
UNIVERSITÀ DEGLI STUDI DI UDINE

DIPARTIMENTO DI MATEMATICA E INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA

CICLO XXII

PHD THESIS

On the Hybridization of Constraint Programming
and Local Search Techniques: Models and

Software Tools

Raffaele Cipriano

Supervisors:
Agostino Dovier
Luca Di Gaspero

ANNO ACCADEMICO
2010/2011

Dipartimento di Matematica e Informatica
Università degli Studi di Udine

Via delle Scienze, 206
33100 Udine

Italia

Contents

I Preliminary Concepts 1

1 Constraint Satisfaction and Optimization Problems 3
1.1 Formal definitions for CSP and COP . 3
1.2 Example . 4

2 Constraint Programming 9
2.1 Constraint Propagation . 9
2.2 Variable Assignment . 11
2.3 Search Engines . 12

2.3.1 Depth first . 12
2.3.2 Branch and bound . 13
2.3.3 Depth first with restart . 13

2.4 Example . 15

3 Local Search 19
3.1 Local Search Entities . 20
3.2 Basic Local Search Algorithms . 20

3.2.1 Hill Climbing . 22
3.2.2 Simulated annealing . 23
3.2.3 Monte Carlo . 23
3.2.4 Tabu Search . 23

3.3 Advanced Local Search Techniques . 24
3.4 Other Meta-heuristics . 25

3.4.1 Population-based methods . 25
3.4.2 Hybrid meta-heuristics . 26

3.5 Examples . 27

4 Hybridization of CP and LS 31
4.1 Consolidated Hybrid Techniques . 31
4.2 Large Neighborhood Search . 32
4.3 New Hybrid Techniques . 34
4.4 The Comet language . 34

II Software Tools 37

5 Gecode 39
5.1 Gecode Overview . 39

ii Contents

5.2 Gecode Architecture . 40
5.3 Modeling with Gecode . 41

5.3.1 Model Head . 42
5.3.2 Constraints . 42
5.3.3 Objective Function and Branching 43
5.3.4 Setting up a Branch and Bound search engine 44

6 EasyLocal++ 47
6.1 EasyLocal++ Overview . 47
6.2 EasyLocal++ Architecture . 48
6.3 Modeling with EasyLocal++ . 50

6.3.1 State . 50
6.3.2 Move . 51
6.3.3 Constraints and Objective Function 52
6.3.4 NeighborhoodExplorer . 53
6.3.5 StateManager . 56
6.3.6 Main . 56

7 GELATO hybrid solver 59
7.1 GELATO Overview . 60
7.2 GELATO Internal Core . 61

7.2.1 Data . 61
7.2.2 Helpers . 68

7.3 GELATO External Interface . 71
7.3.1 GELATO Large Neighborhood Search Engines 72
7.3.2 Calling the external interface from the main program 74

7.4 Modeling withGELATO . 74
7.4.1 A Gecode model forGELATO 75
7.4.2 The main . 77

8 GELATOMeta-Tool 79
8.1 SICStus language . 79

8.1.1 CSPs and COPs in SICStus . 80
8.2 FlatZinc language . 81

8.2.1 CSPs and COPs in FlatZinc . 82
8.2.2 Annotation in FlatZinc . 83

8.3 Translation from Prolog to FlatZinc . 84
8.3.1 Compiling a FlatZinc Generator . 84
8.3.2 Generating the FlatZinc code . 87

8.4 A Meta-heuristic modeling language . 88
8.5 Architecture of theGELATOMeta-Tool 91

Contents iii

9 InstallingGELATO 93
9.1 Installing Gecode . 93
9.2 Installing EasyLocal++ . 94
9.3 InstallingGELATO . 94

III Applications 95

10 Asymmetric Traveling Salesman Problem 97
10.1 Modeling the ATSP . 97
10.2 Experiments . 98

10.2.1 Solving approaches . 98
10.2.2 Parameters tuning and data analysis 99

10.3 Results . 100

11 The Minimum Energy Broadcast Problem 103
11.1 Modeling the MEB . 103
11.2 Experiments . 104

11.2.1 Solving approaches . 104
11.2.2 Parameters tuning and data analysis 105

11.3 Results . 105

12 The Course Time Tabling Problem 107
12.1 Modeling the CTT . 108
12.2 Experiments . 108

12.2.1 Solving approaches . 109
12.2.2 Parameters tuning and data analysis 109

12.3 Results . 109

Conclusions 113

Bibliography 115

iv Contents

List of Figures

1.1 Solution for the given instance of SCTT . 6
1.2 Assignment for the given instance of SCTT, violating constraints C2 and C3 . 6
1.3 Optimum solution for the given instance of SCTT 7

2.1 Example of Branch and Bound search . 14
2.2 Example of Depth First with Restart search 14
2.3 Ineffective exploration of the search space for the SCTT problem 17
2.4 Effective exploration of the search space for the SCTT problem 18

3.1 LS exploration on the search tree: (a) Initial solution s0. (b) Exploration of
the neighborhood of s0. (c) Moving to a neighbor. (d) The process is iterated. 21

4.1 A step of LS (a) and LNS (b) applied to a initial solution obtained by CP . . . 33
4.2 LNS move for a solution of SCTT . 34

5.1 Gecode Architecture . 40

6.1 The levels of abstraction in EasyLocal++ 48
6.2 EasyLocal++main classes . 50

7.1 Structure ofGELATO and interactions with Gecode and EasyLocal++ . 60
7.2 GelatoState class . 62
7.3 Gelato Move class hierarchy . 64
7.4 GelatoInput class . 65
7.5 GelatoOutput class . 65
7.6 GelatoSpace class . 67
7.7 GelatoNeighborhoodExplorer class . 69
7.8 Main Gelato Helpers classes . 70
7.9 GelatoOutputManager class . 72
7.10 LNS Engines classes . 73
7.11 main code that calls the HillClimbingRandom engine 75

8.1 SICStus Prolog model for the SCTT problem 81
8.2 Objective function of the SCTT model . 82
8.3 The overallGELATO tool and the translation process. 85
8.4 Example of generator head . 85
8.5 Example of generator utilities . 86
8.6 Pseudo code for the compilation of the generator body 87
8.7 Excerpt of SCTT FlatZinc model obtained 89
8.8 The overallGELATO tool . 92

vi List of Figures

10.1 Methods comparison on the ATSP instances 101

11.1 Methods comparison on the MEB instances 106

12.1 Methods comparison on the CTT instances 111

List of Tables

3.1 Differences between the Basics Local Search Techniques 22

8.1 Examples of translation from clp(FD) predicates to output predicates and then
to FlatZinc statements . 88

viii List of Tables

Introduction

Combinatorial problems such as planning, scheduling, timetabling, and, in general, resource
management problems, are encountered daily by industries, corporations, hospitals, and uni-
versities. The ability to get quickly good solutions for these problems is essential for such
organizations, since it impacts business and overall customer and employee satisfaction. This
allows for increasing of profit margins, proper use and employment of materials and re-
sources, optimized utilization of machines and employees, the scheduling of work shifts,
and so on.

These problems can be encoded with a mathematical approach that considers multiple
elements such as, connections and relationships of entities, prohibited situations, all while
working to obtain the main objective that is desired. This mathematical approach is fun-
damental in the characterization of Constraint Satisfaction Problems (CSPs) and Constraint
Optimization Problems (COPs). A CSP is defined as the problem of associating values, taken
from a set of domains, to variables subject to a set of constraints. A solution is an assignment
of values to all the variables that satisfies all the constraints. In COPs a cost function is asso-
ciated to the variable assignments and a solution that (without loss of generality) minimizes
the cost value searched. Unfortunately, these problems typically belong to the class of NP-
hard (or worse) problems. Thus, in non trivial instances it is extremely unlikely that someone
could find an efficient method (i.e., a polynomial algorithm) for solving them exactly.

The number of known approaches for dealing with CSPs and COPs currently is vast, and
comparable in size only to the difficulty of this class of problems. These approaches range
from mathematical (Operations Research) approaches (e.g., Integer Linear Programming,
Column Generation) to AI approaches, such as Constraint Programming (CP), Evolutionary
Algorithms, SAT-based techniques, Local Search (LS), just to name a few.

It is also well-known that their intractability poses challenging problems to the program-
mer. Ad-hoc heuristics that are adequate for one problem are often useless for others [83].
Classical techniques like Integer Linear Programming (ILP) need an extensive tuning on typ-
ical problem instances. Any change in the specification of the problem requires restarting
almost from scratch. Notwithstanding there is agreement on the importance of developing
tools for challenging this kind of problems in an easy and effective way. In this context we
are not attempting to find the optimum solution to a problem but instead to find a high quality
solution to be computed in a reasonable time.

In recent years much effort has been devoted to the development of general techniques
that allow high-level primitives to encode search heuristics. Noticeable examples of these
techniques are Constraint Programming (CP—with the various labeling heuristics) [61] and
Local Search (LS—with the various techniques to choose and exploring the neighborhood).
CP based systems [2] are usually based on complete methods that analyze the search space by
alternating deterministic phases (constraint propagation) and non-deterministic phases (vari-
able assignment). The main advantage of CP is flexibility: this paradigm allows the user
to encode declarative models in a compact and flexible way, where adding new constraints

x Introduction

is straightforward and does not affect the original model. LS methods [1], instead rely on
the definition of “proximity” (or neighborhood) and explore only specific areas of the search
space. The main advantage of LS methods is efficiency: by concentrating on some parts of
the search space, they can approximate optimal solutions in shorter time frames.

The future seems to stay in the combinations of these techniques, in order to exploit the
best aspect of each technique for the problem at hand (after a tuning of the various parameters
on small instances of the problem considered). See for example the results reached in [5, 13,
14, 25, 46, 74]. This is also witnessed in the success of the CP-AI-OR meetings [3]. In
particular, Large Neighborhood Search (LNS) can be viewed as a particular heuristic for
local search that strongly relies on a constraint solver [19] and that is a reasonable way to
blend the inference capabilities of LS and CP techniques.

Aims and Contributions
This thesis aims to study the integration of the Constraint Programming and Local Search
paradigms with three main goals in mind. First we want to combine together two free state-
of-the-art solvers for LS and CP in order to obtain a single framework for easily developing
hybrid techniques thus, exploiting the effectiveness of the basic solvers. Then, we define a
meta-heuristic modeling language to model CSPs and COPs as well as to define the meta-
heuristic to solve the problem. This language acts as high-level interface to access our frame-
work functionalities. And finally, we test our tool on several benchmark problems, in order
to show its effectiveness compared to other solvers for combinatorial problems.

In this thesis we present a general framework called GELATO that integrates CP and
LS techniques, defining a general LNS meta-heuristic that can be modified, tuned and adapted
to any optimization problem, with a limited programming effort. Instead of building a new
solver from scratch, we based our framework on two existing systems: the Gecode CP en-
vironment [67] and the LS framework EasyLocal++ [27]. We choose these two systems
(among other ones, such as [57, 58, 74]) because both of them are free, open-source, strong,
complete, written in C++, easy to interface to/from other systems, and with a growing com-
munity using them. Thus, GELATO inherits all the characteristics of these basic tools,
providing all their functionalities as well as several new hybrid possibilities. It is worth not-
ing that with GELATO it is possible to define one single model to exploit it to perform
the search with different strategies. These strategies range from pure Locals Search to pure
Constraint Programming through several degrees of hybridization (i.e., LNS strategies), con-
trolled by parameter values. Moreover, GELATO does not require any modification of
Gecode and EasyLocal++, not affecting their single development line. In this way every
improvement of the basic tools, such as new functionalities or performance improvements, is
immediately inherited byGELATO. GELATO is able to read and solve models encoded
in Gecode or FlatZinc (a low-level target language for CSPs and COPs).

In order to facilitate the use of the GELATO solver for users not versed in C++, we
allow access to the GELATO functionalities from other high-level declarative languages,
such as MiniZinc and SICStus Prolog. MiniZinc is a modeling language close to OPL, while
SICStus Prolog is the state-of-the-art constraint logic programming language. A model writ-
ten in MiniZinc or SICStus Prolog is translated into a FlatZinc encoding, that can be read and

Introduction xi

executed by theGELATO tool. For the translation task two compilers are used as follows:
the minizinc-to-flatzinc compiler, provided by the NICTA research group and a sicstus-to-
flatzinc compiler that we developed on our own, starting from the idea developed in [16].
AccessingGELATO from other modeling paradigms is straightforward, since only a com-
piler from the new paradigm to the FlatZinc language is needed.

Moreover we defined an extension of MiniZinc and SICStus, that allows us to specify
the hybrid solving strategy that GELATO will use to solve a model. The user can choose
a hybrid schema that performs the search and sets the parameters for guiding the hybrid
exploration. However we test the tool on some difficult benchmarks, so as to suggest a
methodology to tune the various parameters values on typical problem instances.

Thus, the extended MiniZinc and SICStus languages become meta-modeling languages
that allow the user to easily model CSPs and COPs and define algorithms that combine clev-
erly constraint propagation phases, neighborhood exploration and other procedures. Thanks
to these meta-modeling languages, GELATO is a programming framework made up of
three main part: the modeling part, where the user will define in a high-level style the prob-
lem and the instance he wants to solve as well as the algorithm to use. Algorithms used may
be CP search, possibly interleaved with LS, heuristics or meta-heuristics phases. The transla-
tion part, where the model and the meta-algorithm defined by the user will be automatically
compiled into the a FlatZinc format. Finally, the solving part, where the FlatZinc model
will be run and the various solvers will interact as specified by the user in the first phase, in
order to find the solution for the instance of the problem modeled. As a side effect, this pro-
gramming framework represents a new way to run declarative models: the user can encode
problems using well-known declarative languages (e.g. Prolog, MiniZinc), and then make
use of new low-level implementations (e.g. Gecode solver) for efficient execution. It is
worth noting that we also allow usingGELATO from models directly encoded in Gecode
or FlatZinc. Thus, GELATO can be used by any language that have a back end to the
Gecode environment, as the one provided for the Haskell language in [84].

In order to tune our framework and show its effectiveness, we tested GELATO on the
following three benchmarks:

• the Asymmetric Travel Salesman Problem, the asymmetric version of the well known
TSP NP-hard problem, taken from the TSPLib [72];

• the Minimum Energy Broadcast problem, an NP-hard optimization problem for the
design of ad hoc Wireless Networks, drawn from CSPLib [40] (number 48);

• the Course Time Tabling problem, consisting of the weekly scheduling of the lectures
for several university courses subjected to several given restrictions. This problem has
been introduced as Track 3 of the second International Timetabling Competition held
in 2007 [49].

We compared the performance of the GELATO hybrid approach with the approaches
of pure Constraint Programming and pure Local Search as well as with the state-of-the-art
framework for hybrid methods, i.e., the Comet language. The results show thatGELATO
has better performance with respect to the basic tools as well as the Comet language. With
respect to Comet, GELATO is free, open source, and easy to interface, being entirely

xii Introduction

made of C++ classes. Moreover, a user can model any problem choosing from high-level
declarative languages (e.g. SICStus Prolog, MiniZinc, Haskell) and exploit the available
compilers to obtain Gecode of FlatZinc encoding that can be directly used byGELATO.

Thesis Organization
The thesis is divided into three main parts. The first part gives an overview of the basic
concepts of modeling combinatorial optimization problems and introduces the Constraint
Programming and the Local Search paradigms, as well as the approaches that hybridize these
two techniques. The second part presents the software tools, i.e., Gecode and EasyLocal++
as well as the framework GELATO, together with its meta-heuristics modeling language.
The third one explains the experiments performed on the three benchmarks, showing and
comparing the results obtained.

Specifically, Chapter 1 explains the basic concepts of combinatorial optimization, i.e.,
Constraint Satisfaction Problems and Constraint Optimization Problems, introducing termi-
nology and examples used throughout the thesis. The Constraint Programming approach to
solve combinatorial problems is described in Chapter 2. Then, Chapter 3 introduces the
family of Local Search algorithms and meta-heuristics. The first part is finalized giving
an overview of the possible hybridization among the CP and LS paradigms in Chapter 4.
This chapter especially focuses on Large Neighborhood Search (LNS), a particular LS ap-
proach, that naturally leads to the definition of hybrid algorithms, and thus heavily used in
GELATO and Comet. Chapter 4 also includes a brief overview of the Comet program-
ming language.

The second part of this thesis deals with the software tools used and developed to tackle
combinatorial problems. The Gecode programming environment, i.e., our basic Constraint
Programming solver is introduced in Chapter 5. The EasyLocal++ framework, used for
managing Local Search algorithms, is shown in Chapter 6. Then Chapter 7 deals with
GELATO, the framework we developed combining together the functionalities of Gecode
and EasyLocal++. The overall architecture and the components of GELATO are ex-
plained as well as how the components interacts together and with the basic solvers. Brief
examples of how to use the framework are also given. Chapter 8 presents information on
how to access the GELATO functionalities from an high-level declarative language. The
SICStus Prolog and the FlatZinc languages are introduced as well as the compiler we devel-
oped to translate SICStus Prolog models into FlatZinc ones. Moreover, in this chapter the
extensions of SICStus Prolog and FlatZinc to define meta-heuristics are presented. Finally,
Chapter 9 is a technical chapter explaining the steps needed to install and use the basic solvers
andGELATO into a machine.

The third part of the thesis focuses on the experiments. The experimental methodology
is introduced in Chapter 10, that also deals with tests performed on the ATSP benchmark.
The experiments performed on the MEB problem are reported in Chapter 11, and Chapter 12
focuses on the CTT tests.

In conclusion of this thesis we give some commentary about this research and describe
possible future research to further develop that starting in this work.

I
Preliminary Concepts

1
Constraint Satisfaction and

Optimization Problems

In this chapter we give the basic definitions and characterizations of Constraint Satisfaction
Problems (CSPs) and Constraint Optimization Problems (COPs). CSPs and COPs allow
to mathematically model real life problems and they can be solved with a lot of different
techniques.

These problems are specified by a set of variables and a set of associated domains that
together define the search space, i.e. the set of all the possible variable assignments accord-
ing to the domains. A set of constraints distinguish between solutions (i.e., assignments that
satisfy the constraints) and assignments (that violate some constraints). The constraints guide
the search process discarding parts of the search space that violates constraints, thus driving
the search to solutions satisfying the constraints. The above characteristics are common be-
tween CSPs and COPs. A COP has the additional definition of an objective function that
measures the goodness of a single solution and drives the search process discovering good
solutions (instead o just admissible ones).

1.1 Formal definitions for CSP and COP
Formally, a CSP P is defined by triple P = 〈X,D,C〉, where:

• X represent a finite set of variables X = {x1, . . . , xk}. They usually model the objects
of the problem, e.g., resources, machines, personnel, time-slots, space-coordinates and
so on.

• D is a set of domains. Each variable xi ∈ X has associated a domain Di that models all
the possible values that the variable can take (i.e., if xi = di then di ∈ Di). The set of
all the domains isD = {D1, . . . ,Dk}. The domains are usually subset of R, N, Z or the
set {true, f alse}.

• C is the set of all the constraints. A constraint is a relation over dom = D1 × · · · × Dk.
The set of all the constraints is C = {C1, . . . ,Cn}. A tuple 〈d1, . . . , dk〉 ∈ dom satisfies

4 1. Constraint Satisfaction and Optimization Problems

a constraint Ci ∈ C iff 〈d1, . . . , dk〉 ∈ Ci; a tuple 〈d1, . . . , dk〉 ∈ dom satisfies C if it
satisfies all Ci ∈ C.

The search space of the CSP P represents the set of all the possible assignments d =

〈d1, . . . , dk〉 ∈ dom for the variables 〈x1, . . . , xk〉 of the CSP P. d is a solution of a CSP P
if ∀i, xi = di, di ∈ Di and if moreover d satisfies every constraint C ∈ C. In some contexts,
a solution is referred with the name of feasible solution, to stress the feasibility concept, i.e.
that all the constraints are satisfied. If there exists a constraint C j ∈ C so that d doesn’t satisfy
C j, then d is not a solution but just an assignment. With abuse of notation, assignments
violating constraints are sometimes called unfeasible solutions. The set of solutions of a CSP
P is denoted by sol(P). If sol(P) , ∅, then P is consistent.

A COP O is defined by two elements, i.e., O = 〈P, f 〉, where:

• P is a CSP as defined in the previous paragraphs;

• f is an objective functions associated to P. The objective function is defined as f :
sol(P)→ E where 〈E,≤〉 is a well-ordered set (typically, E ∈ {N,Z,R}).

The search space of O is the set sol(P) and it is usually assumed to be non-empty for
COPs. When clear from the context, we write sol(O) for sol(P). d ∈ sol(P) is a optimal
solution for O if it minimizes the function f , namely ∀e ∈ sol(P)(f (d) ≤ f (e)). We remark
that even if we are modeling a problem that has the conceptual aim to maximize a certain
function, we can always model it using a minimizing objective function: so, from now on,
when talking about COPs, we always refer to minimization problems.

The objective function can also be used to define CSPs: the constraints are relaxed and
f is used as a distance to feasibility, which accounts for the number of relaxed constraints
that are violated. The constraints that may be violated and contribute to worse the objective
function value, are called soft constraints; on the contrary, the constraints that cannot be
violated in any case are called hard constraints.

CSPs and COPs can be solved with several techniques, coming from different areas of
the AI and Operation Research fields, such as Simplex Method [21, 22], Branch and Bound
[47], Branch and Cut [38, 59], column generation [20, 23, 34], Boolean Satisfiability [17, 39],
Constraint Programming [2], heuristics of Local Search [1], Genetics Algorithms [41] and so
on. In the rest of the thesis we focus on Constraint Programming and Local Search methods.

1.2 Example
In this section some examples that clarify the above definitions are given. Let us consider a
simplified version of the Course Time Tabling problem, that will be presented in its complete
version in chapter 12. It consists in the weekly scheduling of the lectures of a set of university
courses and here it is called SCTT (i.e., Simple Course Time Tabling problem) and is defined
as follows.

