):− |d(X):− |c(X)

d(X):− |d(X) [2]

c(X):− |e(1),d(X).

c(X):− |c(X) [1]

b(X):− |d(X)

b(X):− |b(X) [2]

a(X):− |c(X)

(b) State α: Deadlock

a(X):− |a(X) [1]

d(X):− |c(X)

e(1):− |

e(1):− |d(X)

e(1):− |e(1) [1]

d(1):− |

d(X):− |d(X) [1]

c(X):− |e(1),d(X).

c(X):− |c(X) [1]

b(X):− |d(X)

b(X):− |b(X) [2]

a(X):− |c(X)

(c) State β: Answer for e(1)

a(X):− |a(X) [1]

e(1):− |

e(1):− |d(X)

e(1):− |e(1) [1]

a(1):− | d(1):− |

c(1):− |

c(X):− |d(X)

d(X):− |c(X)

d(X):− |d(X) [1]

b(X):− |d(X) d(1):− |c(X):− |e(1),d(X).

c(X):− |c(X) [1]

a(X):− |c(X)

b(X):− |b(X) [2]

(d) State γ: Complete Evaluation for Thread Identifier 1

Fig. 1. A non-Local SLGC Evaluation of P2

F̂ , iff for every Gi ∈ G there exists an SLG evaluation of Gi against P with final
state F i and I bF

= (
⋃

IFi).

The completeness portion of the theorem follows from a demonstration that
for any SLG operation on a forest, an equivalent SLGC operation is applicable
after zero or more Usurpation operations. The following theorem bounds the
number of Usurpation operations in a finite evaluation, which implies that the
abstract complexity of SLGC is the same as that of SLG.

Theorem 6 (Complexity of Usurpation). Let E be a finite SLGC evaluation
with final forest F , and SF the set of all subgoals in F . Then there are at most
|SF | Usurpation operations performed.

3.1 Concurrent Local Evaluations

In SLGC the Subgoal Dependency Graph (Definition 8) can be partitioned into
disjoint sub-graphs for each thread state of a forest.

Definition 14 (Thread Subgoal Dependency Graph). For each thread
state t in a forest F , the Thread Subgoal Dependency Graph of t

(Thread SDG(F , t)) consists of the sub-graph of SDG(F) determined by sub-
goals in F whose marking is t.

Local SLGC evaluation is based on independent SCCs within Thread SDGs,
rather than within a global SDG.

Definition 15 (Local SLGC). Given a program P , a set T of thread identi-
fiers, and a finite non-empty set G of goals, a Local SLGC evaluation E is a
sequence of forests F0,F1,. . . ,Fβ , such that:

1. F0 is a set-minimal forest containing the trees Ti = Gi :- |Gi, for each Gi ∈
G, where for each Ti there is a ti ∈ T such that marking(Ti) = ti, and
ti 6= tj if i 6= j.

2. For each successor ordinal, n + 1 ≤ β, Fn+1 is obtained from Fn by an
application of an operation from Definition 12 such that:
(a) if a New Subgoal is applied to create a tree T = S :- |S then S is the

underlying subgoal of a selected literal in a tree whose root subgoal is in
an independent SCC of Thread SDG(Fn, marking(T));

(b) a Program Clause Resolution, Answer Return, Nega-

tion Return or Delaying operation is only applied to a node
on a tree whose root subgoal is in an independent SCC of
Thread SDG(Fn, marking(T)).

This finitary definition can be extended to the transfinite evaluations, leading
to the following theorem.

Theorem 7 (Correctness of Local SLGC). Let P be a program and G a
finite non-empty set of goals. Then a Local SLGC evaluation of G against P

exists with final state F̂ , iff every Gi ∈ G there exists an SLG evaluation of Gi

against P with final state F i and I bF
= (

⋃
IFi).

The following theorem is an analogue of Theorem 3, and implies that each
thread of an Local SLGC evaluation has the dependency properties of Section 2.

Theorem 8. Let F be a forest in a finite Local SLGC evaluation. Then for each
active thread t in F , Thread SDG(F , t) has one and only one independent SCC.

The Thread Dependency Graph can be seen as a homomorphism of the SDG of
a given SLGC forest.

Definition 16 (Thread Dependency Graph). Let t1 and t2 be two active
threads in a SLG forest F . t1 directly depends on t2 if there exist a subgoal in t1
that directly depends on a subgoal in t2 (according to Definition 8). The Thread
Dependency Graph TDG(F) = (V,E) of F is a directed graph where V is the
set of active threads in F and (ti, tj) ∈ E iff ti directly depends on tj.

Based on the thread dependency graph, the following theorem shows that
any thread depends on at most one other thread.