DEFINITION 1.2.1 (SCTT) Given a set of courses C = {c1, . . . , cn}, each course ci is given
in a number of weekly lectures l : C → N, and is taught by a teacher t : C → T = {t1, . . . , tg}.
Five teaching days (from Monday to Friday) and two time slots for each day (Morning and

1.2. Example 5

Afternoon) are given, thus having a set of ten possible time periods: P = {p1, . . . , p10}. Each
teacher ti can be unavailable for some periods u : T → 2P.

The problem consists in finding a schedule for all the courses, so that all the required
lectures for each course are given (C1), lectures of courses taught by the same teacher are
scheduled in distinct periods (C2) and teacher unavailabilities are taken into account (C3).

Moreover, a cost function is defined for the following criterion: the lectures of each course
should be at least spread into a given minimum number of days δ : C → {1, . . . , 5}.

Let us consider the following instance:

• C = {OS , PL, AI}

• l(OS) = 3, l(PL) = 4, l(AI) = 3;

• t(OS) = Turing, t(PL) = Turing, t(AI) = Asimov

• P = {MOm,MOa,TUm,TUa,WEm,WEa,T Hm,T Ha, FRm, FRa}

• δ(OS) = 3, δ(PL) = 4, δ(AI) = 3,

• u(Turing) = {TUm,TUa}, u(Asimov) = {T Hm,T Ha, FRm, FRa}

A possible model for this problem can be defined in this way:

Variables and Domains The set X is made by C · P variables xc,p having domains {0, 1}.
The intuitive meaning is that xc,p = 1 if and only if course c is scheduled at period p, and
xc,p = 0 if course c is not scheduled at period p.

Constraints To ensure that the required number of lectures is given for each course, the
following constraint is introduced:

∑
j∈P

xc, j = l(c) ∀c ∈ C (C1)

The constraints stating that lectures of courses taught by the same teacher are scheduled
in distinct periods can be modeled as:

xc, j · xc′, j = 0 ∀c, c′ ∈ C s.t. t(c) = t(c′), j ∈ P (C2)

The unavailabilities constraints are modeled as follows:

xc, j = 0 ∀ j ∈ u(t(c)), c ∈ C (C3)

6 1. Constraint Satisfaction and Optimization Problems

Periods→ MO TU WE TH FR f Ob j
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 1 0 0 0 1 0 1 0 0 0 3 − 3 = 0
PL 0 0 0 0 0 1 0 1 1 1 4 − 3 = 1
AI 1 1 1 0 0 0 0 0 0 0 3 − 2 = 1

Total f Ob j: 2

Figure 1.1: Solution for the given instance of SCTT

Periods→ MO TU WE TH FR f Ob j
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 1 0 0 0 1 0 1 0 0 0 3-3=0
PL 1 0 0 0 0 1 0 1 0 1 4-4=0
AI 0 0 0 0 1 1 1 0 0 0 3-2=1

Total f Ob j: 1

Figure 1.2: Assignment for the given instance of SCTT, violating constraints C2 and C3

Search space and solutions In this instance we have 30 variables (10 time slots × 3
courses) with Boolean domains. Thus, an assignment can be represented by a sequence
of 30 bits. The entire search space is made of all the possible sequences, thus containing
230 possible assignments. Not all these assignments are solutions, because of the constraints.
Figures 1.1 and 1.2 show respectively a solution and an assignment. The assignment violates
the constraints C2 and C3: on Monday morning Prof. Turing has two different lectures in
the same time slot and Prof. Asimov gives a lecture on Thursday, when he is unavailable.
The solution and the assignment can be respectively represented by the following sequences:
100010100000000101111110000000 and 100010100010000101010000111000.

Objective function The objective function is defined as follows: each course is supposed
to be spread into a minimum number of days, according to the δ function. So, for each course
c the difference between δ(c) and the actual number of days occupied by the lectures of c is
calculated. This gives the contribution of each course to the objective function. The overall
value of the objective function is then calculated as the sum of all the single contributions.
The formula for such objective function is:

f Ob j =

n∑
i=1

max(0, δ(ci) − |{d(j) : xci, j > 0}|) (1.2.1)

According to this objective function, the solution of figure 1.1 is not optimal. An optimal
solution is shown in figure 1.3.

1.2. Example 7

Periods→ MO TU WE TH FR f Ob j
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 1 0 0 0 1 0 1 0 0 0 3-3=0
PL 0 1 0 0 0 1 0 1 0 1 4-4=0
AI 1 0 1 0 1 0 0 0 0 0 3-3=0

Total f Ob j: 0

Figure 1.3: Optimum solution for the given instance of SCTT

8 1. Constraint Satisfaction and Optimization Problems

2
Constraint Programming

Constraint Programming (CP) [61] is a declarative programming methodology, parametric
on the constraint domain. The constraint domain can be of several kinds, such as real, finite,
interval and Boolean domains. From now on in this thesis, we only consider Constraint
Programming on finite domains, because combinatorial problems are usually encoded using
constraints over finite domains, currently supported by all CP systems (e.g., [57, 58, 67]).
The CP paradigm is usually based on complete methods, i.e., methods that systematically
analyze the whole search space, looking for a solution. The search process acts alternating
two phases:

1. a deterministic phase, called constraint propagation, where the values that cannot be
assigned to any solution are removed by domains;

2. a non-deterministic phase, called variable assignment, where a variable is selected and
a value from its domain is assigned to it.

These two phases are iterated until a solution is found or unsatisfiability is reached; in
case of unsatisfiability the process backtracks to the last choice point (i.e., the last variable
assignment) and tries other assignments. The control algorithms that execute the searching
process alternating these two phases is called search engine.

In the following sections we explain in more details these two phases and the most com-
mon search engines.

2.1 Constraint Propagation
Given a CSP P = 〈X,D,C〉, the constraint propagation process rewrites a constraint C ∈ C
or a domain D ∈ D into an equivalent one applying rewriting rules that satisfy some local
consistency properties. There are three types of rewriting rules: Domain Reduction Rules,
that reduce the domains exploiting the information carried by constraints; Transformation
Rules, that transform the constraints into a simple form; Introduction Rules, that add new
constraints implied by the existing ones. Constraint programming solvers usually implement
fast Domain Reduction Rules and the most common ones are node consistency, arc consis-
tency, and bounds consistency.

10 2. Constraint Programming

Node Consistency A CSP is node consistent if for each variable xi ∈ X, every unary con-
straint that involves xi is satisfied by all values in the domain Di of the variable xi and vice
versa. This condition can be trivially enforced by reducing the domain of each variable to the
values that satisfy all unary constraints on that variable. As a result, unary constraints can be
neglected and assumed incorporated into the domains.

Arc Consistency A binary constraint C on the variables xi and x j with domains Di and D j

is arc consistent if each admissible values of xi is consistent with some admissible value of
the x j and vice versa. Formally:

(∀a ∈ Di)(∃b ∈ D j)((a, b) ∈ C) ∧ (∀b ∈ D j)(∃a ∈ Di)((a, b) ∈ C).

A CSP is arc consistent if every binary constraint C is arc consistent. The arc consistency
property may be very expensive to implement, so many solvers approximate it guaranteeing
just the following notion of consistency.

Bounds Consistency It is an approximation of the arc consistency, since it checks only the
bounds of the minimal interval that includes the domain. However, this is correct only if the
type of the domain is an interval. In the general case (e.g., large domains with few elements
and holes in the intervals) the bounds consistency is not complete w.r.t. arc inconsistency.
Even if it is an approximation it is deeply used in the Constraint Programming system, be-
cause it is very efficient.

We define the two functions min and max that return, respectively, the minimum and
the maximum element of a domain D. A binary constraint C over variables xi and x j with
domains Di and D j is bounds consistent if:

1. (∃b ∈ {min(D j)..max(D j)})((min(Di), b) ∈ C)∧
(∃b ∈ {min(D j)..max(D j)})((max(Di), b) ∈ C), and

2. (∃a ∈ {min(Di)..max(Di)})((a,min(D j) ∈ C)∧
(∃a ∈ {min(Di)..max(Di)})((a,max(D j) ∈ C)

A CSP is bounds consistent if every binary constraint in C is bounds consistent.
Now we give a brief example showing the different computational complexity needed to

guarantee arc consistency and bounds consistency. Consider c binary constraints C1, . . . ,Cc

on couples of variables from x1, . . . , xk with domains in D1, . . . ,Dk. Let d be the maximum
cardinality among the domains. Let us analyze the worst case scenario, for both arc consis-
tency and bounds consistency checking algorithms. Checking the arc consistency of a generic
constraint Ck(xi, x j) means to check that for every variable in the constraint (2 variables, i.e.,
xi and x j), for every domain value (at most d) in Di there exists an admissible value for x j in
D j (again D j has at most d elements). Thus, having c constraints, at each step the algorithm
has to check a number of values equal to c ·2 ·d ·d = 2cd2, i.e., O(cd2). The number of overall
steps is bounded by kd (at each step at least one values from one domain is discarded), lead-
ing to an overall complexity of O(kcd3). An algorithm that guarantees bounds consistency
does not check all the values of Di, but just the lower and the upper bounds, for a number of
values equal at most to 4d. Having c constraints the values checked at each step are at most

2.2. Variable Assignment 11

c, so at most 4dc checks. The number of overall steps is bounded by kd, leading to an overall
complexity of O(kcd).

Generalization of Arc and Bounds Consistency Arc consistency as well as bounds con-
sistency can be generalized to non binary constraints, leading to the notion of hyper arc
consistency and hyper bounds consistency.

An n-ary constraint C on the variables x1 . . . xn is hyper arc consistent if ∀i = 1, . . . , n,
the following property holds:

(∀ai ∈ Di)(∃a1 ∈ D1). . . (∃ai−1 ∈ Di−1)(∃ai+1 ∈ Di+1). . . (∃an ∈ Dn)|(〈a1 . . . an〉 ∈ C).

A CSP is hyper arc consistent if all the constraints in C are hyper arc consistent.
In the same way we can generalize the notion of bounds consistency to hyper bounds con-

sistency. Moreover, other families of local consistency can be defined (see [2]). For instance,
the path consistency, that involves triplets of variables; the k-consistency, that generalize the
previous notions of consistency in a recursive fashion; the directional consistency, a variant
of arc, path, and k-consistency tailored for being used by an algorithm that assigns values to
variables following a given order of variables.

Checking the consistency of P Once the desired level of consistency is chosen, a propa-
gation algorithm must ensure that consistency is preserved, i.e., it checks if the consistency
properties holds and discards the domain values that are inconsistent. These algorithms are
called propagators and usually every constraint has associated its own propagator. In the de-
terministic propagation phases of the constraint programming search, all the propagators are
activated one by one, and iterated until the domains cannot be restricted anymore (a fix-point
has been reached).

2.2 Variable Assignment
Once propagation reaches the fix-point and cannot infer any more information, it is necessary
to start a non-deterministic phase that explores the search space of P. This non-deterministic
phase, also called branching, first applies a splitting rule, that splits the search space in two or
more sub-spaces, and then proceeds exploring one of the sub-spaces. We remark that we are
dealing with CSPs over finite domains, thus it is always possible to perform an enumeration
of the domains. The most common splitting rules concern domain splitting:

1. domain labeling:
x ∈ {d1, . . . dn}

x ∈ {d1}| · · · |x ∈ {dn}

2. domain enumeration
x ∈ D

x ∈ {d}|x ∈ D \ {d}

with d ∈ D

12 2. Constraint Programming

3. domain bisection
x ∈ D

x ∈ {min(D)..a}|x ∈ {b..max(D)}

where a, b ∈ D and b is the greater element after a inD. IfD is an interval x . . . y, we
can choose a = b(x + y)/2c and b = a + 1.

If a sub-space is discovered to have no solutions, the process backtracks to the previous
choice point (splitting rule) and chooses another branch (sub-space) of the splitting. If all the
sub-spaces have been already explored without success, it backtracks further to the previous
splitting point and choose another branch, and so on.

The most common rule (implemented in all the constraint programming solvers) is the
domain labeling. To fully define the splitting process based on this rule, we have to specify
two aspects: the variable selection and the value selection. The variable selection rule de-
fines the next (still unassigned) variable xi that will be chosen for the domain splitting rule.
The value selection rule defines the criterion to choose in which order the different possi-
ble domain values of Di will be assigned to xi (i.e., in which order the sub-space generated
by the splitting rule will be explored). Different selection strategies (concerning variables
and values selection) can drastically effect the search efficiency of a constraint programming
algorithm and its results on a specific problem instance.

2.3 Search Engines
A search engine is the control algorithm that actually performs the search. It alternates the
constraint propagation and space splitting phases explained in the previous sections. The
engine explores the search space, until a solution is found or the whole search space is ex-
plored without finding any solution, thus showing that the problem is inconsistent. There are
several kinds of search engines, each with different characteristics to assess different prob-
lems. The next subsections present the search engines commonly available in the constraint
programming environments.

2.3.1 Depth first
The depth first engine is used for CSPs and explores the search tree of a problem with a depth-
first algorithm. It starts on the root node of the search tree, where all the variables are not
instantiated and all the domains are complete. The algorithm first runs a propagation on the
root node. Then it starts the proper exploration, alternating domain labeling and constraint
propagation phases. At each step, according to the variable and the value selection strategy
chosen, a new subproblem is created. Then a constraint propagation phase is applied to this
new subproblem. After this propagation phase, if the subproblem is not yet completely solved
(i.e., all the variables are instantiated), or it is discovered to be inconsistent, the exploration
continues in the subproblem, with a new domain labeling step. When the current subproblem
is completely solved, the algorithm stops and the solution found is returned. If instead the
current subproblem is discovered to be inconsistent, the algorithm backtracks to the previous
domain labeling phases and assigns another value to the variable, according to the value

2.3. Search Engines 13

selection policy, thus creating a new subproblem to be explored. If all the possible values
have been tried without success, the algorithms backtracks to a previous domain labeling
choice points and tries another value for that variable.

2.3.2 Branch and bound
This engine is used on COPs, in order to find optimal solutions. It performs the exploration
similarly to the depth first search engine, but it does not stop at the first solution (as the depth
first search engine); instead it keeps searching for better solutions, until a stop criterion is
satisfied. When this engine finds a solution, it adds a new constraint to the problem, in order
to make the solution found unfeasible and drive the search towards better solutions.

The most common example of such a constraint is as follows. The COP P is a mini-
mization problem, with the objective function defined on the variable FOBJ. The solution
s has been found, with objective function value f (s) = v, so the constrains store contains
the information FOBJ = v. The constraint that discards the current solution and force the
search process to better one is FOBJ ≤ v. This constraint not only forces the search towards
new solutions, but also cuts portions of the search space. In fact, if it turns out that part of the
search tree does not have any chance to improve the objective function value already reached,
this subspace is skipped. The general idea is the same of the Operation Research Branch and
Bound method: an analysis of the lower bound for a partial assignment, together with a know
value already reached, allows the algorithm to cut parts of the search tree and speed up the
search. However, the implementation of the OR Branch and Bound method is different from
the CP one, since it uses concepts typical of the OR field, such as linear relaxations, the
simplex method, particular branching strategies and bounding methods.

Thus, at each solution found the branch and bound search engine adds a new constraint
and starts backtracking to find another (better) solution. The backtrack process is performed
in a depth first fashion, as described for the previous search engine.

The branch and bound search engine cannot detect if a solution found is the optimal one,
as long as a lower bound for the current instance is not known. Thus, the engine needs a stop
criterion, in order to stop the search process at some point and return the best solution found
so far. There are different kinds of stop criterions, depending on the constraint programming
environment we are using. The most common ones are: timeout, failures, subproblems,
memory. The timeout criterion stops the search engines after a given amount of time. The
failures criterion stops the search when a given number of subproblems has been discarded
because of inconsistency. The subproblems one stops the search after the exploration of a
given number of subproblems. The memory one stops the search when a given amount of
memory has been used.

2.3.3 Depth first with restart
This search engine is used on COPs and it is very similar to the branch and bound one. The
engine explores the search space in a depth-first way, then when it finds a solution it adds
a new constraint that discards the solution and forces the engine to search for a better ones.
The engine subsequently stops when a specified stop criterion is satisfied. The only difference
compared to the previous search engine is that, after it has found a solution and added the

14 2. Constraint Programming

Figure 2.1: Example of Branch and Bound search

Figure 2.2: Example of Depth First with Restart search

new constraint, it does not start to backtrack. Instead, it starts the search from the root node
of the search tree, i.e. from the beginning. The new constraint added in the constraints store
should now cut the search space and drive the search to different (and better) solution.

Now a brief example that shows the different explorations of a search space performed
by a branch and bound as well as a depth first with restart search engine is given. Consider
the following COP: X = {X,Y,Z}, DX = DY = DZ = {1, 2}, C = ∅, f Ob j = X − Y + Z. In this
example the objective is to maximize f Ob j. Note that there are no constraint in the original
CSP, but the constraint related to the objective function will be added every time a solution is
found, according to the search strategy described above.

Figure 2.1 and 2.2 show the explorations performed by the two different engines. Arrows
shows how the search space is explored and the numbers into the nodes represent the visiting
order. Note that every time a solution is found (let us say with value f), a constraint X−Y+Z ≤
f is added. This constraint is checked for consistency at every node subsequently analyzed,
both when backtracking and when restarting. In this example the branch and bound engine
shows a better behavior: it finds more quickly the second solution and finishes the exploration
in less steps. Anyway, a crucial aspect that we cannot consider here is about how much time
is spent on a single node. Restart engines usually come with procedures able to recreate or
clone already visited nodes in very short time, making the restart strategy worthy. There is

2.4. Example 15

not a general rule stating when a strategy is better than the other one. It strongly depends on
the problem instance we are solving, on the variable ordering, on the time spent to create a
node or check consistency, on the strength of the consistency level chosen, and so on.

2.4 Example
In this section explorations of two searches performed by a depth first engine are given. The
instance of the SCTT problem introduced in section 1.2 is considered. The states reached by
the explorations are shown in figures 2.3 and 2.4. The structure of a state is the same one
used in figures 1.1-1.3. Only the grid of the variables are reported, without any labels nor the
FObj column.

The explorations are executed by a depth first engine that:

• uses a domain labeling rule for the variable assignment;

• checks and propagates unary and binary constraints every time one of the variables
involved in the constraint is instantiated;

• checks and propagates n-ary constraints only when all the variables involved in the
constraint are instantiated;

This example simplifies the real behavior of the modern CP engines, that usually propa-
gate and check n-ary constraints also on partial assignments.

The two explorations differ only in the domain labeling strategy used: the first explo-
ration, shown in figure 2.3, uses a leftmost variable selection with a down-up value selection.
The second exploration, shown in figure 2.4, uses a with leftmost variable selection with an
up-down value selection. This difference leads to an ineffective (down-up value selection)
and effective (up-down value selection) exploration of the search tree. Let’s briefly analyze
these two explorations.

The first exploration (figure 2.3) starts on the root node (1) which has all the variable not
instantiated. The first propagation phase fixes to 0 the variables regarding the unavailabil-
ity constraints, as shown in node (2). Then the first variable is assigned with the value 0,
according to the domain labeling strategy (3). After this assignment there is an ineffective
propagation, because the assignment of 0 dose not give any helpful information that may re-
strict some other domains. Then all the variables of the first row are instantiated in the same
way, reaching the configuration of node (5) after multiple steps. At this point all the variables
regarding the constraint C1 for the first course (C1 with c = OS) are instantiated (from now
on we write C1OS to indicate the C1 constraint on the OS course). The consistency checking
is performed and it detects that constraint C1OS is violated. So the process backtracks to
the previous choice point, i.e., node (4) and chooses the other branch. This alternative branch
still leads to an inconsistent state (node 6), w.r.t. the constraint C1OS . So the engine continues
backtracking, until it reaches node (7), which satisfies the constraint C1OS . Note that the as-
signment performed just before node (7), instantiates the last variables of the first row. Thus,
the subsequent propagation phases fixes the value 0 on the above variable, according do the
binary constraint C2 on those variables. Similarly, the other two variables of the second row

16 2. Constraint Programming

were fixed to 0. After node (9), the engine will continue the search and will encounter similar
problems (inconsistency forcing backtrack) on the second and the third row.

The second exploration (figure 2.4) shares nodes 1 and 2 with the first one, but then it
differs. At the variable assignment step, the first variables gets the value 1, as shown in node
(3). At this point the information of the first variable is propagated and the above variable on
row 2 gets the value 0. The process continues in this way (assigning 1 to the next variable
and propagating 0 above), till node (7) is reached. At this point constraint C1OS is satisfied
and the propagation process fixes the other variables to 0. The engines continues the search,
reaching the feasible solution represented in node (9) without any backtrack.

The second exploration reaches a solution in fewer steps than the first one, so the up-
down value selection is more effective. This occurs because this strategy makes choices that:
1) propagate more information 2) satisfy earlier the constraints.

2.4. Example 17

root:
01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01

(1)

⇓
01 01 0 0 01 01 01 01 01 01
01 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(2)

↙
0 01 0 0 01 01 01 01 01 01
01 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(3)

↙

. (7)

↙ ↘
(4)

0 0 0 0 0 0 0 0 0 01
01 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(*)

↙ ↘
(5)

0 0 0 0 0 0 0 0 0 0
01 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(6)
0 0 0 0 0 0 0 0 0 1
01 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

failure failure

(7) (*)
↘

0 0 0 0 0 0 0 1 1 1
01 01 0 0 01 01 01 0 0 01
01 01 01 01 01 01 0 0 0 0

(8)

⇓
0 0 0 0 0 0 0 1 1 1
01 01 0 0 01 01 01 0 0 0
01 01 01 01 01 01 0 0 0 0

(9)
. . .

Figure 2.3: Ineffective exploration of the search space for the SCTT problem

18 2. Constraint Programming

root:
01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01

(1)

⇓
01 01 0 0 01 01 01 01 01 01
01 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(2)

↙
1 01 0 0 01 01 01 01 01 01
01 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(3)

⇓
1 01 0 0 01 01 01 01 01 01
0 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(4)

↙
1 1 0 0 01 01 01 01 01 01
01 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(5)

⇓
1 1 0 0 01 01 01 01 01 01
0 0 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(6)

↙
1 1 0 0 1 01 01 01 01 01
01 01 0 0 01 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(7)

⇓
1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 01 01 01 01 01
01 01 01 01 01 01 0 0 0 0

(8)

↙
. . .
↙

1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 0 0 0

(9)

Figure 2.4: Effective exploration of the search space for the SCTT problem

3
Local Search

Local Search (LS) methods (see [1, 24, 42]) are a family of meta-heuristics to solve CSPs
and COPs, based on the definition of proximity (or neighborhood): a LS algorithm typically
moves from a solution to a near one trying to improve the objective function, in an iterative
process. Differently from the CP paradigm, LS algorithms usually do not explore the whole
search space, but they focus only on specific areas of the search space: for this reason they are
incomplete methods, in the sense that they do not guarantee to find a solution, but they search
non-systematically until a specific stop criterion is satisfied. However, from the theoretical
point of view there are also local search techniques that are asymptotically complete. They
are called ergodic techniques [6, 7, 79], which means that at infinite time they will analyze
all the possible solutions of a problem, thus exploring the whole search space.

Despite their incompleteness, these techniques are very appealing because of their effec-
tiveness and their widespread applicability.

To specify a LS algorithm four aspects must be defined:

• a search space, that defines the solutions of the problems;

• a neighborhood relation, that defines how to move from a solution to another one,
usually called a neighbor solution, or simply a neighbor;

• a cost function, that assesses the quality of a solution;

• a stop criterion, that establish when the local search algorithm has to stop the search
and return the best solution found that far.

In the next sections we illustrate these entities (section 3.1) and show how they can be
composed to define different basic LS algorithms (section 3.2). In section 3.3 we explain
different ways to improve the basic algorithms. Section 3.4 presents other meta-heuristics
that deal with combinatorial optimization problems, belonging to the population-based ap-
proaches. The last section (3.5) gives some examples about the local search concepts intro-
duced in section 3.1.

20 3. Local Search

3.1 Local Search Entities

Given a COP O = 〈P, f 〉, where P is the CSP 〈X,D,C〉, the search space for a local search
algorithm is the set sol(O), as defined in section 1.1. The constraints in D are usually called
hard constraints, because they cannot be violated in any case. Each element s ∈ sol(O)
represents a solution of P. Local Search methods are based on the hypothesis that sol(O) is
not empty.

Definition 1 (Neighborhood relation) Given a COP O = 〈P, f 〉, we assign to each element
s ∈ sol(O), a set N(s) ⊆ sol(O) of neighboring solutions of s. The set N(s) is called the
neighborhood of s and each member s′ ∈ N(s) is called a neighbor of s.

In generalN(s) is implicitly defined by referring to a set of possible moves, which define
transitions between solutions. Moves are usually defined in an intensional fashion, as local
modifications of some part of s.

As defined in section 1.1, a cost function f : sol(O) → E (where 〈E,≤〉 is a well-ordered
set) associates each element s ∈ sol(O) to a value f (s) ∈ E that assesses the quality of the
solution. The function f is used to drive the search toward good solutions and to select the
move to perform at each step of the search. Moreover, f counts the number of violations of
the soft-constraints.

Starting from an initial solution s0 ∈ sol(O), a Local Search Algorithm iteratively nav-
igates the space sol(O) by stepping from one solution s to a neighbor s′ ∈ N(s), obtained
using a move m. We write s′ = s ⊕ m to denote the application of the move m to the solution
s, obtaining the solution s′. This process is illustrated in figure 3.1. The selection of m is
based on the values of f on N(s) and it depends on the specific LS technique considered.
It can also be the case that f (s′) = f (s) (idle or sideway move) or f (s′) > f (s) (worsening
move).

The stop criterion specifies when the iterations of the LS algorithm must be stopped, and
the best solution found in the process is returned. The actual stop criterion depends on the
technique at hand and it may be based on the following possibilities:

• the specific qualities of the solution reached (the objective function has reached a de-
sired minimum value, or a value close to a known lower bound)

• a maximum number of iterations performed;

• a temporal timeout.

3.2 Basic Local Search Algorithms

A general procedure for an abstract Local Search Algorithm (see [24]) is shown in the fol-
lowing code:

3.2. Basic Local Search Algorithms 21

(a) (b)

(c) (d)

Figure 3.1: LS exploration on the search tree: (a) Initial solution s0. (b) Exploration of the
neighborhood of s0. (c) Moving to a neighbor. (d) The process is iterated.

22 3. Local Search

Component Hill Climbing Simulated
Annealing

Monte Carlo Tabu Search

InitialSolution not specified random random not specified
SelectMove random/best/. . . random random best non tabu
AcceptableMove non-worsening improving

always; if
worsening
with probabil-
ity e−∆/T

improving
always; if
worsening
with probabil-
ity p

always

StopSearch idle iterations frozen system idle iterations idle iterations

Table 3.1: Differences between the Basics Local Search Techniques

(1) procedure LS(SearchSpace S, Neighborhood N, CostFunc F);
(2) {
(3) s0 := InitialSolution(S);
(4) i := 0;
(5) while (StopCriterion(si; i)) do
(6) {
(7) m := SelectMove(si; F; N);
(8) if (AcceptableMove(m; si; F))
(9) then si+1 := si ⊕ m;
(10) else si+1 := si;
(11) i := i + 1
(12) }
(13) }

We assume that the CSP underlying the COP is consistent, so there always exists an initial
solution s0, which is a leaf of the search tree: this first solution can be randomly generated
or freely constructed by some specific heuristic. The StopCriterion method defines
when to stop the search and return the result. SelectMove choose a neighbor s′ in the
neighborhood N(si) and AcceptableMove determines if the solution s′ can be accepted
as the next one. Each of these characteristics may vary according to different strategies and
leads to different LS techniques. In the following sections we describe the most common
ones and table 3.1 shows the main characteristics of their traditional implementations.

3.2.1 Hill Climbing
Hill Climbing is the simplest LS technique and it is based on the following idea to accept the
move: at each step of the search, the algorithm accepts a move that either improves the value
of the objective function or leave it unchanged. There are several variants of the Hill Climbing
technique (see for example the ones presented in [54, 63, 70]). They typically share the
same definition of AcceptableMove, but have different move selection criterions (random

3.2. Basic Local Search Algorithms 23

move, best move. . .) and stop criterions (number of iterations, number of idle iterations, good
objective function value reached, . . .).

The main problem with Hill Climbing procedures is that they usually fall into local min-
ima (i.e. solutions whose neighborhood is made up of solutions having greater cost) and
cannot go out of them (because they cannot accept worsening moves).

3.2.2 Simulated annealing
Simulated Annealing was proposed by Kirkpatrick et al. [45] and Cerny [76], and gets that
name after an analogy with a simulated controlled cooling of a collection of hot vibrating
atoms. The idea is based on accepting non-improving moves with probability that decreases
with time. The process starts by creating a random initial solution s0. At each iteration a
neighbor s′ of the current solution s is generated. We define ∆ = f (s′) − f (s) that measure
the improvement given by the new candidate solution. If the neighbor improves the objective
functions value (∆ ≤ 0), it is accepted; if it is a worsening solution (∆ > 0), it is accepted
with probability e−∆/T , where T is a parameter, called the temperature. The temperature
T is initially set to an appropriately high value T0. After a fixed number of iterations, the
temperature is decreased by the cooling rate α, so that at each cooling step n, Tn = α × Tn−1.
In general α is in the range 0.8 < α < 1. The procedure stops when the temperature reaches
a low-temperature region, i.e., when no solution that increases the cost function is accepted
anymore. In this case we say that the system is frozen.

Note that in the initial stage of the search (i.e., at “high temperatures”), Simulated An-
nealing does not fall into local minima, but for “low temperatures” the procedure reduces to
an Hill Climbing, therefore the final state obtained by Simulated Annealing will clearly be a
local minimum.

3.2.3 Monte Carlo
The Monte Carlo method [30, 51] is similar to Simulated Annealing. It only differs on the
probability to accept a worsening solution. Instead of a probability decreasing with time,
the Monte Carlo method has a fixed probability to accept a worsening solution, while it
always accepts improving moves (as Simulated Annealing does). In this way, the system
never gets frozen and it is theoretically possible to reach every possible state of the problem
(Monte Carlo method belongs to the family of ergodic methods). The name Monte Carlo is
a reference to the Monte Carlo Casino in Monaco. Von Neumann chose this name for the
stochastic method he was applying to investigate about radiation shielding, while working at
the Los Alamos Scientific Laboratory with Stanislaw Ulam [29, 50].

3.2.4 Tabu Search
Tabu Search is a method in which a fundamental role is played by keeping track of features
of previously visited solutions. It was proposed by Glover [35, 36, 37] in the late 1980s,
and since then it has been employed by many researchers for solving problems in different
domains. The basic mechanism of Tabu Search is quite simple: at each iteration, given
the current solution s, a subset Q ⊆ N(s) of its neighborhood is explored. The solution

24 3. Local Search

s′ ∈ Q that gives the minimum value of the cost function becomes the new current solution
independently of the fact that its value is better or worse than the value of s. To prevent
cycling, there is a so called tabu list, i.e., a list of moves that are forbidden to be performed.
The tabu list comprises the last k moves (k is a parameter of the method), and it is run as a
queue (after k iteration into the tabu list, the move is discarded and can be selected again). The
prohibition mechanism of the tabu list can be implemented in many ways, leading to several
tabu search variants. An interesting improvement of the basic idea is the one proposed by
Gendreau et al. [33]: each performed move is inserted in the tabu list together with the
number of iterations tabu iter that it is going to be kept in the list. The number tabu iter is
randomly selected between two given parameters tmin and tmax (with tmin ≤ tmax). Each
time a new move is inserted in the list, the value tabu iter of all the moves in the list is updated
(i.e., decremented), and when it gets to 0, the move is removed.

The main characteristic of tabu search (that differentiates it from Hill Climbing or Sim-
ulated Annealing) is that tabu search avoids the local minima: in fact a new s′ ∈ N(s) is
always chosen, even if it is worse than the current solution.

3.3 Advanced Local Search Techniques
A lot of different improvements can be developed starting from the basic LS algorithms
described in the previous section. Here we summarize the main ones (cf. [24, 37] for a
complete analysis).

• Diversification strategies: the main problem of LS techniques is that they usually fall
into local minima. So LS algorithms may use some form of diversification mechanism
that allows the search to escape from local minima and to move far away from it, to
unexplored portion of the search space that may contain better solutions. The Tabu list
as well as the stochastic acceptation mechanism of Simulated Annealing implement
two diversification strategies: both these approaches try to escape from local minima
accepting worsening moves. The problem is that once a good solution has been found,
it is reasonable to intensify the search in its proximity to find a better one. So it is
necessary to find a good balance between two conflicting objectives: a good strategy
should both diversify and intensify by moving outside the attraction area of already
visited local minima, but not too far from it.

• Learning approach: one common aspect of LS technique like Hill Climbing and Sim-
ulated Annealing is that they are totally oblivious, i.e., they do not have any memory
about the history of the search. Even if Tabu Search has a elementary memory mech-
anism that avoids to perform again recent moves, several more sophisticated learning
approaches can be implemented. For example, it could be possible to learn which vari-
ables give a bigger contribution to the objective function and focus the search on these
variables. Moreover parameters can be tuned at run-time (e.g., the length of the tabu
list, the cooling rate, . . .), adapting the search to the portion of the search space we
are analyzing. A commonly used learning approach is the Reactive Tabu Search (see
for example [4, 8, 11]): it is a Tabu Search algorithm that monitors the occurrence of
cycles and their repetition and reacts to them by adapting the Tabu list size.

3.4. Other Meta-heuristics 25

• Composition: an interesting property of the Local Search paradigm is that different
techniques can be combined and alternated to give rise to complex algorithms. Differ-
ent LS strategies can be alternated on the same search space, or different neighborhood
relation can be defined, in order to explore different kind of neighborhood according to
different LS strategies or different moments of the search process. These ideas has been
classified and systematized in [24] under the name of Multi Neighborhood Search: a set
of operators for combining neighborhood has been defined as well as basic composite
LS techniques, based on different neighborhoods.

3.4 Other Meta-heuristics
All the methods presented so far belong to the class of trajectory methods: they all work on
a single solution at any time, describing a trajectory in the search space during the search
process. Also non-trajectory methods have been studied in literature, with the name of
population-based approaches. These methods do not work on a single solution, but ma-
nipulate a set of solutions at the same time. Some of them have been successfully applied
to a wide variety of real-life and large optimization problems. Moreover, also combination
of different meta-heuristics have been proposed, under the name of hybrid meta-heuristic. A
deep analysis about these meta-heuristics is out of the scope of this thesis, but in this section
we give a brief outline of these methods.

3.4.1 Population-based methods
Population-based methods are iterative meta-heuristics that deal with a set of solution, rather
than with a single solution. In this context, a single solution is called individual and the set of
individuals is called population. All the individuals cooperate together, driven by the specific
algorithm, in order to find the good solution to the problem considered. The most studied
population-based methods are Evolutionary Computation (EC) and Ant Colony Optimization
(ACO), described below. We suggest to look at [10] for a deep analysis.

• Evolutionary Computation: these methods are also know as genetic algorithms, and
use mechanisms inspired by biological evolution, such as reproduction, recombina-
tion, mutation and selection. The algorithm usually start generating a population, i.e.,
creating, randomly or heuristically, a large number of different individuals (i.e., so-
lutions). Each step starts with a reproduction phase, where couples or small groups
of individuals combine together, generating new individuals. The new individuals are
generated by a recombination of the parent individuals, that exchange portions of their
solutions, for example in a crossover fashion. Then every single individual may be
subject to a mutation: i.e., it can stochastically change part of its solution. At this
point there is the last phase, called selection. According to the objective function (in
this context called fitness function), all the individuals are evaluated, and only the good
ones can survive, while the other ones are discarded. Then the process iterates from
the reproduction phase. After a large number of iterations the average quality of the
individuals increases, leading to good individuals, representing good solutions. There

26 3. Local Search

are several strategies that can be applied to this basic schema, leading to a variety of
different genetic algorithms.

• Ant Colony Optimization: it is a probabilistic technique that can be used to find good
paths through graphs. It has been firstly applied to the TSP problem, it can be easily
extended to solve computational problems which can be reduced to TSP. The origi-
nal idea comes from observing the exploitation of food resources among ants. In an
ant colony, after an ant has discovered the food, it comes back to the nest, following
any route. Every ant leave on its path a trial of pheromone, a chemical factor that is
recognized by the other ants and gives them a positive feedback. When the first ant
arrives to the nest, other ants start a path to reach the food, in part randomly, in part
driven by the pheromone. It is important to note that pheromone evaporates over time:
so if the chemical factor is not enforced by other ants passing through the same way
and leaving more pheromone, it disappears. The ants keep going to the food source
and back to the nest. Ants pass through the longest path less frequently, because it
requires more time to be crossed and the pheromone is not enough enforced. Thus,
the amount of pheromone on that path decreases. On the other hand, the shorter route
will be traveled by more ants than the long one. Thus, the short route will be increas-
ingly enhanced, and therefore become more attractive. The long route will eventually
disappear because pheromones are volatile. In this way all the ants have determined
and therefore chosen the shortest route. An ACO algorithm simulate the behavior of
the ants (choosing a route, randomly following the pheromone) and of the pheromone
(evaporating over time), allowing to discover the shortest path on a graph.

3.4.2 Hybrid meta-heuristics
When dealing with large-scale real-life problems the use of a single meta-heuristic can be not
effective enough to obtain satisfying results. Indeed, a skillful combination of concepts from
different meta-heuristics can lead to more efficient and flexible behaviors. Thus, it can be
worthy to incorporate typical operation research techniques, e.g., dynamic or integer or linear
programming techniques, together with meta-heuristics approaches. Moreover, approaches
coming from artificial intelligence, such as multi-agent systems, data mining and so on, can
be very fruitful. Combinations of meta-heuristics with other meta-heuristics or optimization
strategies are called hybrid meta-heuristics.

Designing and implementing hybrid meta-heuristics requires to consider several problems
that do not occur when dealing with a single meta-heuristic. In particular the choice and tun-
ing of the parameters became crucial: every component has its own parameters that not only
affects its behavior but also the other components and the overall algorithms; moreover, the
combinations of parameters values grow exponentially. Another important aspect to consider
is the separation and interactions between the components: it may take place at low level
or high level, components may share the same data structures or communicate via messages,
the components may cooperate at the same level or act in a master-slave fashion. Finally, it
is very difficult to theoretically demonstrate properties of hybrid meta-heuristic, because of
the complex interaction between components. Thus, research on this field is mostly based on
experimental work: the proper design of experiments and the validity of analysis of experi-

3.5. Examples 27

mental work for this kind of algorithms is a key aspect to take in strong consideration. In this
thesis we develop a tool for developing a hybrid meta-heuristic integrating Constraint Pro-
gramming and Local Search techniques. For a general discussion on hybrid meta-heuristics,
we refer the interested reader to [9].

3.5 Examples

In this section we use the SCTT problem to show in practice some concepts explained in this
chapter. A possible move for this problem can be defined by a couple of variables belonging
to the same course, i.e., m = (xc,i, xc, j), with c ∈ C and i, j ∈ P. The application of the move is
performed by swapping the values of the two variables involved. This kind of move is usually
referred with the name of swap move. Formally, given a state s and a swap move m = (xi, x j),
the state s′ = s ⊕ m is obtained as follows: for each xk with k , i, k , j, we have xks′ = xks ;
for i and j we have xis′ = x js and x js′ = xis . Note that in our example the swap move does
not affect the constraint C1, since it does not add or remove lectures from a row. Thus, if we
apply a swap move to a solution that satisfies C1, we obtain another solution that still satisfies
C1.

Let us consider a Tabu Search algorithm that works on swapping moves, having a FIFO
tabu list that can contain at most 3 elements. The algorithm starts with the empty tabu list []
and the following initial solution s0:

Periods→ MO TU WE TH FR FObj
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 1 1 0 0 1 0 0 0 0 0 3 − 2 = 1
PL 0 0 0 0 0 0 1 1 1 1 4 − 2 = 2
AI 1 1 1 0 0 0 0 0 0 0 3 − 2 = 1

s0 Total FObj: 4
We now simulate some steps of the algorithm. The following random move is selected:

m1 = (xPL,T Hm , xPL,WEa). It can be applied to s0, since its application does not lead to any
constraint violation and it is an improving move. Thus, we obtain the following state s1 =

s0 ⊕ m1.

Periods→ MO TU WE TH FR FObj
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 1 1 0 0 1 0 0 0 0 0 3 − 2 = 1
PL 0 0 0 0 0 1 0 1 1 1 4 − 3 = 1
AI 1 1 1 0 0 0 0 0 0 0 3 − 2 = 1

s1 Total FObj: 3
Now the tabu list is [m1] and the current solution s1 is also the best known one. The

next random move generated is m2 = (xOS ,MOm , xOS ,T Hm). It can be applied, since it does not
violated any constraint, it is not equal to any move in the tabu list and it is an improving
move. Its application leads to state s2 = s1 ⊕ m2, i.e, the following :

28 3. Local Search

Periods→ MO TU WE TH FR FObj
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 0 1 0 0 1 0 1 0 0 0 3 − 3 = 0
PL 0 0 0 0 0 1 0 1 1 1 4 − 3 = 1
AI 1 1 1 0 0 0 0 0 0 0 3 − 2 = 1

s2 Total FObj: 2

Now the tabu list is [m2,m1] and the current/best solution is s2. Let us suppose that next
random move generated is m3 = (xOS ,MOm , xOS ,T Hm). It does not violate any constraint, so
it could be applied. But it is a worsening move and Tabu Search accept a worsening move
only if it is not equal to any move in the tabu list. In this case we have m2 in the tabu list,
and m3 = m2. So, the prohibition mechanism of the Tabu Search forbids the application of
move m3, thus avoiding cycling between states. Now the move m4 = (xPL,MOm , xPL,WEa) is
generated. It can be applied because it does not violate any constraint. It is an idle move,
since the objective function values would remain unchanged after its application. All the local
search algorithms usually apply idle moves: even if these moves do not improve the objective
function, they modify the solution leading to a different state, and this can help escaping from
local minima. So, m4 is applied, the tabu list now contains [m4,m2,m1] and the current/best
state is s3 = s2 ⊕ m4, defined as follows:

Periods→ MO TU WE TH FR FObj
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 0 1 0 0 1 0 1 0 0 0 3 − 3 = 0
PL 1 0 0 0 0 0 0 1 1 1 4 − 3 = 1
AI 1 1 1 0 0 0 0 0 0 0 3 − 2 = 1

s3 Total FObj: 2

At this point the move m5 = (xPL,WEa , xPL,FRa) is generated. It does not violated con-
straints and it improves the objective function, thus it is accepted. The following state is
obtained, i.e., s4 = s3 ⊕ m5.