Theorem 9. Let F be a forest in a finite Local SLGC evaluation. Then for each
node in TDG(F) there is at most one outgoing edge.

As a practical matter, this theorem indicates that each thread of computation
will wait on the results from at most one other thread. so that the thread com-
munication and dependency detection required to implement the Usurpation

operation will be relatively simple.

4 Implementing SLGC in the SLG-WAM

We summarize the changes made to XSB’s SLG-WAM in order to imple-
ment Local SLGC . Our discussion omits numerous optimizations required for
efficiency. In particular, due to space restrictions we do not discuss the propaga-
tion of subgoal dependencies between threads, or the handling of subgoals that
have been usurped multiple times (see [8] for details). We first describe Local
SLGC for definite programs before considering negation.

Since XSB’s SLG-WAM implements Local evaluation, it is evident from Sec-
tion 3 that the main addition is the Usurpation operation, which mainly affects
the SLG-WAM tabletry instruction. This instruction occurs at the entry point
of a tabled predicate when a tabled subgoal Subg is called. In the sequential

Instruction tabletry

/* Subg is in argument registers; Tcurrent is current thread */
Perform the subgoal check insert(Subg) operation in the table for this predicate
If Subg is not new and is marked by another thread

lock global TDG mutex
If deadlock(Tcurrent,Subg.ThreadMark)

/* all other threads in the independent SCC are suspended at deadlock */
usurp(Tcurrent,Subg.ThreadMark)

Else unlock TDG mutex; suspend the calling thread until Subg completes
Proceed as in the sequential case; if Subg was usurped, treat it as a new subgoal

deadlock(Tcurrent,depends thread)
while(depends thread 6= NULL)

if(depends thread = Tcurrent) return true;
else depends thread← depends thread.suspended on thread);

return false;

usurp(Tcurrent, first usurped)

Traverse SCCdl to reset suspended on thread dependency of each usurped thread
Unlock global TDG mutex
Traverse SCCdl to

Propagate the proper subgoal dependency to each usupred thread
Reset stacks of each (suspended) usurped thread

Fig. 2. Summary of Concurrent Local SLG implementation in the SLG-WAM.

SLG-WAM tabletry is essentially responsible for determining whether a New

Subgoal operation is required. The instruction first determines whether Subg

is in the table using its representation in the WAM argument registers. If Subg

is not in the table, a New Subgoal operation is effectively performed. Subg

will have been copied to the table during the check; and a generator choice point
is created to backtrack through program clauses, to check whether the subgoal’s
SCC has been fully evaluated, and to schedule Answer Return operations
if the SCC is not fully evaluated. On the other hand, if Subg is in the table,
tabletry creates a consumer choice point to backtrack through any answers to
Subg in the table and thereby perform Answer Return operations.

Extensions to tabletry for Local SLGC are summarized in Figure 2. If Subg is
new, it is copied into the table as in the sequential case, but in order to represent
the TDG a thread identifier is associated with Subg. For this association the
subgoal frame, a structure containing information about each tabled subgoal, is
extended with a ThreadMark cell. The essential difference from the sequential
case of tabletry occurs when Subg is not new and is currently marked by
another thread (and therefore not marked as completed). In this case deadlock
detection is performed: if a deadlock is not found, the calling thread Tcurrent

suspends as it does not have any applicable Local SLGC operations; otherwise
Tcurrent performs a Usurpation operation. In addition to changes in tabletry,
a change is made to the SLG-WAM completion instruction so that any thread
suspended on Subg is awakened when Subg is completed (a condition variable
based on the predicate symbol of Subg is used for this awakening).

The design of deadlock detection in the SLG-WAM relies on Theorem 9,
which states that each thread may be suspended on at most one other thread.
The SLG-WAM adds a suspended on thread field to the context of each thread
to denote any thread dependency. As shown in Figure 2, when a thread Tcurrent

performs deadlock detection, it starts by checking whether the thread marking
Subg is suspended using this suspended on thread field: if the thread is not sus-
pended, Tcurrent may suspend without fear of deadlock and it will be awakened
when Subg is completed. If the marker of Subg is suspended, the deadlock detec-
tion code follows the suspended on thread field. By Theorem 9, any loop in the
TDG must be a simple cycle so that deadlock detection is a simple while loop
that exits in one of two cases. If Tcurrent is found in the suspended on thread field
for one of the traversed threads, then Tcurrent depends (transitively) on itself
and deadlock occurs; otherwise if the suspended on thread field of a traversed
thread is null, Tcurrent transitively depends on a subgoal that is actively being
computed.