Periods→ MO TU WE TH FR FObj
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 0 1 0 0 1 0 1 0 0 0 3 − 3 = 0
PL 1 0 0 0 0 1 0 1 1 0 4 − 4 = 0
AI 1 1 1 0 0 0 0 0 0 0 3 − 2 = 1

s4 Total FObj: 1

Now the tabu list is [m5,m4,m2], since the maximum length of the tabu list is 3. State
s4 is both the best and the current state. Suppose that the move m6 = (xPL,T Ha , xPL,FRa) is
generated: it does not violated constraints, but it is a worsening move. Since there is no move
in the tabu list equal to m6, the move is applied anyway. Thus, the best state so far is still s4,
but the current state for the search process became s5 = s4 ⊕ m6, i.e.:

3.5. Examples 29

Periods→ MO TU WE TH FR FObj
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 0 1 0 0 1 0 1 0 0 0 3 − 3 = 0
PL 1 0 0 0 0 1 0 0 1 1 4 − 3 = 1
AI 1 1 1 0 0 0 0 0 0 0 3 − 2 = 1

s5 Total FObj: 2
The next move generated is m7 = (xPL,T Ha , xPL,FRm). It is applied and it leads to the state

s6 = s5 ⊕ m7, represented as follows.
Periods→ MO TU WE TH FR FObj
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 0 1 0 0 1 0 1 0 0 0 3 − 3 = 0
PL 1 0 0 0 0 1 0 1 0 1 4 − 3 = 0
AI 1 1 1 0 0 0 0 0 0 0 3 − 2 = 1

s6 Total FObj: 1
Then, suppose that the following move is generated, m8 = (xAI,MOa , xAI,WEm). It can be

applied and leads to the state s7 = s6 ⊕ m8, represented as follows.
Periods→ MO TU WE TH FR FObj
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 0 1 0 0 1 0 1 0 0 0 3 − 3 = 0
PL 1 0 0 0 0 1 0 1 0 1 4 − 3 = 0
AI 1 0 1 0 1 0 0 0 0 0 3 − 3 = 0

s7 Total FObj: 0
The objective function value for state s7 is better than the one of the best state obtained so

far, i.e., s4. So, s7 became both the best and the current state. The 0 value is a lower bound for
this problem, so state s7 is an optimum solution. The Tabu Search algorithms continues but it
can only apply idle moves, worsening moves, or improving moves subsequent to worsening
moves, thus not improving the best known solution. After a certain amount of idle iterations,
the search will stop.

30 3. Local Search

4
Hybridization of CP and LS

We can split the methods used to solve CSPs and COPs into two main categories: complete
methods and incomplete methods (see [60]). Complete methods systematically explore the
whole search space, looking for a solution (for CSPs) or an optimal (for COPs) one. Incom-
plete methods rely on heuristics that focus only on some areas of the search space to find a
solution (CSPs) or a non-proved to be optimal one (COPs).

Constraint Programming and Local Search belong respectively to the categories of com-
plete and incomplete methods and have opposite characteristics. The main advantage of CP
is flexibility: this programming paradigm allow to model problem in a declarative way, ob-
taining compact and flexible encodings, where adding new constraints or new requests is
straightforward, and it does not affect the model previous model. Moreover it is a complete
method, so it can exhaustively search the solutions space and if a problem is small enough,
an optimal solution can be found in reasonable time. Theoretically, even with large problems
the optimal solution can be found by a constraint programming algorithm, as long as we have
infinite time to wait the process to analyze the whole possible solutions of the problem. On
the other hand, the strong point of LS (and in general of incomplete methods) is efficiency:
the algorithms based on this paradigm do not analyze the whole search space, but focus the
search only on interesting and promising areas, so they can reach a good solution (without
any warranty of optimality) in very short time, even if the problem is very hard.

In the past decades people started thinking about hybridizing complete and incomplete
methods (and in particular, CP and LS) to obtains reliable and efficient algorithms that may
inherit advantages of both these different paradigms. In the next section (4.1) we illustrate the
hybrid schemas commonly found in literature. Section 4.2 focuses on Large Neighborhood
Search, a special LS technique that is typically implemented in a hybrid fashion and that has
been deeply used in this thesis. Section 4.3 introduces some new hybrid schemas, and the last
section (4.4) present the language Comet, a state-of-the-art language for hybrid methods in
combinatorial optimization.

4.1 Consolidated Hybrid Techniques
Two major types of approaches to combine the abilities of Constraint Programming and Local
Search are presented in the literature [31, 44]. These hybrid methods follow the master-

32 4. Hybridization of CP and LS

slave paradigm, i.e., one method is the master algorithm and the other one act as the slave,
performing prefixed tasks during the search process. We can summarize these approaches as
follows:

1. CP master: a systematic-search algorithm based on constraint programming can be
improved by inserting a local search algorithm at some point of the search procedure,
e.g.:

(a) at a leaf (i.e., on complete assignments or on an internal node (i.e., on a partial
assignment) of the search tree explored by the constraint programming procedure,
in order to improve the solution found;

(b) at a node of the search tree, to restrict the list of child-nodes to explore;

(c) to generate in a greedy way a path in the search tree;

2. LS master: a local search algorithm can benefit of the support of constraint program-
ming, e.g.:

(a) to analyze the neighborhood and discarding the neighboring solution that do not
satisfy the constraints;

(b) to explore a fragment of the neighborhood of the current solution;

(c) to define the search of the best neighboring solution as a problem of constrained
optimization (COP).

In the experiment performed in this thesis we adopted the two hybrid techniques 1(a) and
2(a-b) and we apply them to several problems. In the first approach we employ constraint
programming for searching an initial solution and subsequently we improve it by means of
local search, using classical algorithms like hill climbing, steepest descent and tabu search
(see representation in figure 4.1). In the second approach we improve the initial solution de-
vising Large Neighborhood Search algorithms that exploits a constraint programming model
for the exploration of large neighborhood fragments.

4.2 Large Neighborhood Search
Large Neighborhood Search (LNS), first introduced in [64] is a LS method that relies on a
particular definition of the neighborhood relation and of the strategy to explore the neighbor-
hood. Differently from traditional LS methods, where the existing solution is modified just
by small changes to a limited number of variables (as is typical with LS move operators),
LNS selects a large subset of the problem variables and explores it for improving solutions
(that’s why it is called “Large” Neighborhood Search). The subset of the problem can be rep-
resented by a set of variables FV ⊆ X, that we call free variables. Defining FV corresponds
to define a neighborhood relation.

According to the classification given in the previous section, LNS is a LS strategy that can
be naturally implemented using CP, leading to hybrid algorithms that involves the approaches
2(a), 2(b), and 2(c) of the above classification: CP can manage and exhaustively explore a

4.2. Large Neighborhood Search 33

(a) (b)

Figure 4.1: A step of LS (a) and LNS (b) applied to a initial solution obtained by CP

lot of variables subjected to constraints, so it is a suitable method for the exploration of large
neighborhoods.

Three aspects are crucial in LNS definition, w.r.t. the performance of this technique: (1)
which and (2) how many variables have to be selected (i.e., the definition of FV), and (3) how
to perform the exploration on these variables. Let us briefly analyze these three key-points,
starting from the third one.

(3) Given FV , the exploration can be performed with any searching technique: CP, Op-
eration Research algorithms, and so on. We can be interested in different kind of search: we
may want to find the best neighborhood or the best neighborhood within a certain exploration
timeout; me may also try a more lazy approach, for example searching for the first improving
neighborhood or the first neighborhood improving the objective function of at least a given
value, and so on. (2) Deciding how many variables will be free (i.e., |FV |) affects the time
spent on every large neighborhood exploration and the improvement of the objective function
for each exploration. A small FV will lead to very efficient and fast search, but with very little
improvement of the objective function. Otherwise, a big FV can lead to big improvement at
each step, but every single exploration can take a lot of time. This trade-off should be inves-
tigated experimentally, looking at a dimension of FV that leads to fast enough explorations
and to good improvements. Obviously, the choice of |FV | is strictly related to the search
technique chosen (e.g., a strong technique can manage more variables than a naı̈ve one) and
to the use or not of a timeout. (1) The choice of which variables will be included in FV is
strictly related to the problem we are solving: for simple and not too structured problems we
can select the variables in a naı̈ve way (randomly, or iterating between given sets of them); for
complex and well-structured problems, we should define FV cleverly, selecting the variables
which are most likely to give an improvement to the solution.

Considering the SCTT example from the previous chapter, a LNS algorithm may define
a large neighborhood selecting two days and considering free all the variables belonging to
the selected days. Thus, the set FV of free variables corresponding to the couple of days
(Monday,Tuesday) sets all the variable of the first four columns free. Figure 4.2 shows these
free variables with the original domains, ready to be explored by a search engine.

34 4. Hybridization of CP and LS

Periods→ MO TU WE TH FR FObj
Courses ↓ m a m a m a m a m a δ(c) − #days

OS 01 01 01 01 1 0 1 0 0 0 undefined
PL 01 01 01 01 0 1 0 1 1 1 undefined
AI 01 01 01 01 1 0 0 0 0 0 undefined

Total FObj: 1

Figure 4.2: LNS move for a solution of SCTT

4.3 New Hybrid Techniques
Monfroy, Saubion e Lambert in [55] proposed a new paradigm that hybridizes Constraint
Programming and Local Search without using the traditional master-slave schema. The new
approach consists in splitting CP and LS into several basic components that can be managed
and activated at the same level: three basic operations are defined, i.e., (1) constraint prop-
agation, (2) LS moves, (3) splitting functions; these operations are considered at the same
level and applied to unions of CSPs. The execution order (alternated, consecutive. . .) of
the functions is totally free, so this framework makes it possible to design smarter strategies
than traditional master-slave paradigms. In [46, 55] they applied these ideas on a uniform
generic hybridization framework based on K.R. Apt’s chaotic iterations: the declared aim of
the framework is not to provide competitive results, nor to propose specific problems driven
combinations to compete with state of the art solvers, but to be an easy tool to study more
precisely the benefit of hybridization and to design new hybridization strategies.

Pascal Van Hentenryck and Laurent Michel proposed in [52, 74] the programming lan-
guage Comet [75], where constraint programming, mathematical programming and local
search are integrated. Since Comet has become a state-of-the-art tool for Large Neighbor-
hood Search, in the next section we give a short overview of this language.

4.4 The Comet language
Comet supports both modeling and search abstractions, and uses constraint programming
to describe and control LS, in an environment where the different paradigms share the same
search primitives. One of the key characteristics of the Comet system is constraint-based
local search (CBLS), i.e., the idea of specifying local search algorithms as two components:
(1) a high-level model describing the applications in terms of constraints, constraint combi-
nators, and objective functions; (2) a clearly separated search procedure that implicitly takes
advantage of the model in a general fashion. The computational model underlying constraint-
based local search uses constraints and objectives to drive the search procedure toward feasi-
ble, high-quality solutions. Comet also allows parallel and distributed computing, providing
primitives to manage threads, processes, and synchronization. Since 2009 Comet language
is the main software product of the Dynamic Decision Technologies Inc., a company with
headquarters in Providence (RI, USA) and Louvain-La-Neuve (Belgium) that provides solu-
tions and technology for optimization problems. Thus, Comet is not open source, and it is

4.4. The Comet language 35

free downloadable only for academic purposes, with some restrictions.
Comet is a full object-oriented programming language that provides garbage collection

and features some advanced control structures for search and parallel programming. It pro-
vides basic data types, such as integer, floats, booleans and strings, as well as complex ones,
such as ranges, arrays and matrices, set, queues and so on. Standard control constructs, like
if-then-else, switch, for, forall, and do-while are available. It is possible to use selectors, i.e.,
functions that allow to select randomly or according to a probability or an evaluation func-
tion an element in a set or a range. Standard functionalities to define functions, classes and
interfaces are also available, together with mechanisms to include files and libraries. Comet
also comes with the support for threads and events, allowing to exploit parallelism.

Together with these standard programming language features, Comet allows to define
CSPs and COPs. It has CP primitives to declare variables, domains, constraints and objective
functions. It also allows the user to implement his/her own propagators, i.e. an algorithms
associated to a constraints, in charge of removing inconsistent values from the domain of the
variables. Then Comet provides several primitives that allows the user to define the search
strategy to use among a model, i.e., how to choose the variables, how to slipt the problem
into subproblems, how to navigate the search space, what action to perform when a solution
or inconsistency is reached, and so on. Also a set of LS primitives to define neighborhoods
and transition between neighborhoods are provided. In particular, the LS approach in Comet
exploits the use of invariants i.e., one-way declarative constraints that specify a relation which
must be maintained under assignments of new values to the participating variables. Finally,
Comet provides mathematical programming functionalities, such as the simplex algorithm
and column generations procedures.

In [5] Comet has been applied to a Vehicle Routing Problem with Time Windows. The
algorithm first minimizes the number of vehicles using simulated annealing. It then mini-
mizes travel cost using a large neighborhood search which may relocate a large number of
customers. Experimental results demonstrate the effectiveness of the algorithm which has im-
proved 10 (17%) of the 58 best published solutions to the Solomon benchmarks [65], while
matching the best solutions in 46 benchmarks (82%). Comet ha also been applied in [73]
to several online stochastic reservation problems, i.e., problems where requests come online
and must be dynamically allocated to limited resources in order to maximize profit. Multi-
knapsack problems with or without overbooking are examples of such online stochastic reser-
vations. This work presents a constant sub-optimality approximation of multi-knapsack prob-
lems and demonstrates the effectiveness of the regret algorithm on multi-knapsack problems
(with and without overbooking) based on the benchmarks proposed earlier. In [53] Comet
uses parallelism transparently to speed up constraint programs. This paper shows how to par-
allelize constraint programs transparently without changes to the sequential code, in order to
exploit the availability of commodity multi-core and multi-processor machines. Experimental
results show that the parallel implementation may produce significant speedups.

36 4. Hybridization of CP and LS

II
Software Tools

5
Gecode

Gecode (Generic constraint development environment) [67] is a programming environment
for developing constraint-based systems and applications. It is a C++ state-of-the-art con-
straint programming toolkit, modular and extensible. Its development started in 2002 by
a team composed by Christian Schulte (head of the project), Mikael Lagerkvist and Guido
Tack, that keeps improving the project and adding functionalities: since the first 1.0.0 release
(December 2005) to now (December 2010) around 24 progressive new versions has been re-
leased (the last one is the 3.4.0), with a mean of a new version every 2.5 months. Moreover,
its users community is constantly growing.

In this thesis we use Gecode for our constraint programming purposes, combining it with
EasyLocal++, a Local Search framework that will be introduced in chapter 6. In this chapter
we start explaining the main characteristics of Gecode (section 5.1), and then we give details
about its architecture (section 5.2). In the last section (5.3) we show how to model a problem
using Gecode.

5.1 Gecode Overview
Gecode has many characteristics that helped it to became a standard constraint programming
framework toward the computer science community.

First of all it is open source: it is free, distributed under the MIT license and listed as
free software by the Free Software Foundation [66]. All of its part (source code, example,
documentation. . .) are all available for download. This also means that anyone can modify
the implementation of some classes, extend or improve its functionalities, interface it to other
systems in an easy way.

Gecode is portable: it is completely implemented in C++, carefully following the C++
standard. It can be compiled with modern C++ compilers and runs on a wide range of ma-
chines (Windows, Mac, Linux, Unix, CygWin. . .), including also 64bit machines.

It is deeply documented, since user are provided with: (1) a tutorial [69] that explain
the Gecode architecture and how to program in Gecode (with several examples and use
cases); (2) an on-line reference documentation [68] that gives the technical specifications
of each module/class/function implemented in the framework; (3) a user-mailing-list where
Gecode programmer and users may share opinions and implementation issues, report bugs,

40 5. Gecode

Figure 5.1: Gecode Architecture

suggest solutions and so on.
Gecode has excellent performance with respect to both runtime and memory usage. It

won severals competitions, such as the MiniZinc Challenge, both 2009 and 2008.
Gecode also implements parallel search: it exploits the multiple cores of today’s hard-

ware for parallel search, giving an already efficient base system an additional edge.

5.2 Gecode Architecture

Gecode environment is made of 5 main modules, spread into 3 layers, as shown in figure
5.1: the kernel module, on the bottom of the architecture; the finite domain, the set domain
and the search modules, that constitute the middle layer; the modeling module, that is the top
layer.

Kernel Gecode’s kernel implements common functionalities (such as data structures, ba-
sic operations. . .) upon which the modules for integer and set constraints as well as search
engines are built. It provides a comprehensive programming interface to construct new vari-
able domains, propagators, branchers and search engines. Propagators are implementations
of constraints that perform consistency checking and propagate constraint information, in
order to narrow the domains. Branchers are modules that perform variable assignment, typ-
ically applying domain splitting rules. The kernel is slim (around 1700 lines of code) and
requires no modification or hacking for adding new variable domains or search engines.

Finite Domain The Finite Domain module implements finite domain constraints on top
of the generic kernel. It offers standard constraints such as arithmetics, Boolean, linear

5.3. Modeling with Gecode 41

equations, and global constraints: distinct (alldifferent, with both bounds and domain con-
sistency), count (global cardinality, with both bounds and domain consistency), element,
scheduling (unary and cumulative resources including edge-finding and not-first, not-last
propagation), table and regular constraints, sorted, sequence, circuit, channel, and so on.
It is also possible to add new constraint and branchers to this module.

Set This module provides finite integer set variables. The standard set relations and opera-
tions are available as constraints, plus some specialized constraints, such as convexity, global
reasoning for distinctness of sets, selection constraints, weighted sets, and constraints con-
necting finite domain and finite set variables. As for the finite domain constraints, the library
can be easily extended with new constraints and branchers.

Search Search in Gecode can be performed using three different search engines. For the
search on CSPs, a depth first search engine (called DFS) is provided. To deal with COPs a
branch and bound (called BAB) engine and a depth first search with restart (called Restart)
engine are provided. They act as described in section 2.3. It is also possible to implement
new ad-hoc search engines. The search is based on a hybrid of cloning and recomputation.
Cloning during search relies on the capability of a (partial) solution to create an exact copy
of itself (needed when backtracking, while exploring alternatives of the solutions tree); re-
computation remembers what has happened during the search space exploration: rather than
storing an entire clone of a space, just enough information to redo the effect of exploration is
stored.

The latest Gecode releases also provide advanced techniques including parallel search
(that utilizes today’s multi-core architectures), adaptive search (that speeds up further search)
and path recomputation (that reduces propagation during recomputation).

Modeling Gecode comes with extensive modeling support, that allows the user to encode
its problem using higher language facilities rather than rough low-level statements. The mod-
eling support includes: regular expressions for extensional constraints; expressing aritmetic,
set, and Boolean constraints in the standard way as expressions build from numbers, vari-
ables, and operators; also a matrix modeling support is provided.

5.3 Modeling with Gecode
In the Gecode philosophy, a model is implemented using spaces. A space is the reposi-
tory for variables, constraints, objective function, searching options. Being C++ an object-
oriented language, the modeling approach of Gecode exploits the inheritance: a model must
implement the class Space, and the subclass constructor implements the actual model. In
addition to the constructor, a model must implement some other functions (e.g., performing
a copy of the space, returning the objective function, . . .). A Gecode space can be asked to
perform the propagation of the constraints, to find the first solution (or the next one) exploring
the search tree, or to find the best solution in the whole search space.

Let us now focus on an example showing a Gecode model for the SCTT problem.

42 5. Gecode

5.3.1 Model Head

Every Gecode model is defined into a class that inherits from a Gecode Space superclass.
The superclasses available are Space for CSPs and MinimizeSpace and MaximizeSpace
for minimization and maximization COPs. In the case of SCTT we declare the class Timetabling
subclass of MinimizeSpace (line 1).

Line 2 declares the array x for the variablesX of the problem, and line 3 declares the vari-
able fobj that will contain the value of the objective function. IntVarArray and IntVar
are built-in Gecode data structures. Line 4 starts the constructor method. It takes as input an
object of the class Faculty, that contains all the information specific to the instance. All
these input information are stored in the variable in. Line 5 sets variables and domains: array
x is declared to contain a number of variables equal to in.Periods()*in.Courses(),
all with a {0, 1} domain. In line 6, the domain of variable fobj is set to take the range
between 0 and the largest allowed integer value.

(1) class Timetabling : MinimizeSpace {
(2) IntVarArray x;
(3) IntVar fobj;
(4) Timetabling(const Faculty& in):
(5) x(*this, in.Courses() * in.Periods() , 0, 1),
(6) fobj(*this, 0, Int::Limits::max)
(7) { ...

5.3.2 Constraints

Gecode provides a Matrix support class for accessing an array as a two dimensional ma-
trix, since many models (like the one for SCTT) are naturally expressed using matrices. Line
9 set up a matrix interface to access x, with the number of columns equal to the number of
time periods and the number of rows equal to the number of courses. The matrix has the same
structure of the one in figure 1.1.

Then, lines 12–13 post constraint C1 on each row of the matrix. The constraint linear
is a built in Gecode, and line 12 corresponds to the formula

∑
col

mat.row(r)[col] = in.NumberO f Lectures(r)

where in.NumberOfLectures(r) contains the value of function l (number of weekly
lectures) for each course (i.e., for each row).

Lines 15–19 post constraint C2. Line 18 corresponds to the constraint x(c, r1) = 0 ∨
x(c, r2) = 0, applied to the variables of the same time periods sharing the same teacher.

Lines 20–23 post constraint C3. Line 23 corresponds to the constraint x(period, c) = 0,
where x(period,c) corresponds to a time slot where the relative professor is unavailable.

5.3. Modeling with Gecode 43

(8) unsigned int cols = in.Periods() ;
(9) unsigned int rows = in.Courses();
(10) Matrix<IntVarArgs> mat(x, cols, rows);
(11)
(12) for (int r = 0; r < rows; r++)
(13) linear(*this, mat.row(r), IRT EQ, in.NumberOfLectures(r));
(14)
(15) for(int c = 0; c < cols; c++)
(16) for(int r1 = 0; r1 < rows - 1; r1++)
(17) for(int r2 = r1+1; r2 < rows; r2++)
(18) if (in.SameTeacher(r1,r2))
(19) post(*this, tt((mat(c,r1)==0) || (mat(c,r2)==0)));
(20)
(21) for(int period = 0; period < in.Periods(); period++)
(22) for(int c = 0; c < in.Courses() ; c++)
(23) if (!in.Available(c,period))
(24) rel(*this, mat(period,c), IRT EQ, 0);

5.3.3 Objective Function and Branching

The formula for the objective function is constructed in lines 25–58. Note that some arrays of
temporary variables are introduced in order to compute the intermediate calculus. They are
declared with IntVarArgs, a Gecode built in data type for array of temporary variables).
At the end of this piece of code (line 58), the formula is bound to the fobj variable.

Line 60 fixes the branching strategy. The variables to branch are the ones in the array x.
The variable selection strategy is

tiebreak(INT_VAR_DEGREE_MAX,INT_VAR_SIZE_MAX)

i.e., the variable with the highest number of constraint on it is selected, breaking ties choosing
the variable with largest domain size. The values selection strategy is INT_VAL_MED, i.e.,
the greatest value not greater than the median is selected.

Line 62 closes the constructor of the class Timetabling, opened at line 1.

44 5. Gecode

(25) IntVarArgs vectorWD(in.Courses());
(26) IntVarArgs sumWD(in.Courses());
(27) IntVarArgs diff(in.Courses());
(28) for(int course = 0 ; course < in.Courses(); course++)
(29) {
(30) vectorWD[course].init(*this, 0, Int::Limits::max);
(31) sumWD[course].init(*this, 0, Int::Limits::max);
(32) diff[course].init(*this, Int::Limits::min, Int::Limits::max);
(33) }
(34) for(int course = 0 ; course < in.Courses(); course++)
(35) {
(36) IntVarArgs workingDays(in.Days());
(37) for(int day = 0 ; day < in.Days(); day++)
(38) workingDays[day].init(*this, 0,1);
(39)
(40) for(int day = 0 ; day < in.Days(); day++)
(41) {
(42) IntVarArgs Day(in.PeriodsPerDay());
(43) for(unsigned int slot = 0 ; slot < in.PeriodsPerDay(); slot++)
(44) {
(45) Day[slot].init(*this, 0,1);
(46) int period = day*in.PeriodsPerDay()+ slot;
(47) post(*this,tt(eqv(mat(period, course)!=0,Day[slot]==1)));
(48) }
(49) IntVar nLecturesPerDay(*this, 0, in.PeriodsPerDay());
(50) linear(*this, Day, IRT EQ, nLecturesPerDay);
(51) post(*this,tt(eqv(nLecturesPerDay!=0,workingDays[day]==1)));
(52) }
(53) linear(*this, workingDays, IRT EQ, sumWD[course]);
(54) diff[course] = post(*this, in.CourseVector(course).MinWD() - sumWD[course]);
(55) Gecode::max(*this, ZERO, diff[course], vectorWD[course]);
(56) }
(57)
(58) linear(*this, vectorWD, IRT EQ, fobj);
(59)
(60) branch(*this,x,tiebreak(INT VAR DEGREE MAX,INT VAR SIZE MAX),INT VAL MED);
(61)
(62) }

5.3.4 Setting up a Branch and Bound search engine
In order to use the model defined above in a branch and bound search engine, a couple or
more functions need to be defined into the Timetabling class. Function cost, that return
the variable representing the cost of a solution, i.e., the objective function of the model. This
function is defined in lines 63–65 and returns the variable fobj.

Moreover, a branch and bound search engine needs to know what constraint to add every
time a new solution is found, in order to drive the search to better solutions and cut the search
space. Function constrain (lines 67–71) defines the desired constraint to add: in line 67
it takes in input a Space object, (i.e., a solution of the model), and post a constraint (line 70)
stating that the value of the variable fobj has to be less than the fobj value of the solution
sol. The Gecode branch and bound search engine call this method, every time it find a new
solution, passing the solution found as parameter.

5.3. Modeling with Gecode 45

(63) IntVar Timetabling::cost(void) const {
(64) return fobj;
(65) }
(66)
(67) void Timetabling::constrain(const Space& sol)
(68) {
(69) const Timetabling& s = static cast<const Timetabling&>(sol);
(70) rel(*this, fobj, IRT LE, s.fobj.val());
(71) }

46 5. Gecode

6
EasyLocal++

EasyLocal++ is an object-oriented framework that allows programmers to design, imple-
ment and test LS algorithms in an easy, fast and flexible way. The underlying idea is to
capture the essential features of most LS meta-heuristics, and their possible compositions.
This allows the user to address the design and implementation issues of new LS heuristics
in a more principled way. EasyLocal++ has been entirely developed in C++ with wide use
of object-oriented patterns (see [32]) and is the evolution of Local++ (see [62]). The cur-
rently available version of EasyLocal++ is the 2.0 [28], which presents several refactorings
w.r.t. the 1.0 version, published on Software and Practice [27]. Examples about how to use
EasyLocal++ 1.0 can be found in [26].

In this thesis we used EasyLocal++ as our LS engines and extended its functionality
to obtain a more general framework that combines together LS and CP. In section 6.1 the
abstraction levels of EasyLocal++ are addressed and then its architecture is explained in
further detail (section 6.2). Then section 6.3 shows how a COP can be encoded and solved
using EasyLocal++.

6.1 EasyLocal++ Overview
The primary idea of EasyLocal++ is to capture the common aspects of local search meta-
heuristics, and to provide the skeleton for general abstract LS algorithms. The framework
thus provides the full control structures for the invariant part of the algorithms, and the user
only supplies the problem specific details, e.g., defining concrete classes and implementing
concrete methods. As common in frameworks, EasyLocal++ is characterized by the inverse
control mechanism (also known as the Hollywood Principle: “Don’t call us, we’ll call you”)
for the communication between the general algorithm and the user code: the function of the
framework calls the user-defined ones and not the other way round.

EasyLocal++ framework is composed by a hierarchy of several layers of abstraction,
where each layer relies on the services supplied by lower levels and provides a set of more
abstract operations. Figure 6.1 shows the different abstraction levels of EasyLocal++.

In particular we want to emphasize that the framework is split into two main parts: the
problem specific (at the bottom) and the problem independent layers (at the top). The first
two layers (i.e., Data, Helpers) are the problem specific ones: to define a COP, the user is

48 6. EasyLocal++

Figure 6.1: The levels of abstraction in EasyLocal++

required to implement the classes of these layers and nothing else. At this level the user
defines characteristics of the COP to be solved, such as the problem model, the instances, the
search space, the solutions as well as the transitions between solutions (i.e., the moves). The
framework provides abstract classes, while the user defines his/her own concrete classes that
inherits some characteristics from the abstract ones.

The next layers constitute the problem independent part of the framework: they define Lo-
cal Search basic procedures (called Runners, as Hill Climbing, Tabu Search, Simulated An-
nealing. . .) and composite ones (called Solvers that combine together more runners). These
layers operate on the data structures and definitions implemented at the lower levels. The user
is not supposed to define anything at this point: he/she has only to select the meta-heuristic
that the framework will use to solve the COP, along with search parameters (e.g., number of
idle iteration before stopping, tabu list length, . . .).

6.2 EasyLocal++ Architecture
In the following, we analyze in more detail each layer of the hierarchy.

Data The classes of this layer define the basic components for a LS algorithm. The class
Input defines the characterization of an instance of the COP O we are solving, while the class
Output defines how the solution found should be returned at the end of the search. The class
State defines the characteristics of a solution in the search space (i.e., it describes a generic
element s ∈ sol(O)). The class Move defines the transition m between two solutions (states
in the EasyLocal++ terminology): it doesn’t specify how to perform the transition (i.e., the

6.2. EasyLocal++ Architecture 49

operator ⊕, see section 3.1), but the information needed to perform it, such as the variables
involved in the move.

These classes simply store attributes without any computation capabilities, which are
instead provided by the Helper classes.

Helpers These classes collect the Local Search features, performing actions related to each
specific aspect of the search. For example, the Neighborhood Explorer is responsible for
everything regarding the neighborhood: selecting the move, updating the current state by ex-
ecuting a move (i.e., calculating s′ = s ⊕ m), and so on. Differing Neighborhood Explorers
may be defined in case of composite search, each one handling a specific neighborhood rela-
tion used by the algorithm. The State Manager handles the attribute of each state, for example
calculating the cost function, or establishing the feasibility of a state. Helpers work on data
structures defined in the previous layer (especially instances of State and Move); they do not
have their own internal data, but work on the internal states of runners and kickers, the next
layer, that requires the helpers to perform task on their internal objects.

Runners These classes represent the algorithmic core of the framework. Their task is to
perform a complete run of a Local Search algorithm, starting from an initial state and leading
to a final one. Each runner has many data objects for representing the state of the search,
such as the current state, the best state, the current move, number of iterations, and so on.
A runner maintains links to all the helpers, which are invoked to perform problem-related
tasks on the runner’s own data. This way, runners can completely abstract from the problem
description, and delegate problem-related tasks to the user-supplied classes that comply to a
predefined helpers interface. Runners that encode the basic local search techniques, such as
Hill Climbing, Simulated Annealing and Tabu Search are already defined into EasyLocal++.

Kickers A kicker is an algorithm that applies several moves to a current solution, with the
aim to move away from the current state of the search, thus exploring new portions of the
space of the solutions. Different Kicker classes implements different kinds of perturbations,
such as a random kick, the best kick of a given length, etc. Kickers are usually combined
together with runners. Typically at some point of the search, the execution of a runner is
stopped and a kicker is executed, leading the search to a new current state, distant from the
previous one. Subsequently the runner is reactivated, starting from the new state.

Solvers These classes represent the most abstract level, which is the external software layer
of EasyLocal++. A solver controls the search by generating the initial solutions, and de-
ciding how, and in which sequence, runners or kickers have to be activated. A solver can
be made up by a single runner or by different runners and kickers in different combinations,
leading to the construction of meta-heuristics or hybrid methods (called Multi Neighborhood
Search strategies, see section 3.3). In addition, solvers communicate with the external envi-
ronment, by getting the input and delivering the output. Runners and kickers as well as the
Solvers are completely specified at the framework level. This means that in order to use them,
the programmer has only to define an instance of the desired Solver class. New runners and

50 6. EasyLocal++

Figure 6.2: EasyLocal++main classes

solvers can be added by the user as well. This way, EasyLocal++ supports the design of new
meta-heuristics and also the combination of already available algorithms.

Figure 6.1 shows an UML diagram of the main classes of EasyLocal++.

6.3 Modeling with EasyLocal++
Modeling a problem using EasyLocal++ requires that the C++ classes representing the prob-
lem specific layers of the EasyLocal++ hierarchy, i.e. Data and Helpers classes, be defined.
The Data components are defined into ad-hoc classes while Helpers components are defined
as subclasses of EasyLocal++ abstract classes. Once the required Data and Helper classes
are implemented the user selects the desired LS algorithm from the Runners and Solvers
classes and executes it. In this section we show the implementation of the main Data and
Helper classes for the SCTT problem. To sum up we also give an example of a main code
that uses the classes defined in order to build a LS algorithm.

6.3.1 State
The following code shows a possible implementation of a State class for the SCTT problem.
Lines 5–7 declare the members of the class. We assume that all the instance information are

6.3. Modeling with EasyLocal++ 51

stored in an Input class named Faculty. The object in belongs to this class and is the
member defined in line 5. Then line 6 declares a matrix T for the timetable that will store the
values of the variables. The third member is the vector working_days that will store the
number of working days for each course.

The two constructors are defined in lines 12–21: the first one takes as input argument an
object of the Faculty class, while the second one takes as input another TT_State object.
Lines 23–27 defines the copy assignment operator in order to copy a State into another one. It
is worth noting that the methods defined so far are all necessary in each EasyLocal++ state
class. Then lines 28–36 defines operator and methods to read and modify the members of the
class.

(1) #include "faculty.hh"
(2) class TT State
(3) {
(4) protected:
(5) const Faculty & in;
(6) vector<vector<unsigned> > T; // (courses X periods) timetable matrix
(7) vector<unsigned> working days; // number of days of lecture per course
(8)
(9) public:
(10) TT State(const Faculty &f):
(11) in(f),
(12) T(in.Courses(), vector<unsigned>(in.Periods(),0)),
(13) working days(in.Courses())
(14) {}
(15) TT State(const TT State& s):
(16) in(s.in),
(17) T(s.T),
(18) working days(s.working days)
(19) {}
(20) TT State& operator=(const TT State& s)
(21) {
(22) T = s.T;
(23) working days = s.working days;
(24) }
(25) unsigned operator()(unsigned i, unsigned j) const { return T[i][j]; }
(26) unsigned& operator()(unsigned i, unsigned j) { return T[i][j]; }
(27)
(28) Faculty Input() const { return in; }
(29)
(30) unsigned WorkingDays(unsigned i) const { return working days[i]; }
(31)
(32) void ResetWorkingDays(unsigned i) { working days[i] = 0; }
(33) void IncWorkingDays(unsigned i) { working days[i]++; }
(34) void DecWorkingDays(unsigned i) { working days[i]--; }
(35) };

6.3.2 Move

The following class implements the move defined in Section 3.5 for the SCTT problem, i.e.,
the swapping move. This move is determined by two variables of the timetable matrix that

52 6. EasyLocal++

will be swapped when the move will be applied. Thus a move is identified by two couples
(course, period) that determine the two variables. Line 4–5 declares the members object of
the move class, i.e., course1 and period1 to identify the first variable, and course2
and period2 to identify the second one.

The constructor methods are defined in lines 7–12, that set the values for all the members
of the class. Then lines 14–34 define three operators for comparing the moves. The first one
determines if two given moves are identical, i.e. if the four members have the same values
among the two moves. The second method determines if two moves are different. The last
method provide a comparison between two moves.

(1) class TT Swap
(2) {
(3) public:
(4) unsigned course1, period1;
(5) unsigned course2, period2;
(6)
(7) TT Swap(unsigned c1, unsigned p1, unsigned c2, unsigned p2):
(8) course1(c1),
(9) period1(p1),
(10) course2(c2),
(11) period2(p2)
(12) {}
(13)
(14) bool operator==(const TT Swap& mv1, const TT Swap& mv2)
(15) {
(16) return mv1.course1 == mv2.course1 && mv1.period1 == mv2.period1
(17) && mv1.course2 == mv2.course2 && mv1.period2 == mv2.period2;
(18) }
(19)
(20) bool operator!=(const TT Swap& mv1, const TT Swap& mv2)
(21) {
(22) return mv1.course1 != mv2.course1 || mv1.period1 != mv2.period1
(23) || mv1.course2 != mv2.course2 || mv1.period2 != mv2.period2;
(24) }
(25)
(26) bool operator<(const TT Swap& mv1, const TT Swap& mv2)
(27) {
(28) return (mv1.course1 < mv2.course1)
(29) || (mv1.course1 == mv2.course1 && mv1.period1 < mv2.period1)
(30) || (mv1.course1 == mv2.course1 && mv1.period1 == mv2.period1
(31) && mv1.course2 < mv2.course2)
(32) || (mv1.course1 == mv2.course1 && mv1.period1 == mv2.period1
(33) && mv1.course2 == mv2.course2 && mv1.period2 < mv2.period2);
(34) }

6.3.3 Constraints and Objective Function

Constraints in EasyLocal++ are treated as components of the objective function: they are
relaxed the number of violations for each constraint is counted and contributes to increase
the objective function values. The components of the objective function coming from relaxed
constraints are called hard constraints, while the other components are called soft constraints,

6.3. Modeling with EasyLocal++ 53

according to the terminology given in 1.1. The contribution of hard constraints to the overall
objective function values is much higher than the one of soft constraints. Thus, during the
execution of any LS algorithm, solution that decrease the violations of hard constraints are
preferred.

Each component (hard or soft) of the objective function is defined as a subclass of the
CostComponent abstract class. Each component needs to define the function ComputeCost
that, given a State object as input, calculates the contribution to the objective function from
that component. Subsequently, each CostComponentwill be linked to a StateManager
object. When asked for the calculus of the objective function, the StateManager will
compute the contribution of each single CostComponent and provide a weighted sum of
them. In the code below we show the definition of the soft constraint for the SCTT prob-
lem, that refers to the number of working days involved for each course (the definition of
the other components is similar). The class MinWorkingDays is defined, that extends
CostComponent (line 1). The constructor is defined in lines 4–6. It passes to the super-
class constructor the input object in, the weight for this component, a Boolean value stating
if it is an hard component, a string with the name of the component.

The method ComputeCost is shown in lines 7–14. It takes as input argument a state
and returns an integer representing the cost of this component.

(1) class MinWorkingDays: public CostComponent<Faculty,TT State>
(2) {
(3) public:
(4) MinWorkingDays(const Faculty & in, int w, bool hard):
(5) CostComponent<Faculty,TT State>(in,w,hard,"MinWorkingDays")
(6) {}
(7) int ComputeCost(const TT State& st) const
(8) {
(9) unsigned c, cost = 0;
(10) for (c = 0; c < in.Courses(); c++)
(11) if (as.WorkingDays(c) < in.CourseVector(c).MinWorkingDays())
(12) cost += in.CourseVector(c).MinWorkingDays() - as.WorkingDays(c);
(13) return cost;
(14) }
(15) }

6.3.4 NeighborhoodExplorer

The NeighborExplorer Helper is responsible for the exploration of the neighborhood. Thus
a class that implements the NeighborhoodExplorer functionalities needs to define the op-
erations to select, enumerate and perform moves. The code below shows the definition a
NeighborhoodExplorer for the SCTT problem corresponding to the definition of the swap-
ping move. RandomMove method defined in lines 3–16 generates a random move for the
state as passed as input. The move generated is stored in the variable referred by the input
argument mv. The FeasibleMove methods (lines 18–25) takes as input a state and a move
and checks if the move is not admissible, or trivial, for that state. Non feasible moves will be
discarded by the LS engine during the exploration. The MakeMove method defined in lines
27–32 actually performs the move. It modifies the state as, by swapping the variables indi-

54 6. EasyLocal++

cated by the move mv. The last two methods are used to enumerating all the possible moves
from a given State. The FirstMove method set the argument mv to the initial move. Then
the NextMove “increases” the move in mv according to a specific ordering criterion defined
by the user. Thus a strategy that wants to explore the whole neighborhood of a state, will
first generate the starting move with FirsMove, then use NextMove that will cyclically
generate all the other possible moves, until a move equal to the first one is generated.

6.3. Modeling with EasyLocal++ 55

(1) class TT SwapNeighborhoodExplorer:public NeighborhoodExplorer<Faculty,TT State,TT Swap>
(2) {
(3) void RandomMove(const TT State& as, TT Swap& mv) const
(4) {
(5) unsigned course, period1, period2;
(6) course = Random::Int(0,in.Courses()-1);
(7) period1 = Random::Int(0,in.Periods()-1);
(8) do{
(9) period2 = Random::Int(0,in.Periods()-1);
(10) }while (mv.period1 == mv.period2);
(11)
(12) mv.course1 = course;
(13) mv.course2 = course;
(14) mv.period1 = period1;
(15) mv.period2 = period2;
(16) } bool FeasibleMove(const TT State& as, const TT Swap& mv) const
(17) {
(18) return (as(mv.course1,mv.period1) == 0
(19) || in.Available(mv.course2,mv.period2) == 0)
(20) &&
(21) (as(mv.course2,mv.period2) == 0
(22) || in.Available(mv.course1,mv.period21 == 0);
(23) }
(24) void MakeMove(TT State& as, const TT Swap& mv) const
(25) {
(26) int tmp = as(mv.course1,mv.period1)
(27) as(mv.course1,mv.period1) = as(mv.course2,mv.period2)
(28) as(mv.course2,mv.period2) = tmp;
(29) }
(30) void FirstMove(const TT State& as, TT Swap& mv) const
(31) {
(32) mv.course1 = 0;
(33) mv.course2 = 0;
(34) mv.period1 = 0;
(35) mv.period2 = 1;
(36) }
(37) bool NextMove(const TT State& as, TT Swap& mv) const
(38) {
(39) if (NextPeriod2(as,mv))
(40) return true;
(41) else if (NextPeriod1(as,mv))
(42) return true;
(43) else
(44) do
(45) {
(46) mv.course1++;
(47) mv.course2++;
(48) }
(49) while (mv.course1 < in.Courses() - 1 && !FirstPeriod1(as,mv));
(50) return mv.course1 < in.Courses() - 1;
(51) }
(52) }

56 6. EasyLocal++

6.3.5 StateManager
The StateManager helper is responsible for all the operations on the State that are independent
from the neighborhood definition. Therefore, no Move definition is supplied to the StateM-
anager. A class that defines the StateManager functionalities has to implement the method
RandomState. This method generates a random solution and stores it in the state object
referred by the input argument. An example of such a method is shown in lines 3–19. It is
not mandatory that the State be generated in a random fashion. Heuristically generated states
are also allowed. The state can be generated heuristically instead of randomly. In this class is
also possible to define the method LowerBoundReached (lines 21–24): it takes as input
an integer values representing the cost of a solution and checks if a known lower bound for
the problem has been reached. In our example the lower bound is set to 15.

(1) class TT StateManager : public StateManager<Faculty,TT State>
(2) {
(3) void RandomState(TT State& as)
(4) {
(5) ResetState(as);
(6) for (unsigned c = 0; c < in.Courses(); c++)
(7) {
(8) unsigned lectures = in.CourseVector(c).Lectures();
(9) for (unsigned j = 0; j < lectures; j++)
(10) {
(11) unsigned p;
(12) do // cycle until the period is free and available
(13) p = Random::Int(0,in.Periods()-1);
(14) while (as(c,p) != 0 || !in.Available(c,p));
(15) as(c,p) = Random::Int(1,in.Rooms());
(16) }
(17) }
(18) as.UpdateRedundantStateData();
(19) }
(20)
(21) bool LowerBoundReached(const int& fvalue) const
(22) {
(23) return fvalue <= 15;
(24) }
(25) }

6.3.6 Main
Once all the necessary Data and Helpers classes have been defined, their instance must be
properly created and utilized in a main file. This main file creates the instances, links them
together, sets up the search engine, starts the search and retrieves the result. An example of
main file is given in the following code.

Lines 3–4 instantiate the Input and Output objects, belonging respectively to the classes
Faculty and Timetabling. Line 6–9 instantiate four CostComponent: three hard con-
straints (lines 6–8) and one soft constraint (line 9).

Lines 11–14 instantiate four DeltaCostComponent, each for a every cost component. A
DeltaCostComponent class is the “dynamic” version of the CostComponent class: it com-

6.3. Modeling with EasyLocal++ 57

putes the difference of the objective function in a given state due to a Move passed as param-
eters.