The fact that the thread dependencies for deadlocked threads form a simple
cycle also underlies the control flow of the usurp() function which consists of
two traversals of the deadlocked TDG cycle, denoted SCCdl. Each traversal be-
gins with the thread that marks Subg. In the first traversal, the usurping thread
Tcurrent updates the TDG, setting the suspended on thread field of each usurped
thread to its own id. Adjusting the TDG must be performed under global mu-
tual exclusion: otherwise two concurrently usurping threads might produce an
incoherent TDG. In the second traversal, which is not under mutual exclusion,

the execution stacks in each usurped thread Tusurped are examined and manipu-
lated – an operation that is safe since Tusurped has suspended on a subgoal due
to thread compatibility restrictions. The manipulation ensures that Tusurped will
no longer generate answers for usurped subgoals that it has marked, but rather
will be set to consume answers. This stack manipulation is considerably simpli-
fied by the property that the SDG for Tusurped will depend on a single usurped
subgoal STusurped

– the first subgoal in SCCdl that Tusurped encountered. (the
property is implied by Corollary 1 together with Theorem 8). However to de-
termine STusurped

, both subgoal dependencies contained in Tusurped and subgoal
dependencies across usurped threads must be considered. Accordingly, usurp()
also propagates cross-thread dependencies (the actual mechanism is not shown in
this summary) and uses these dependencies when resetting the stacks of Tusurped.
As a result, when Tusurped is awakened it will call STusurped

again from scratch
and backtrack through the answers of the completed subgoal.

This approach has the virtue of conceptual simplicity, but any partial com-
putations for the usurped subgoals are lost, and will be recomputed by the
usurping thread. Theorem 6 states that the maximal number of Usurpation

operations in a SLGC evaluation is linear in atoms(P), the number of atoms in a
program P . In [8] it is shown that Usurpation operations affect only constant-
time operations so that even if answers for usurped subgoals are recomputed,
the complexity of the well-founded semantics is unaffected.

Extensions for Negation and Answer Subsumption As suggested by
the changed operations in Definition 12, the SLG-WAM requires few modifi-
cations beyond those presented to extend Local SLGC to the well-founded se-
mantics. Consider first stratified programs. In the SLG-WAM, if the underlying
(tabled) subgoal Subg of a selected negative literal is not new and not complete,
the computation path “suspends” and resumes only when Subg has been com-
pleted. These operations are essentially the same as the interactions between
threads so far described. In the case of non-stratified negation the first new op-
eration to consider is the Delaying operation. If Subg is involved in a loop
through negation, the resumption mechanism is the same except that a bit in
the subgoal frame of Subg is set to indicate that Subg was delayed rather than
completed. Several cycles of delaying may be needed before Subg is finally com-
pleted, but each cycle may be handled by the thread suspension and usurpation
mechanisms described. When Subg is completed, any Simplification opera-
tions for its SCC are performed before awakening any threads suspended on
Subg, so that Simplification is not affected by the concurrency mechanisms.
Beyond negation, answer subsumption is implemented as an extension to the
SLG-WAM new answer operation which is unaffected by Local SLGC .

Performance Several performance studies have been made on tabling with
Local SLGC [6, 8, 7]. We focus on tests of scalability in which a list of M queries
is distributed to N threads and the elapsed time measured. [7] measured the
use of Local SLGC on programs which analyzed configuration reachability for
various extensions of Petri nets. Depending on particular formalism for the net,
the programs were definite, or used well-founded negation, tabled constraints or
answer subsumption. For nearly all of these benchmarks, left-recursive reacha-

bility of the form reachable(bound,free)) scaled perfectly to 4 processors (the
number available for this experiment).

In constrast, [8] measured scalability on a worst case: where multiple threads
concurrently evaluated right recursion on random graphs of varying densities, us-
ing queries of the form rightRec(bound,free). Observe that for right-recursion
over a graph, the connectivity of the SDG directly reflects the connectivity of
the graph. Consider properties of a random graph of V vertices (cf. [11]). If each
vertex has at most 1 edge there can be no cycles; if each vertex has between 1
and ln(V) edges the graph (and SDG) is likely to be split up into several SCCs;
while if each vertex has ln(V) or more edges the graph is likely to be connected,
with the SDG consisting of a single SCC. While somewhat preliminary, [8] indi-
cates that the number of deadlocks are relatively small. For graphs with between
1 and ln(V) edges per vertex, this is either because the graphs do not contain
large SCCs or because the subgoals in these SCCs are quickly completed. For
fully connected graphs, each thread is usurped at most once. As expected, scal-
ability is poor for the connected graphs as usurped threads must wait for the
SCC to be evaluated. However, the elapsed time for the Local SLGC is never
worse than that for a Local single-threaded evaluation on any graph. In other
words, for these benchmarks the implementation of Local SLGC is not affected
by the cost of recomputing answers for usurped subgoals and degenerates into a
mostly sequential evaluation where threads wait for the completion of SCCs.