Line 16 creates the StateManager. All CostComponents are attached to the StateManager
(lines 17–20). Then line 22 creates the NeighborhoodExplorer and all the DeltaCostCom-
ponents are attached to it (lines 23–26). Lines 28 instantiates the OutputManager, a stan-
dard Helper class that handles delivering the results to the user. Then line 30 sets up the
Hill Climbing engine, implemented in the class HillClimbing. This class is parametric
w.r.t. the input, the state and the move classes and its constructor takes as argument the in-
put object, the state manager, the neighborhood explorer and the name of the engine. Line
31 sets the maximum number of idle iterations allowed to 1000000. The HillClimbing
is a Runner class w.r.t. the EasyLocal++ hierarchy. A Runner can be used alone or to-
gether with other Runners, managed by a Solver. Thus, line 33 instantiates the Solver
GeneralizedLocalSearch and line 34 attaches the HillClimbing runner to this
Solver. Line 35 starts the search. Once the search ends, lines 38–41 show the results on the
console.

58 6. EasyLocal++

(1) int main(int argc, char** argv)
(2) {
(3) Faculty in(instance);
(4) Timetable out(in);
(5)
(6) EnoughLessons ELcc(in, 1, true);
(7) SameTeacher STcc(in, 1, true);
(8) UnavTeacher UTcc(in, 1, true);
(9) MinWorkingDays MWcc(in, 1, false);
(10)
(11) DeltaEnoughLessons deltaELcc(in, 1, true);
(12) DeltaSameTeacher deltaSTcc(in, 1, truen);
(13) DeltaUnavTeacher deltaUTcc(in, 1, true);
(14) DeltaMinWorkingDays deltaMWcc(in, 1, false);
(15)
(16) TT StateManager sm(in);
(17) sm.AddCostComponent(MWcc);
(18) sm.AddCostComponent(ELcc);
(19) sm.AddCostComponent(STcc);
(20) sm.AddCostComponent(UTcc);
(21)
(22) TT SwapNeighborhoodExplorer snhe(in, sm);
(23) snhe.AddDeltaCostComponent(deltaMWcc);
(24) snhe.AddDeltaCostComponent(deltaELcc);
(25) snhe.AddDeltaCostComponent(deltaSTcc);
(26) snhe.AddDeltaCostComponent(deltaUTcc);
(27)
(28) TT OutputManager om(in);
(29)
(30) HillClimbing<Faculty,TT State,TT Swap> shc(in, sm, snhe, "Swap Hill Climbing");
(31) shc.SetMaxIdleIteration(1000000);
(32)
(33) GeneralizedLocalSearch<Faculty,Timetable,TT State> s(in, sm, om, "S");
(34) s.AddRunner(shc);
(35)
(36) s.GeneralSolve();
(37) out = s.GetOutput();
(38)
(39) cout << out;
(40) cout << "Time " << chrono.TotalTime() << endl;
(41) cout << "Cost " << s.GetBestCost() << endl;
(42) return 0;
(43) }

7
GELATO hybrid solver

Gecode and EasyLocal++ both have similar aims, allowing users to model CSPs and COPs
using an imperative C++ encoding, and to solve them efficiently; moreover, they both have
a modular object-oriented architecture that heps customization and new features addition.
On the other hand, they address these aims exploiting different search paradigms (Constraint
Programming for Gecode and Local Search for EasyLocal++). These paradigms have dif-
ferent strengths, i.e. (flexibility for CP and efficiency for LS) and work with distinct basic
data types and search engines, leading to different architectures.

As discussed in Chapter 4, the advantages of hybridization between LS and CP are well
known. Thus, it may be desirable to have a unique environment that merges the capabilities
of these tools. This environment would allow the user to easily develop meta-heuristics that
explore the search space, alternating different search engines on the same problem. Starting
from these considerations, we developed the hybrid toolGELATO, that integrates CP and
LS in a single environment, exploiting the functionalities of Gecode and EasyLocal++.
We chose the name GELATO as the acronym for Gecode + EasyLocal = A Tool for
Optimization.

From the Gecode users point of view, GELATO can be seen as a library that adds
local search features and allows a Gecode programmer to easily define LS algorithms (either
the classical ones or those based on LNS) starting from Gecode constraint models. From
the EasyLocal++ users perspective, GELATO can be seen as an extension that allows
a programmer to delegate to a CP engine tasks related to LS search, such as finding initial
solutions, exploring neighborhoods, satisfying hard constraints, etc. From a global point of
view, GELATO is an environment that allows a programmer to model problems and to
define hybrid solving strategies using a special high-level language (see Chapter 8) and to
search for solutions using Gecode and EasyLocal++ as low level solvers.

In section 7.1 an overview of GELATO features and architecture is given, then its
implementation is analyzed in depth. Namely, its internal core is presented in section 7.2 and
its external interface is shown in section 7.3. In section 7.4 we give some examples of basic
modeling usingGELATO. High-level modeling issues are indeed postponed to Chapter 8.

60 7. GELATO hybrid solver

7.1 GELATO Overview
GELATO functionalities are divided into two main parts: an internal core, that merges
Gecode and EasyLocal++ together, and an external interface, that provides an easy way
for the user to interact with the system. Figure 7.1 shows the structure ofGELATO.

Figure 7.1: Structure ofGELATO and interactions with Gecode and EasyLocal++

The internal core of GELATO is a middle layer that defines the interaction between
EasyLocal++ and Gecode. Referring to the abstraction levels of EasyLocal++ (see section
6.1), it implements ad hoc EasyLocal++ classes of the Helpers and Data layers, including
the encodings of Gecode models and CP search engines into these classes.

• Data - The classes in this layer define the basic data structure used by both EasyLo-
cal++ and Gecode functions. They implement the four basic Data classes of Easy-
Local++ (i.e., State, Move, Input, Output, see 6.2) as well as the encodings of COPs
and CSPs models, implemented in Gecode or in other modeling languages (supported
by theGELATO tool).

• Helpers - At this level the definitions of the helpers required by EasyLocal++ are
stored, such as the NieghborhoodExplorer and StateManager (see 6.2). This
level implements the LNS algorithms that exploit a CP solver in the exploration of
the large neighborhoods; traditional LS algorithm are also provided by the standard
EasyLocal++ layers.

The external interface of GELATO provides high level functions that can easily be
called by the user to access the innerGELATO functionalities, thus hiding all the internal
Gecode and EasyLocal++ calls. This external layer act as a Façade object-oriented pattern

7.2. GELATO Internal Core 61

(see [32]): the aim of the Facade pattern is to provide a simplified interface to a larger body
of code, making the subsystem easier to use. Thus, this external layer transforms the overall
GELATO tool into a black-box and allows the user to interact with it just by passing the in-
put (i.e., the problem model and the solving meta-heuristic) and retrieving the output (i.e., the
solution obtained), without caring about complicated object interactions in the GELATO
internal core. In this scenario, the user is asked to:

1. model the CSP or COP with a modeling language supported by GELATO (in the
current release, models written in Gecode as well as in the FlatZinc language are
accepted);

2. specify the instance of the problem in a different file, since GELATO requires the
concepts of problem and instance to be separated;

3. select the meta-heuristic to be used to find the solution (e.g., Hill Climbing,Tabu
Search, Large Neighborhood Search) and specify the desired parameters for the meta-
heuristic execution.

It is important to note thatGELATO does not require any modification of Gecode and
EasyLocal++. In this way GELATO does not affect the single development of Gecode
or EasyLocal++ and every improvement of the two basic tools, such as new functionalities
or performance improvements, is immediately inherited byGELATO.

In the next sections we focus with more details on the internal core and on the external
interface ofGELATO, providing diagrams and explanations of class interactions.

7.2 GELATO Internal Core
The internal core of GELATO mirrors the architecture of EasyLocal++. It provides the
definitions of the concrete classes needed by EasyLocal++ to work, containing the specific
data structures and algorithms for LNS. All these concrete classes belong to the Data and
Helper layers. In the following sections we first describe the Data classes, that provide the
basic data structures for GELATO and then the Helpers classes, that define algorithms
operating on the Data classes. The algorithms defined in this layer implement the search
strategies that hybridize the LS and CP paradigm, exploiting the Gecode constraint environ-
ment.

7.2.1 Data
At this level the basic data structures that are used by the GELATO tool are defined.
Since EasyLocal++ needs an implementation of four basic classes, i.e., State, Move, In-
put and Output, ad hoc implementations of these classes are provided. Moreover, a class that
wraps the abstract functionalities of a Constraint Programming model (such as, variables,
constraints, objective functions) is defined. This class is called GelatoModel and its con-
crete implementation may refer to different modeling languages, e.g., Gecode or FlatZinc.
Let us now analyze in detail each single class.

62 7. GELATO hybrid solver

GelatoState

This data structure represents a single solution (or state, according to the EasyLocal++ ter-
minology) of the problem P we are solving (as defined in section 1.1). A GelatoState object
can be accessed (read or modified) by both the Gecode environment and the EasyLocal++
framework. Since it represents a solution, an instance of this class contains the variables of
the problem with the associated values. The variables are organized in several vectors and
every vector is loaded in a map (instance of the class VarMap), with an associated key. One
of the arrays is expected to contain the variables that the search module will branch on, so the
name of such a vector is stored in the branchingArrayName string object.

In the current implementation, the variables vectors are IntegerVarArray objects (standard
Gecode data structures for arrays of integer variables) and the keys are strings of characters.
A typical GelatoState object contains just a single array of integer variables accessed by the
key "x", which also represents the array that will be branched on.

A GelatoState object also contains the Input object of the current instance being solved
and the cost of the state according to objective function definition. Even if state and FObj
are separate concepts and EasyLocal++ originally does not store any cost information into
the state, we choose to memorize the cost of a state into the state itself for efficiency reasons:
computing the objective function of a state is an expensive operation, so once the cost is
computed and stored in the state, it can be quickly retrieved without any recomputation if
needed in the future.

Figure 7.2: GelatoState class

Move

The abstract class Move represents a LS move used by theGELATO hybrid search engine,
thereby representing a Large Neighborhood Search move. A LNS move defines the sets FV
of free variables, according to the definition given in section 4.2. The basic implementation

7.2. GELATO Internal Core 63

of a FV set is given by the class NFreeVars, which collects the names of the free variables
into a vector. In this way, checking if a variable is free w.r.t. a certain move is performed by
verifying if the name of the variable is contained into the NFreeVars vector.

A GelatoMove is a more complex object that refers to one or more instances of NFree-
Vars and stores the following information:

1. the variables involved in the move;

2. if the move has been already tried or not. If the move has been tried, the following
information are stored:

(a) the state reached by the move, i.e. the new value of the variables after the execu-
tion of the move;

(b) the FObj value of the state reached by the move.

Information 1) can be retrieved using the operation containsVar(varName), that
takes as input the name of a variable and may return true, if the variable is involved in the
move, or false, otherwise. Information 2) is stored in the boolean variable varsAssigned
and information 2a) and 2b) can be obtained respectively by reading the values of variable
reachedStateCost and vector assignmentVars. Every concrete GelatoMove
class must also provide methods for comparing two move instances, i.e. checking if two
moves are equal or different (operation performed by operator==() and operator!=())
and giving an ordering of the moves (operation performed by operator<()).

Note that in a GelatoMove class no information about how to perform the move is
stored, but only information about the characteristics of the move.

We have described the characteristics of an abstract GelatoMove, i.e., information and
operations that every move must provide. On the basis of this common characteristics it is
possible to define several kinds of concrete GelatoMove. Two of them has been developed
for programmer’s convenience:

• NDifferentMove: it is defined by a set FV of free variables (i.e., an instance of
NFreeVars) and a positive integer number n. In this move, only n of the FV can be
modified by a LS search engine. The n names of the n modifiable variables are stored
in the vector varsSelection. This kind of move deals with a subset of FV having
fixed cardinality but not fixed elements.

• DistrictMove: it is defined by several sets of variables (i.e., several NFreeVars
instances, collected into a vector), that represents different neighborhoods. At any
given time only the variables belonging to a specific set are free, while the other ones
are fixed. The set (i.e., the neighborhood) containing the free variables is called active.
Thus, we have one active set at time, that contains the variables that can be modified
by the LS move execution. Each set can become active at some point, allowing a cyclic
exploration of the neighborhoods specified by the sets.

64 7. GELATO hybrid solver

Figure 7.3: Gelato Move class hierarchy

GelatoInput

In the GELATO framework, the concepts of problem, and instance are separated, as re-
quested by the EasyLocal++ framework. The specific instance of a problem is defined by a
subclass of the abstract class GEInput. The abstract class provides basic information, such
as the size of the problem and the dimension of the variables array, each respectively stored in
the Gecode data structure SizeOptions and in the integer variable dimension. There
are two main types of concrete Input classes:

• Gecode input classes: these classes extend the abstract class GEInput and define ad
hoc information for a specific Gecode model. For instance, the TSPInput class that
models the instances of the Travel Salesman Problem typically contains the distance
matrix. The CTTInput for the Course Time Tabling problem may contain information
about number of teachers, courses, rooms, availabilities, and so on.

• FlatZinc input class: this class provides input for models written in the FlatZinc for-
mat (see section 8.2). FlatZinc mixes definition of problem and instance together, so
this class contains the reference to a .fzn file where the information of a problem and

7.2. GELATO Internal Core 65

an instance are collected.

It is worth to comment that every concrete GelatoInput class has to be recognizable
from the respective Constraint Programming problem definition, stored in a GelatoSpace
class (whose hierarchy is explained hereinafter in this section). For instance, the class GEMinModel
will construct a correct Gecode minimization model from both the general problem model
(contained in the GEMinModel class) and the specific instance (contained in the GelatoInput
class); the class FZModel will construct the constraint programming model from the .fzn
file specified in the FZInput class.

Figure 7.4: GelatoInput class

GelatoOutput

This class implements the definition of a standard Output class, as requested by EasyLo-
cal++ in order to print the result of an execution of a Local Search algorithm. It contains a
GelatoState instance that represents the final state at the end of the search. It also im-
plements the operator<<() that prints the characteristics of the final state reached on the
console.

Figure 7.5: GelatoOutput class

GelatoSpace

A GelatoSpace class represents a Constraint Programming model for a particular problem. It
is a repository for all the model information, including variables, domains, constraints and
the objective function, as well as basic solving information, such as the branching strategy.

66 7. GELATO hybrid solver

Information about the characteristics of a specific instance to solve is contained within an
Input object, that will be subsequently attached to the GelatoSpace object at run time.

GelatoSpace is an abstract interface class, parametric w.r.t. the following classes:
Model (the concrete constraint programming model, e.g., TSP), Input (the concrete GelatoInput
class, e.g., TSPInput), VarType (the data type for a single variable, e.g., IntVar since
we are using Gecode), ArrayVarType (the data type for an array of variables, e.g.,
IntVarArray since we are using Gecode), Options (the class containing parameters
for the search process, e.g., Search::Options since we are using Gecode).

This means that in order to define a GelatoSpace concrete subclass, we have to specify
a concrete class for each parametric class. Moreover, the concrete class has to implement
the method requested by the GelatoSpace interface: a Local Search engine will call these
interface methods during its execution, without knowing which concrete class they belong to.
The methods that every concrete class of the GelatoSpace hierarchy must implements:

• Model CreateNewModel(Input): this method creates and returns a new
model from scratch, using the information contained in the Input parameter;

• VarArrayType GetIntegerVars(): this method returns the entire branching
vector of variables;

• VarType GetIntegerVar(index): this method returns the variable of the
branching vector corresponding to the position specified by the index parameter;

• VarType GetFObj(): returns the variable that contains the FObj value of the
model;

• int InfinityObj(): returns the Infinite value w.r.t. the FObj definition, e.g., a
large positive integer number for a minimization FObj or a large negative integer num-
ber for a maximization FObj;

• void postBranching(firstSolution): contains the statements that de-
termine how to perform branching on the variable of the problem by taking as input a
Boolean value that specifies if the branching is on the first solution or not. With this
information it is possible to define different branching strategies for searching the first
solution or exploring the neighborhoods.

• Model solve(firstSolution, Options): this method executes the ex-
ploration of the search space defined by the GelatoSpaceModel. It has two param-
eters, i.e., firstSolution, and Options. The first one specifies if the exploration
is on the first solution or not (allowing to define different strategies to find the first
solution or to explore the neighborhood), while the second contains parameters for the
exploration process.

In the current implementation ofGELATO, we have defined three GelatoSpace classes.
All these classes represent models that can be read and solved by a Gecode search engine,
with the main difference being that the first and the second classes are Gecode model, while
the third one is a FlatZinc model. Here follows a brief description of the three classes:

7.2. GELATO Internal Core 67

• GEMinModel: this class inherits from the MinimizeSpace class of Gecode, which
is the parent class of all the maximization models in Gecode. In this way, GEMinModel
inherits all the characteristics of a Gecode minimization model. It also defines all the
functionalities requested to work onGELATO since it implements the GelatoSpace
interface. A real minimization model for GELATO, such as a model for the TSP
problem, will be defined in a specific class that extends the GEMinModel class.

• GEMaxModel: this class mirrors the previous one, with the only difference that it in-
herits from the MaximizeSpace class of Gecode and is used to define maximization
models.

• FZModel: this class inherits from the FlatZincSpace class of Gecode, which is
the class of all the FlatZinc models in Gecode. FZModel inherits all the character-
istics of a FlatZinc model in Gecode environment, and defines all the functionalities
requested to work onGELATO as long as it implements the GelatoSpace inter-
face. This class contains the reference to a .fzn file, that contains the FlatZinc model
desired. Unlike the previous class, the programmer does not need to define a new sub-
class of FZModel for defining a FlatZinc model for a specific problem; he/she needs
to have a .fzn file containing the model in FlatZinc language and to create an instance
of FZModel specifying the name of that file.

Figure 7.6: GelatoSpace class

68 7. GELATO hybrid solver

7.2.2 Helpers
At this level the Helpers class that implements the functionalities of a LS algorithms are
defined. They inherit from the EasyLocal++ abstract helper classes and provide the imple-
mentations of the requested methods.

GelatoNeighborhoodExplorer

The NeighborhoodExplorer helper is the most crucial one in the EasyLocal++ architecture,
because it handles all the features concerning the neighborhood exploration, in particular how
to select and how to perform a move. This class is parametric w.r.t. the Input, the State and
the Move class, i.e., each LS algorithm will operate on its specific Input, State and Move
class. The methods that any NeighborhoodExplorer must implement are:

1. RandomMove(State,Move): generates a random move for the state State and
stores it in the variable Move;

2. FirstMove(State,Move): generates the first move for the state State, accord-
ing to a neighborhood exploration strategy, and stores it in Move;

3. NextMove(State,Move): modifies Move to become the candidate move that fol-
lows the current value of Move according to the neighborhood exploration strategy.
This function, together with the previous one, is used in algorithms relying on exhaus-
tive neighborhood exploration.

4. MakeMove(State,Move): updates the state State by applying the move Move
to it.

As long asGELATO deals with LNS algorithm, it has a GelatoNeighborhoodExplorer
helper (a subclass of NeighborhoodExplorer), that defines the LNS neighborhoods. As
explained in section 4.2 there are three aspects that characterize a specific LNS approach: 1)
which variables are free, 2) how many variables are free (i.e., the definition of FV), and 3)
how to explore these variables.

Our GelatoNeighborhoodExplorer class splits the definition of these aspects into
two auxiliary classes: MoveEnumerator and MovePerformer. The MoveEnumerator
class defines functions 1, 2, and 3 of NeighborhoodExplorer since they all concern the
definition FV . The MovePerformer class defines functionality 4, which is the only one
that determines how to explore the free variables. Let us analyze these two classes in more
details.

The MoveEnumerator (or ME for short) deals with the definition of the set FV ⊂
X for the LNS algorithm, specifying which variables of the constraint model will be free
in the exploration of the neighborhood. There are many possible strategies for enumer-
ating moves, that lead to many concrete subclasses of MoveEnumerator. For example
we can specify a random ME that randomly selects a specified number of problem vari-
ables, an iterative ME that iterates among all the combinations of the problem variables
of a given fixed size, or a sliding ME that considers a sliding window of k variables (i.e.,
FV1 = {X1, . . . , Xk}, FV2 = {X2, . . . , Xk+1}, . . .). A particular ME usually works on a specific

7.2. GELATO Internal Core 69

Figure 7.7: GelatoNeighborhoodExplorer class

concrete move. In the current version ofGELATO, two types of moves are provided, i.e.,
NDifferentMove and DistrictMove as well as their respective MoveEnumerators:
NDifferentMoveEnumerator and DistrictMoveEnumerator.

The MovePerformer (or MP for short) is a class that collects all the information about
how to search a large neighborhood, such as variable and value selection, constraint prop-
agation policy, branching strategies, search timeout and so on. Moreover, the MP actually
executes the move, calling a search engine on a concrete instance of a problem model. The
MP invokes the CP solver passing all the necessary information and obtain the result of the
exploration. In the current implementation of GELATO we have defined just one con-
crete MP. Our concrete implementation exploits the Gecode environment, as it instantiates
a GelatoSpace model and runs a Gecode exploration on it.

GelatoStateManager

The StateManager helper is responsible for all the operations on the state that are independent
of the neighborhood definition; therefore, StateManager does not have any interaction with
the Move data structures. GELATO defines its own implementation of the StateManger
helper in the class GelatoStateManager, which is parametric w.r.t. the GelatoSpace,
the Input, and the State classes. GelatoStateManager contains information about the
constraint programming model to solve (stored in the GelatoSpace class), the input of the
specific instance of the problem (stored in an instance of the Input class), the State data type

70 7. GELATO hybrid solver

(stored in the State class) and a possible lower bound for the problem (stored into an integer
member variable). GelatoStateManager implements the following methods:

• RandomState(State): finds an initial state and stores it in the variable State.
This method call the Gecode search engines that runs a naive search process on the
space defined by the GelatoSpace model and the respective input. The state reached in
this exploration will be used as a starting point for the subsequent LNS exploration.