5 Discussion

Local SLGC is well suited for multi-threaded evaluations that benefit from Local
evaluation and can provide speedups on problems that can be subdivided rela-
tively easily. At the same time, Local SLGC is not intended to support general
table parallelism. Local evaluation itself prevents one thread from consuming an-
swers concurrently produced by another thread if the consuming and producing
subgoals are in different SCCs. Beyond this, a Local SLGC evaluation may have
a number of threads suspended on incomplete or usurped subgoals, although
Theorem 6 puts a limit on the number of Usurpation operations.

We believe that a salient strength of Local SLGC is its formal basis. By
Theorem 7 several threads can cooperate to correctly compute the well-founded
semantics, and by Theorem 6 the abstract complexity is the same as a sequential
SLG evaluation. By Theorem 8 each thread in a Local SLGC evaluation will have
a single independent SCC, and so each thread will have properties of a Local
evaluation, including the space efficiency property of Theorem 4. By Corollary 2
(and Theorem 8) each thread will only return answers from completed tables, a
useful property for computing the well-founded semantics and answer subsump-
tion. As noted in Section 4, the implementation of Local SLGC directly relies on
Theorem 9 and Corollary 1. As a result of the theory-oriented design, the im-
plementation of Local SLGC , although delicate, mainly requires about 300 lines
of code to be added to the tabletry instruction: thus Local SLGC should be
relatively easy to port to other tabling engines that implement Local evaluation.

Related Work These strengths and limitations distinguish (Local) SLGC

from previous work, which we briefly discuss (see [6] for more details). [5] presents

an approach to distributed tabling in which the SDG (Definition 8) is distributed
among threads, the dependencies partially represented by numerical encodings
associated with subgoals, and a message-counting algorithm used for termination
detection. Maintaining the distributed SDG leads to an approach that is cubic
in the number of messages. SLGC differs from [5] in being a more minimal
extension of SLG requiring only the addition of markings and Usurpation,
and in retaining the complexity of SLG. Another distributed tabling method,
[2] avoids the cubic message complexity by using a centralized table manager to
maintain dependency and other information and a credit-recovery algorithm to
detect completion of the SCCs. SLGC differs from [2] in not requiring an explicit
table manager and in using the “optimistic” Usurpation operation to control
concurrency, as well as in being a formalism sufficient for proving completeness
and other properties. [9] presents algorithms for adding tabling to an or-parallel
engine and implements these algorithms in YAP, with impressive results for
definite programs. As mentioned above, unlike [9] Local SLGC does not address
general table parallelism, although it addresses normal programs and is based
on a formalization which permits a concise implementation. Perhaps the closest
work is [3] which allows threads to share answers when tables are not completed:
Concurrent SLG differs from this work in using a simpler method of concurrency
control, as well as in modeling normal rather than definite programs.

Acknowledgements: The authors thank Manuel Carro, Pablo Chico de
Guzmán, and anonymous reviewers for their careful comments.

References

1. W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM, 43(1):20–74, January 1996.

2. C. Damásio. A distributed tabling system. In Proceedings of the 2nd Workshop on

Tabulation in Parsing and Deduction, TAPD’2000, pages 65–75, 2000.
3. J. Freire, R. Hu, T. Swift, and D. S. Warren. Parallelizing tabled evaluation. In

7th International PLILP Symposium, pages 115–132. Springer-Verlag, 1995.
4. J. Freire, T. Swift, and D. S. Warren. Beyond depth-first: Improving tabled logic

programs through alternative scheduling strategies. JFLP, 1998(3), 1998.
5. R. Hu. Distributed Tabled Evaluation. PhD thesis, SUNY at Stony Brook, 1997.
6. R. Marques. Concurrent Tabling: Algorithms and Implementation. PhD thesis,

Universidade Nova de Lisboa, 2007.
7. R. Marques, T. Swift, and J. Cunha. Extending tabled logic programming with

multi-threading: A systems perspective. 2008.
8. R. Marques, T. Swift, and J. Cunha. A simple and efficient implementation of

concurrent local tabling. Available at http://www.cs.sunysb.edu/~tswift, 2008.
9. R. Rocha, F. Silva, and V. S. Costa. On applying or-parallelism and tabling to

logic programs. Theory and Practice of Logic Programming, 4(6), 2004.
10. R. Rocha, F. Silva, and V. Santos Costa. Dynamic mixed-strategy evaluation of

tabled logic programs. In ICLP, page 250264, 2005.
11. J. Spencer. The Strange Logic of Random Graphs. Springer, 2000.
12. A. van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded

semantics for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