• LowerBoundReached(Value): returns true if the objective function value Value
has reached the lower bound for the problem, false otherwise. It is called by the LNS
process, that can stop the search if the lower bound is reached. This method actually
works only if a lower bound information is set in the GelatoStateManager.

Figure 7.8: Main Gelato Helpers classes

GelatoCostComponent

The CostComponent helper handles the definition of the objective function. In detail, it is
owned by the StateManager and computes the objective function on a given state, assessing
the quality of the state. GELATO defines a CostComponent helper named GECostComponent,
which is parametric w.r.t. the GelatoSpace, the Input, and the State class. GECostComponent
implements the following method:

• int ComputeCost(State): returns the objective function value of the state
State.

This computation relies on the objective function definition stored in the GelatoSpace
model. As previously explained, every GelatoSpace model has an instance variable that con-
tains the f Ob j value, that can be retrieved via the GetFobj() method. Thus, the simplest
way to calculate the objective function value for a given state is: 1) to instantiate a new
Gecode model, 2) to set the variable values according to the values contained in the state,
3) to run the propagation process on the model 4) to read the objective function value on the
designate variable. Step 1) is the same for all the execution of ComputeCost(State),

7.3. GELATO External Interface 71

since the Gecode model remains the same, and the only thing that changes is the parameter
state. Thus, instead of creating a new Gecode model every time form scratch (which is an ex-
pensive procedure), a Gecode model is created once for all and stored in the variable root
of the GECostComponent. Every time ComputeCost(State) is called, steps 2) to
4) are applied on the model contained in root, obtaining a more efficient procedure.

EasyLocal++ also request the definition of a DeltaCostComponet helper: it is the
dynamic companion of the CostComponet helper. It computes the difference of the cost
function in a given state due to a Move passed as parameter and it is attached to a suitable
Neighborhood Explorer from which it is invoked. This helper comes in EasyLocal++ with
a default implementation, that has not been changed in the GELATO framework. Thus,
GELATO just define its own GEDeltaCostComponet, wich recall the basic EasyLo-
cal++ definition.

GelatoOutputManager

The OutputManager helper is responsible for translating between elements of the search
space and output solutions. It also delivers other output information about the search, and
stores and retrieves solutions from files. It is parametric w.r.t. the Input, Output and State
classes, and this is the only helper that deals with the Output class. Since OutputMan-
ager comes with default definition in EasyLocal++, theGELATO implementation of this
helper (named GelatoOutputManager), just to recall the basic functionalities. The main
method of GelatoOutputManager are:

• InputState(State, Output): gets the state State from the output Output.

• OutputState(State, Output): writes the output object Output from the
state State.

7.3 GELATO External Interface
Once the Data and the Helper layers are defined, EasyLocal++ provides all the control struc-
tures for Local Search algorithms in the Solver and Runner layers, which are not redefined
byGELATO. The Solver and Runner layers define the high level interactions between the
above components, building up a real LNS algorithm. This finds an initial solution using the
GelatoStateManager, and then navigates the search space through the neighborhoods
defined by the Move Enumerator. The neighborhoods are explored using the Move Performer.
Any LS strategy can be used at this step (e.g., Hill Climbing, Steepest Descent, Tabu Search).
Moreover, the combination of different LS algorithm is allowed (e.g., Multi-Neighborhood,
Token Ring Search) when different kinds of ME and MP are defined for the same problem.
Modularity and extendibility of EasyLocal++ are directly inherited byGELATO.

A programmer with a good knowledge of EasyLocal++ can now build up his own LNS
algorithms, instantiating the desired solver with the correct objects of the GELATO in-
ternal core using the correct EasyLocal++ statements. In order to simplify the work for
non-expert users of EasyLocal++, an external interface sets up the solver and hides all the

72 7. GELATO hybrid solver

Figure 7.9: GelatoOutputManager class

interaction between the internal components of GELATO. This external layer provides
the programmer a default way to call the GELATO functionalities at high-level, without
caring about inner objects declaration and calls. The external interface interacts with the user
only in terms of input and output. The input requested is the instance to solve and the search
parameters. The output is return is made of search information written on the console and the
final solution written in a file.

The external interface provides a class for each possible Large Neighborhood Search
engine that exploits the implementation of the internal core of GELATO. In the current
version of GELATO a Hill Climbing LNS engine is provided. The hierarchy of the LNS
engines as well as the Hill Climbing engine are explained in the next section. Thus a brief
description about how to call the engine from the main program is given.

7.3.1 GELATO Large Neighborhood Search Engines

All the LNS engines inherit the basic structure from the parent abstract class LNSEngines
as figure 7.10 shows. This class is parametric w.r.t. the GelatoSpace and the Input
classes that define respectively the model and the instance of the problem to be solved. The
LNSEngines class contains the input instances, stored in the variable input, as well as
the name of the output file, stored in the string outputfilename, where the solution will
be written at the end of the search.

The abstract class contains the virtual method Go(observe) that each concrete sub-
class is asked to define. This method specifies which operations will be run in theGELATO
internal core in order to execute the LNS algorithm and solve the given problem. The Boolean
parameter observe specifies if the user wants to constantly observe the solver during its ex-
ecution: if true, every time a better solution is found, a message is printed on the console,

7.3. GELATO External Interface 73

Figure 7.10: LNS Engines classes

containing the value of the new solution and the time passed from the starting of the search.

HillClimbingRandom In the current version ofGELATO, only a Hill Climbing engine
for LNS is provided, called HillClimbingRandom. This engine models a LNS algo-
rithm that at each step randomly selects the set of free variables FV and explores the relative
neighborhood using a Gecode branch and bound search. The algorithm searches for a bet-
ter solution and once this is found, the current solution is updated. Each neighborhood is
explored until a better solution is found or a stop criterion is satisfied. Then a new random
neighborhood is selected and explored. The whole process stops when a certain number of
idle iterations has been performed.

The class that models this algorithm contains the following additional search parameters:

• NeighborhoodDimension: is an integer variable that represents the cardinality of
the set FV of free variables. It is fixed during the execution of the search.

• stopMode: is a string that can have either the value TIME or FAIL. In the first case
each neighborhood is explored for a certain amount of time; in the second case each
neighborhood is explored until a certain number of failures (inconsistent states that
force backtrack).

• stopValue: if stopMode is set as TIME, this integer variable contains the number
of milliseconds allowed for the neighborhood exploration. If stopMode is set as
FAIL this integer variable contains the number of failures allowed.

• maxIdleIterations: is an integer variable that represent the stop criterion for
the whole LNS algorithm. The search will stop after maxIdleIterations idle
iterations has been performed.

74 7. GELATO hybrid solver

In order to execute the search, the HillClimbingRandom class define its implemen-
tation of the Go(observe)method. This method creates an instance for each basic com-
ponent (i.e., GECostComponent, GEStateManager, GELATOState, GEMovePerformer,
NDifferentME, GELATONeighborhoodExplorer, GELATOOutputManager) and
declares a Hill Climbing solver that will use all of these components. Then the method runs
the search and writes the result on the specified output file.

7.3.2 Calling the external interface from the main program
In this section we show how to use the external interface in a C++ code. Figure 7.11 shows
the code of a main program callingGELATO to solve a TSP instance. We assume that the
user runs the program (named runmain.exe) passing the following six parameters at the
console:

1. Instance: the number of the TSP instance to be solved; data for six instances are
already loaded in the TSPInput class, thus this parameter can have value from 0 to 5;

2. NeighborhoodDimension: value for HillClimbingRandom engine parame-
ter;

3. stopMode: value for HillClimbingRandom engine parameter;

4. StopValue: value for HillClimbingRandom engine parameter;

5. maxIdleIterations: value for HillClimbingRandom engine parameter;

6. outputfilename: name of the output file, for the HillClimbingRandom en-
gine.

So a possible command to run the program is:

$ runmain.exe 3 30 TIME 10000 100 output.txt

Now let us analyze the code of the main program. First a SizeOptions opt object is
declared and setup (lines 3–6). SizeOptions is a standard Gecode class that contains some
options for the CP environment. Then, on line 8, the input object is instantiated. All the
command line parameters are read and put into appropriate variables (lines 10–14). On lines
16–23 an instance of the HillClimbingRandom engine is created, passing the input and
output information, as well as the search parameters. Note that in the instantiation of the
HillClimbingRandom object, the classes representing the problem model and the in-
put are passed as parameters (using the angle brackets). At the end (line 24), the engine is
executed, via the method Go, specifying to observe the search process.

7.4 Modeling withGELATO
As explained in the previous section, GELATO is able to solve models encoded either in
Gecode or in FlatZinc. Usually, a FlatZinc model is not directly defined by a programmer,

7.4. Modeling with GELATO 75

(1) int main(int argc, char* argv[])
(2) {
(3) SizeOptions opt("TSP");
(4) opt.solutions(0);
(5) opt.icl(ICL DOM);
(6) opt.parse(argc,argv);
(7)
(8) GEInput* input = new TSPInput(&opt, atoi(argv[1]));
(9)
(10) int NeighborhoodDimension = atoi(argv[2]);
(11) char* stopMode = argv[3];
(12) int stopValue = atoi(argv[4]);
(13) int maxIdleIteration = atoi(argv[5]);
(14) char* outputFileName = argv[6];
(15)
(16) HillClimbingRandom< GEMinModel<TSP,GEInput>,GEInput> hcg(
(17) *input,
(18) NeighborhoodDimension,
(19) stopMode,
(20) stopValue,
(21) maxIdleIteration,
(22) outputFileName
(23));
(24) hcg.Go(true);
(25) }

Figure 7.11: main code that calls the HillClimbingRandom engine

but it is the results of a compilation process from a high level language (this topic will be
deeply discussed in the next chapter). Thus, in this section we focus on Gecode models. We
first show how to define a Gecode model forGELATO and then a main code that exploits
this model and set up an hybridGELATO search engine.

7.4.1 A Gecode model forGELATO

Section 5.3 shows a Gecode model for the SCTT problem. In this section we will show how
to adapt that model to make it work with GELATO. Only two slight modifications are
needed w.r.t. the original Gecode encoding, thus requiring a minimum programming effort.
These modifications can be summarized in:

• binding the class of the model to theGELATO tool;

• moving the branching strategy outside the model definition.

76 7. GELATO hybrid solver

Class Binding Standard Gecode models typically inherit from MinimizeSpace or MaximizeSpace.
In order to work withGELATO, models must inherit from GEMinModel or GEMaxModel.
However, according to the hierarchy shown in Figure 7.6, the model class indirectly inherits
from MinimizeSpace or MaximizeSpace. Moreover the array containing the branch-
ing variable of the Gecode model must be specified. In this way theGELATO solver will
be able to construct a proper GelatoState object, bind it to the model and execute the
search on the appropriate variables.

Thus the model head shown in Section 5.3.1 needs to be modified in this way:

(1) class Timetabling : GEMinModel<Timetabling,Faculty> {
(2) IntVarArray x;
(3) IntVar fobj;
(4) Timetabling(const Faculty& in):
(5) x(*this, in.Courses() * in.Periods() , 0, 1),
(6) fobj(*this, 0, Int::Limits::max)
(7) {
(8) branchingVarsName="x";
(9) varMap["x"] = x;
(10) ...

Line 1 sets the proper superclass. Note that the GEMinModel is parametric w.r.t. the model
class (in this case Timetabling) and the input class (in this case Faculty). Lines 8–
9 set the name and the array of the branching variables. Also the head of other auxiliary
constructors has to be modified in this way.

Branching strategy Standard Gecode models usually include statements for the branch-
ing strategy inside the model definitions. GELATO needs the model and the branching
strategy to be separated. This leads to several advantages, such as executing model propaga-
tion and model branching in different moments, specifying different strategies for different
searches, and so on.

Thus the statement specifying the branching strategy in the model must be deleted. In our
case we delete the statement branch in line 60 of the code in Section 5.3.3. The branching
strategy will be specified in the postBranchings method, defined inside the class of the
model as follows:

(1) void postBranchings(bool firstSolution)
(2) {
(3) if (firstSolution)
(4) branch(*this, succ, INT VAR MIN MIN, INT VAL MIN);
(5) else
(6) branch(*this, succ, INT VAR DEGREE MIN, INT VAL RND);
(7) }

This method will be called by the GELATO search engine when the engine will need to
set the branching strategy for the exploration. The statement in line 4 is executed when the
search for the first solution is started, the statement in line 6 is executed in all the other cases.
In this way, the programmer can specify different search strategy for the search of an initial

7.4. Modeling with GELATO 77

solution and for the exploration of the neighborhoods.

7.4.2 The main
The easiest way to set up a GELATO search engine and run the search is to use the
GELATO external interface as explained in Section 7.3. However, a programmer with
a good knowledge of the EasyLocal++ framework can directly access the functionalities of
the GELATO internal core, creating and binding the objects for the Large Neighborhood
Search inGELATO. In the following code we show an example of such code. Its structure
is similar to the EasyLocal++ main file showed in Section 6.3.6. Here the Data and Helper
classes used are the one provided by theGELATO library.

(1) int main(int argc, char* argv[])
(2) {
(3) Faculty input(argv[1]);
(4)
(5) GECostComponent<SCTTModel, Faculty, GELATOState<Faculty> > gcc(input);
(6) GEDeltaCostComponent<Faculty,GELATOState<Faculty>,NDifferentMove> gDeltacc(input,gcc);
(7)
(8) GEStateManager<SCTTModel, Faculty, GELATOState<Faculty> > sm(input);
(9) sm.AddCostComponent(gcc);
(10)
(11) GEMovePerformer<SCTTModel,Faculty,GELATOState<Faculty>,NDifferentMove>
(12) mp(input, TIME, 50000);
(13)
(14) vector<string> vn = ["x(1)","x(2)",...,"x(30)"];
(15) NFreeVars nfv(vn);
(16) NDifferentME<Faculty,GELATOState<Faculty>>
(17) nDiffME(10 , nfv, &mp);
(18)
(19) GelatoNeighborhoodExplorer<Faculty,GELATOState<Faculty>,NDifferentMove>
(20) ne(input, sm, "NE STRING", nDiffME, mp);
(21) ne.AddDeltaCostComponent(gDeltacc);
(22)
(23) GEELOutputManager<Faculty,GELATOOutput<GELATOState<Faculty>>,GELATOState<Input>>
(24) om(input);
(25)
(26) HillClimbing<Faculty,GELATOState<Faculty>,NDifferentMove>
(27) hc(input, sm, ne, "HC EL");
(28) hc.SetMaxIdleIteration(1000000);
(29)
(30) GELATOState<Faculty> state(input);
(31) sm.RandomState(state);
(32)
(33) hc.SetState(state);
(34) hc.Go();
(35)
(36) int finalCost = hc.GetStateCost();
(37) fstream file("solution.txt", fstream::out);
(38) file << "\n\nSolution found: "<< hc.GetState()
(39) << "Cost: " << hc.GetStateCost() << "\n";
(40) file.close();
(41) } /*end main*/

78 7. GELATO hybrid solver

Line 3 creates the Input object, instance of the class Faculty. Lines 5–6 set up the
CostComponent and the DeltaCostComponent of the GELATO solver. Line 8 instanti-
ates the StateManager, and line 9 links the CostComponent to it. Lines 11–12 create the
MovePerformer, specifying the stop criterion for the exploration of a single neighborhood,
i.e. a timeout 5000 milliseconds. Lines 14–15 create an instance of the NFreeVars object,
that is used in lines 16–17 to instantiate the MoveEnumerator. The first input argument of the
MoveEnumerator specifies the cardinality of the set FV of free variables for the LNS algo-
rithm (10 in this case). Lines 19–20 create the NeighborhoodExplorer, passing the Input, the
StateManager, the MoveEnumerator and the MovePerformer objects as arguments. Then the
DeltaCostComponent created in line 6 is linked to the NeighborhoodExplorer (line 21). Line
23 creates the OutputManager. Lines 26–27 instantiates the HillClimbing Runner of
EasyLocal++ framework, using the StateManager and the NeighborhoodExplorer as input
arguments. Line 28 sets the number of idle iterations allowed. Line 30 creates a State object
and line 31 makes this object became a random state. Line 33 sets the random state generated
as the initial state for the Hill Climbing algorithm and line 34 starts the Hill Climbing search.
Lines 36–39 retrieve the solution obtained and write it on a file.

8
GELATO Meta-Tool

One of the main goals of GELATO is to make the Large Neighborhood Search paradigm
easy to use for a wide range of programmers. In order to use the GELATO solver as
described in section 7.4, a basic knowledge of the C++ programming language is required,
as well as a good knowledge of the Gecode environment, and some basic notions about the
EasyLocal++ tool. Although the number of users of Gecode and EasyLocal++ is growing,
there exists a large community of researchers that deals with optimization problems using the
Logic Programming paradigm. These people usually model and solve optimization problems
using Constraint Logic Programming (CLP) environments that support the search on Finite
Domains, such as SICStus [58] and ECLiPSe [77].

It should be desirable to use all the characteristic of the GELATO solver also starting
from CLP models, instead of using just C++ models written for the Gecode environment.
To this aim we developed a compiler able to translate a model encoded with a high-level CLP
language LCLP into a low-level encoding Lll. Lll is a language that Gecode can easily read
and interact with. As a consequence, a model encoded with the Lll language can be easily
read and solved usingGELATO, via the Gecode environment. In this way, a programmer
can exploit the high level of abstraction of the CLP modeling language to model a problem,
and then use an effective low-level solver to explore the search space with LNS. In our current
implementation we use SICStus Prolog asLCLP high level language and FlatZinc asLll target
language. Moreover, any language provided with a compiler to the FlatZinc language can
be used as LCLP language. Examples of these languages are MiniZinc, with the compiler
presented in [57] as well as Haskell, with the back-end provided in [84].

SICStus Prolog and FlatZinc are presented respectively in Section 8.1 and Section 8.2,
with focus on the characteristics that make them particularly suitable to our aims. Then, a
description of the compiler and of the compiling process is given in Section 8.3 . In the last
sections a meta-modeling language for LNS is introduced (8.4) and an overall vision of the
GELATO tool is given (8.5).

8.1 SICStus language
SICStus Prolog [58] is a state-of-the-art implementation of the Prolog language. It follows
the ISO standard and provides a wide range of functionalities, e.g., debugger, interactions

80 8. GELATO Meta-Tool

with the OS, bi-directional interfaces to programming languages (such as C, C++, .NET,
Java), as well as a huge number of built-in predicates and data structures. Moreover, SICStus
Prolog implements a library for Constraint Logic Programming over Finite Domains (i.e.,
library(clpfd)), that allows to encode CSPs and COPs in a declarative way and ex-
plores the search space with different kinds of engines. This library also implements a wide
variety of global constraints. Thanks to these characteristics, SICStus Prolog is nowadays one
of the most used CLP system by the community of logic programmers. Other systems that
provide similar functionalities and are also well known in the LP community are ECLiPSe
[77], SWI-Prolog [80, 81], and B-Prolog [85].

We choose SICStus as our high level modeling language because of its popularity among
the users. It is also worth noting that SICStus and the other Prolog implementations (such as
ECLiPSe, B-Prolog, etc.) share the same syntax, with just slight differences. Thus, all the
work that is going to be presented in this chapter can be easily replicated for other Prolog
implementations.

In the next sections an explanation about how to model and solve CSPs and COPs with
SICStus Prolog is given, suggesting to look at [43, 48] for an exhaustive introduction to logic
programming and constraint logic programming, as well as at [58] for a deep explanation of
the SICStus Prolog language.

8.1.1 CSPs and COPs in SICStus

The library(clpfd) of SICStus prolog fully supports the modeling of CSPs and COPs
as defined in section 1.1 and provides the search engines of the kind explained in 2.3. In
order to explain the modeling and solving steps for SICStus Prolog, we consider the SCTT
problem and the instance introduced in section 1.2. The code in figures 8.1 and 8.2 show a
SICStus model for SCTT.

Main program Lines 1-2 load respectively the libraries lists and clpfd. The first
library provides built-in predicates to manipulate lists and access their elements. The sec-
ond one supports the definition of variables, domains and constraints, as well as the use of
search engines. Then, lines 4-21 define the main predicate, sctt. Arguments OS, PL and
AI are output arguments. Arguments UnOS, UnPL, UnAI, L and D are input arguments that
represent the unavailable shifts, the required number of lectures (function l) and the mini-
mum number of working days (function δ) for each course. Lines 5-7 define the variables
(three lists of length 10), and lines 9-10 collect them together in the list Vars. The predicate
domain at line 11 sets the domains of all the variables to {0, 1}. Lines 13-17 post the con-
straints on the variables and line 19 builds the objective function, storing it into the variable
FOBJ. Predicate labeling at line 21 sets up the search engine. Its first argument consist
in a list of search options: in particular, the minimize(FOBJ) option activates a branch
and bound engine that will minimize the value of the variable FOBJ. The second argument
specifies the variables that the search engine has to explore, in our case collected in the list
Vars.

8.2. FlatZinc language 81

(1) :-ensure loaded(library(lists)).
(2) :-ensure loaded(library(clpfd)).
(3)
(4) sctt(OS,PL,AI,UnOS,UnPL,UnAI,L,D):-
(5) length(OS, 10),
(6) length(PL, 10),
(7) length(AI, 10),
(8)
(9) append(OS,PL,OSPL),
(10) append(OSPL,AI,Vars),
(11) domain(Vars, 0, 1),
(12)
(13) constraint1([OS,PL,AI],L),
(14) constraint2(OS,PL),
(15) constraint3(OS,UnOS),
(16) constraint3(PL,UnPL),
(17) constraint3(AI,UnAI),
(18)
(19) build fobj([OS,PL,AI],D,FOBJ),
(20)
(21) labeling([minimize(FOBJ)],Vars).

(22) constraint1([Row|Tr],[L|Tl]):-
(23) sum(Row, #=, L),
(24) constraint1(Tr,Tl).
(25) constraint1([],[]).
(26)
(27) constraint2([X1|T1],[X2|T2]):-
(28) X1 * X2 #= 0,
(29) constraint2(T1, T2).
(30) constraint2([], []).
(31)
(32) constraint3(Row, [Un|Tu]):-
(33) nth1(Un,Row,X),
(34) X#=0,
(35) constraint3(Row,Tu).
(36) constraint3(,[]).

Figure 8.1: SICStus Prolog model for the SCTT problem

Constraints definitions In lines 22-36 the predicates that post the constraints (C1), (C2)
and (C3) of section 1.2 are defined. The formula

∑
j∈P xc, j = l(c) for (C1) is modeled

with the built in predicate sum(Row, #=, L), where Row is a list containing the vari-
ables xc, j and L is l(c). Similarly, the constraint (C2) x1 · x2 = 0 is concretely rendered by
X1 * X2 #= 0 and the constraint (C3) x = 0 by X #= 0.

Objective function definition Lines 37-56 model the objective function defined in sec-
tion 1.2, i.e., f Ob j =

∑n
i=1 max(0, δ(ci) − |{d(j) : xci, j > 0}|). The objective function

is stored into the variable FOBJ. The single contribution to the objective function of each
course (i.e., given i, max(0, δ(ci) − |{d(j) : xci, j > 0}|)) is calculated by the predicate
single_contribution (lines 43-46), and then recursively added to the other ones.
Predicate single_contribution delegates to number_of_days the calculus of the
working days of a course (i.e., |{d(j) : xci, j > 0}|).

8.2 FlatZinc language

FlatZinc is a low level language developed by the NICTA research group for the G12 con-
straint programming platform [78]. The G12 project defines three languages for specifying
combinatorial and optimization problems:

82 8. GELATO Meta-Tool

(37) build fobj([Row|T],[D|Td],FOBJ):-
(38) build fobj(T, Td, FObjT),
(39) single contribute(Row,D,FObjR),
(40) FObjT + FObjR #= FOBJ.
(41) build fobj([], ,0).
(42)
(43) single contribute(Row,D,FObjR):-
(44) number of days(Row, Days),
(45) Days+Diff #= D,
(46) max(Diff, 0) #= FObjR.

(47) number of days([M,P|T],TotalDays):-
(48) number of days(T, Days),
(49) this day(M, P, TD),
(50) TD + Days #= TotalDays.
(51) number of days([], 0).
(52)
(53) this day(M, P, TD):-
(54) M+P #= Sum,
(55) min(1, Sum) #= TD.

Figure 8.2: Objective function of the SCTT model

1. Zinc, a high-level, typed, mostly first-order, functional modeling language; Zinc ex-
tends OPL and moves closer to CLP languages such as SICStus and ECLiPSe;

2. Minizinc, a medium-level, typed, purely first-order, functional modelling language; it
is a subset of Zinc and provides reasonable modelling capabilities while being simpler
to implement.

3. FlatZinc, a low-level input language; it is a subset of MiniZinc and is intended to
be a target language for Zinc and MiniZinc. At this level, we don’t have anymore
the high level characteristics of MiniZinc, such as data/model separation, multi-file
models, variable declaration/assignment separation, for loops, if-then-else expressions.
FlatZinc is designed to specify problems at the level of an interface to a CP solver that
supports finite domain and linear programming constraints.

The NICTA group provides a compilator that can translate a Minizinc model into a FlatZ-
inc encoding, as well as a solver able to read and solve a FlatZinc file [57]. Recently, several
CP environments, such as SICStus, ECLiPSe and Gecode, have been interfaced with FlatZ-
inc.

8.2.1 CSPs and COPs in FlatZinc

A FlatZinc model for a CSPs or a COPs is a list of single statements that define variables,
domains and constraints, as well as the search strategy. It is made of 5 parts: 1) zero or more
external predicate declarations (i.e., a non-standard predicate that is supported directly by
the target solver); 2) zero or more parameter declarations (i.e., constants values); 3) zero or
more variable declarations; 4) zero or more constraints; 5) a solve goal. These five parts have
to be declared in this order. Here we focus on parts 3)-5) giving examples of the FlatZinc
statements.

Variables and domains To specify an integer variable X with a domain between Min and
Max the following statement is used:

8.2. FlatZinc language 83

var Min..Max: x;

Thus, in a model for the SCTT problem, all the 30 variables are declared with the statement
var 0..1: xn;.

Constraints A constraint statement in FlatZinc is marked with the keyword constraint,
followed by a predicate that specify the constraint and the variables involved. For example,
equalities and inequalities can be expressed as follows:

constraint int_eq(y, 0); % y <= 0
constraint int_ge(0, x); % 0 >= x
constraint int_lt(x, y); % x < y

Also linear equalities and inequalities are supported. For example, the formula 2x1 − 3x2 +

x3 + 5x4 = 10 can be encoded as:

constraint int_lin_eq([2,-3,1,5], [x1,x2,x3,x4], 10);

In [56] a comprehensive discussion of all the constraints supported by FlatZinc is given.

Search engines A model should finish with a solve statement, taking one of the following
forms:

• solve satisfy; that search for any satisfying assignment;

• solve minimize fObj; that search for an assignment that minimizing the vari-
able fObj;

• solve maximize fObj; that search for an assignment that maximize the variable
fObj.

A solution consists of a complete assignment, where all variables in the model have been
given a fixed value.

8.2.2 Annotation in FlatZinc

Annotations are optional suggestions to the solver concerning how individual variables and
constraints should be handled (e.g., a particular solver may have multiple representations for
int variables) and how search should proceed. An implementation is free to ignore any anno-
tations it does not recognize. Annotations are unordered and idempotent: annotations can be
reordered and duplicates can be removed without changing the meaning of the annotations.

Annotations starts with two colons ::, followed by a string representing the annotation
name. An annotation can contain arguments, enclosed into brackets. Moreover, an argument
can be an annotation, allowing to nest annotations inside other ones. Thus, an annotation is:

:: annotation_name | :: annotation_name(arg1, arg2, ... argn)

84 8. GELATO Meta-Tool

For example, annotations can help to distinguish between the main variables of the model
and temporary variables, used just to perform operations. A solver may want to print on the
console only the value of the main variables, avoiding to return the values of the temporary
ones. To this aim, FlatZinc defines the annotations output_var for the main variables and
var_is_introduced for temporary ones. This annotations must be used in the state-
ments declaring the variables, as follows:

var 0..1: x :: output_var ;
var 0..1: xtemp :: var_is_introduced;

FlatZinc also defines annotations that specify the search strategy to perform. This anno-
tation will be contained in the solve statement and is defined as follows:

:: int_search(vars, varchoiceann, assignmentann, strategyann)

where vars is the array of the variables to be assigned, varchoiceann is a nested an-
notation specifying the variable selection strategy, assignmentann is a nested annotation
specifying the value selection strategy and the strategyann is a nested annotation spec-
ifying the kind of search. For example, a branch and bound search engine that explores
variables x1, x2 and x3, minimizing variable f , with a first fail selection rule and a random
value selection, should be declared as follows:

solve :: int_search([x1,x2,x3,x4], first_fail, indomain_random,
complete) minimize f;

In section 8.4 we use FlatZinc annotations to define a LNS meta-heuristic language sup-
ported by theGELATO solver.

8.3 Translation from Prolog to FlatZinc

Starting from the compiler presented in [16], we developed a translator from a Prolog model
to a FlatZinc model. The translation process works in two phases. In the first phase, that
we call compilation, the original constraint logic program that encodes the model is parsed
and transformed into a new logic program, where all the predicates involving constraint pro-
gramming tasks are replaced by special output predicates. The new logical program is called
generator, since it will actually generates the final FlatZinc model. In the second phase,
called generation, the generator program will create the final FlatZinc model and the out-
put predicates will write all the FlatZinc statements about variables, domain, constraints and
search. These two steps are performed by two different logic programs written in SICStus
Prolog. Note that, unlike the compiler in [16], neither intermediate ad-hoc languages, nor
programming languages other than SICStus Prolog have been used. Figure 8.3 shows this
two steps process. In the next sections the two phases are analyzed in more detail.

8.3.1 Compiling a FlatZinc Generator
In this first phase, a compiler translates the Prolog model into the corresponding generator.
Before analyzing the compilation process, it is worthy to describe the structure of a generator.
A generator is made up of three parts:

8.3. Translation from Prolog to FlatZinc 85

Figure 8.3: The overallGELATO tool and the translation process.

(1) %%%Head
(2)
(3) sics2fzn(Goal, OutputFzn):-
(4) (
(5) open(OutputFzn, write, FZStream),
(6) assert(flatZincStream(FZStream)),
(7) call(Goal),
(8) retract(flatZincStream())
(9) -> close(FZStream)
(10) ; close(FZStream),
(11) write(’A problem occurred!’)
(12)).
(13) ...

Figure 8.4: Example of generator head

head: this part is the same for all the generators and defines the main predicate. The user
will call this main predicate in order to generate the final FlatZinc model.

body: this part is strictly related to the specific model we are translating. It mirrors the orig-
inal Prolog program, but it does not contain any predicate of the clpf(fd) library.
All of them have been replaced by output predicates.

utilities: this part contains some auxiliary predicates that the generator needs during the
generation phase. This part, as the head, is the same for all the generators.

Figure 8.4 shows the head of a generator, where the main predicate, sics2fzn(Goal,OutputFzn)
is defined. It takes as input a goal of the original Prolog model and the name of the FlatZinc
file to create. Line 5 opens the specified file (creating it if needed) in a write mode and
sets up the output stream FZStream. This stream will receive all the output information
and write them on the specified file. Then, FZStream is asserted in the program (line 6)
via the fact flatZincStream(FZStream). In this way, FZStream acts like a global
variable, that can be easily retrieved and used at any point of the program. Line 7 executes
the goal specified in the Goal argument. The execution of the goal is the core of the overall
translating process, since it starts the generation phases (see Section 8.3.2 below). Line 8 re-
tracts the global variable FZStream asserted in line 6. Lines 5-8 are inserted into a control
structure that tolerates possible errors. If line 7 is executed without any problem, then line
9 is executed (-> branch), so the output stream is closed and the execution ends. If some
problem occurs, the ; branch is executed: the output stream is closed, a message is printed
and the execution ends.

86 8. GELATO Meta-Tool

(102) ...
(103) %%%Utilities
(104)
(105) putOnes([1|T]):-
(106) putOnes(T).
(107) putOnes([]).
(108)
(109) processDomain([H|T],Min,Max):-
(110) flatZincStream(FZStream),
(111) format(FZStream, "var ˜w .. ˜w: ˜w :: output_var; \n",[Min,Max,H]),
(112) processDomain(T,Min,Max).
(113) processDomain([], ,).

Figure 8.5: Example of generator utilities

The body of the generator mirrors the structure of the original programs. All rules of
the program predicates are rewritten, with the same head and almost the same body. Thus,
recursive structures and calls to other predicates remain the same in the generator obtained.
The only changes arises in correspondence to predicates belonging to the clp(fd) library,
that are replaced by output predicates. An output predicate has the same meaning of the
original one, but instead of actually posting the information in the constraint store, it prints
the corresponding statement to the final FlatZinc model, with the proper FlatZinc syntax. Let
us consider an example of translation from clp(fd) predicate to the output predicate. The
predicate H in Min..Max from the clp(fd) library sets the variable H to have domain
{Min . . . Max}. It is translated into the following output predicate:

format(FZStream, ’var ˜w .. ˜w: ˜w ::output_var;\n’, [Min,Max,H])

The predicate format is a built-in predicate in SICStus Prolog. It writes in the specified
stream (in this case FZStream) the text passed as secund argument, substituting the charac-
ters ˜wwith the values of the variables specified in the third argument. Thus, in the generation
phases, the above predicate will print on the FlatZinc file the following line:

var Min .. Max: H ::output_var;

where Min, Max and H are substituted with the actual values. Similarly, the other clp(fd)
predicates have been translated into output predicates, as shown in Table 8.1.

Figure 8.5 shows two utilities. The first one, putOnes, unifies the variables of a list with
1 constants. The second utility, processDomain takes as input a list of variables and two
integers, and generate the output predicates that set the domains for each variable of the list
(line 111).

Compiling the head and the utilities is straightforward, since these parts do not change
from a generator to another one. Thus, we focus our analysis on compiling the body of the
generator. In figure 8.6 a pseudo code of the compilation process is given.

The original SICStus program is parsed and all the rules are collected (line 1). We remark
that also facts of the program are collected, since they are rules with empty body. Then each

8.3. Translation from Prolog to FlatZinc 87

(1) Rules <- parse(Program)
(2) forall(Rule in Rules)
(3) {
(4) Head, Body <- parse(Rule)
(5) write(Head)
(6) forall(Predicate in Body)
(7) {
(8) if(Predicate is clp(fd))
(9) {
(10) OutputPredicate <- constructOutputPredicate(Predicate)
(11) write(OutputPredicate)
(12) }
(13) else
(14) write(Predicate)
(15) }
(16) }

Figure 8.6: Pseudo code for the compilation of the generator body

rule is parsed and divided in the head and body part (line 4). The head is written without
any modification (statement write at line 5), since it never contain clp(fd) predicates.
Then each predicate of the body is analyzed: if a predicate belongs to the clp(fd) library,
the corresponding output predicate is created and then written (lines 10-11). If it is a regular
predicate, it is written without any modification (line 14). All the write actions are intended to
be on the FlatZinc file, via the stream FZStream. The construction of the output predicates
(line 10) is different for each clp(fd) predicate and copes with particular cases and minor
technical problems.

8.3.2 Generating the FlatZinc code
In the second phase of the overall translating process, the generator is executed, simulating
the execution of the original program. Thus, the predicate sics2fzn (see Figure 8.4) is
called. A goal of the original program is passed as argument, together with the name of the
output file. For example, to generate the FlatZinc for the SCTT proglem encoded in Figure
8.1, the following command is executed:

sics2fzn(sctt(OS,PL,AI,[3,4],[3,4,],[7,8,9,10],[4,3,4],[]),’sctt.fzn’).

It is worth noting that at this point we can still pass instance data as input. Once the final
FlatZinc file is generated, all the instance data are inserted into that file as constants and the
only way to change them is to directly modify the file.

The executions of the generator does not have any difference in terms of control flow,
w.r.t. the execution of the original Prolog model. In fact the predicates in the generator
body are called in the same way as the ones in the Prolog model. The difference is that
during the execution of the original Prolog model, the clpfd predicates add information to
the SICStus Prolog constraint store, while during the execution of the generator, the output

88 8. GELATO Meta-Tool

clpfd predicate output predicate FlatZinc statement
model.pl (SICStus) generator.pl (SICStus) model.fzn (FlatZinc)
H in Min..Max format(FZStream,’var ˜w .. ˜w: ˜w ::

output_var;\n’, [Min,Max,H])
var Min..Max: H ::output_var;

all_different(List) format(FZStream,’all_different :
˜w;\n’,[List])

all_different : List;

A#=B format(FZStream,’constraint int_eq(˜w,
˜w);\n’,[A,B])

constraint int_eq(A, B)

A+B#=C format(FZStream,’constraint int_plus(˜w,
˜w, ˜w);\n’,[A,B,C])

constraint int_plus(A,B,C);

C#=min(A,B) format(FZStream,’constraint int_min(˜w,
˜w, ˜w);\n’,[A,B,C])

constraint int_min(A,B,C);

labeling([ff,
minimize(F)], Vars)

format(FZStream,’solve::int_search(˜w,˜w,
˜w,˜w)˜w ˜w;\n’,[Vars,first_fail,
indomain_min,complete,minimize,F])

solve::int_search(Vars,
first_fail,indomain_min,
complete) minimize F;

Table 8.1: Examples of translation from clp(FD) predicates to output predicates and then to
FlatZinc statements

predicates write the same information in the FlatZinc file. Some example of the statements
written in the final FlatZinc file by the generator are given in Table 8.1.

In figure 8.7 we show some excerpts of the FlatZinc model obtained compiling the SCTT
model in figure 8.1. Lines 1-2 declare the variables x1225 and x1227, with domain {0, 1}.
All the 30 variables of the model are declared like this. Then other temporary variables
are declared (lines 4-6): this variables are used to bind values while performing operations.
Lines 7-18 contains the constraints among the variables: linear constraints (e.g., line 7),
operational constraints (e.g., lines 9,13,15,17) equalities constraint (e.g., line 11), and so
on. The last line of the example (line 19), show the FlatZinc statements that set up the
search strategy. A complete exploration is performed on the 30 model variables, with leftmost
variable selection (input_order) and value selection from the smallest to the biggest one
(indomain_min). Moreover, the exploration minimizes the objective function stored in
variable x10501.

8.4 A Meta-heuristic modeling language
Using the FlatZinc annotations introduced in Section 8.2, we defined a language that models
the possible hybrid LNS heuristics provided by theGELATO tool. The main annotation to
this aim is the following:

:: gelato(lsStrategy, vars, percentage, firstSolStrategy,
LNSStrategy, stopCrit)

The arguments are defined as follows:

1. lsStrategy: annotation that specifies which LS algorithm to use;

2. vars: array of variables that will be explored by the algorithm;

8.4. A Meta-heuristic modeling language 89

(1) var 0 .. 1: x1225 :: output var ;
(2) var 0 .. 1: x1227 :: output var ;
(3) ...
(4) var int: x10501 :: var is introduced;
(5) var int: x10676 :: var is introduced;
(6) ...
(7) constraint int lin eq([1,1,1,1,1,1,1,1,1,1],

[x1225,x1227,x1229,x1231,x1233,x1235,x1237,x1239,x1241,x1243], 3);
(8) ...
(9) constraint int times(x1225, x1245, 0);
(10) ...
(11) constraint int eq(x1229, 0);
(12) ...
(13) constraint int plus(x1281, x1283, x13887);
(14) ...
(15) constraint int min(1, x13887, x13718);
(16) ...
(17) constraint int max(x12028, 0, x11521);
(18) ...
(19) solve ::int search([x1225,x1227,x1229,x1231,x1233,x1235,x1237,x1239,

x1241,x1243,x1245,x1247,x1249,x1251,x1253,x1255,x1257,
x1259,x1261,x1263,x1265,x1267,x1269,x1271,x1273,x1275,
x1277,x1279,x1281,x1283],input order,indomain min,complete)

minimize x10501;

Figure 8.7: Excerpt of SCTT FlatZinc model obtained

90 8. GELATO Meta-Tool

3. percentage: integer number from 1 to 100 that specify the percentage of free vari-
ables among vars, thus defining the cardinality of the set |FV |;

4. firstSolStrategy: annotation that specifies the variable and value selection strat-
egy that will be used when searching for the first solution;

5. LNSStrategy: annotation that specifies the variable and value selection strategy that
will be used when performing large neighborhood search on the free variables;

6. stopCrit: annotation that specifies the stop criterion for the exploration of a single
large neighborhood.

The lsStrategy annotation is one of the following:

• hill_climbing(maxIterations)

• tabu_search(tabuMin, tabuMax, maxIterations)

• simulated_annealing(startingTemp, coolingRate, stopTemp)

where maxIteration is an integer that determines the maximum number of idle itera-
tions; tabuMin and tabuMax are the parameters that determine the length of the tabu list;
startingTemp is a float number representing the value of the temperature at the beginning
of the search, coolingrate is a float number between 0 and 1, that determine the decrease
of temperature at each step, and stopTemp is the value of temperature that will force the
Simulated Annealing algorithm to stop.

The firstSolStrategy and the LNSStrategy annotations have respectively the
following form:

• firstSolStrategy(var_selection, val_selection)

• LNSStrategy(var_selection, val_selection) | same_search

where var_selection is one of the variable selection strategies supported by Gecode
(such as INT_VAR_NONE or INT_VAR_RND) and val_selection is one of the variable
selection strategies supported by Gecode(such as INT_VAL_MIN or INT_VAL_MAX). An
exhaustive list of the Gecode strategies is reported in [69]. We also allow to use same_search
as LNSStrategy, with the meaning that the value and variable selection strategies for the
LNS exploration are the same used searching for the first solution.

The stopCrit annotation is one of the following:

• stop_time(ms)

• stop_fail(n)

• stop_time_fail(ms, n)

8.5. Architecture of the GELATOMeta-Tool 91

where ms is an integer value that determines the maximum number of millisecond allowed
for each neighborhood exploration and n is an integer value that determines the maximum
number of failures allowed for each neighborhood exploration. The third stop criterion is the
combination of the first two ones.

As explained in section 7.2, the Gecode environment (and thus GELATO) is able to
read and solve a FlatZinc model. Moreover, Gecode provides data structures for FlatZinc
annotation and methods to parse the file and navigate through the annotations data. Thus,
GELATO can read both model and the search strategy contained in the FlatZinc file, and
set up the solving hybrid algorithm in the proper way.

8.5 Architecture of theGELATOMeta-Tool
In detail we have all the ingredients that allows us to build a meta-tool for combinatorial
problems. We have:

• a high level modeling language, i.e., SICStus Prolog, that allows the programmer to
easily develop declarative models for CSPs and COPs;

• a low-level input language, i.e., FlatZinc, that can be easily read by constraint pro-
gramming environments;

• a compiler that can translate the information encoded in the high-level model into the
low-level language;

• a meta-heuristic language that allows the user to specify the LNS algorithms at high
level, with annotations that can be inserted in the Flatzinc model or included in the
original SICStus model;

• efficient state-of-the-art solvers, i.e., Gecode and EasyLocal++, that can perform
exploration on the model in an effective way;

• a a hybrid tool,GELATO, that reads FlatZinc model and exploits the functionalities
of the solvers to perform the exploration of the search space. The search strategy will
hybridize the constraint programming and the local search paradigms, according to the
strategies specified by the annotations.

Thus, we can define a multi-paradigm tool,GELATO, that will allow the programmer
to easily model a CSP/COP, define or select the meta-heuristics for the search, and automat-
ically obtain the encoding of his/her model and of the solution strategy (possibly heuristic
or meta-heuristic) that can be read and executed to solve the problem. The tool comprises
three main components: the modeling, translating, and the solving one. First, the user can
model a problem in a high-level language (e.g., SICStus Prolog or Minizinc), and specify the
meta-heuristic he want to use to solve the problem; then, the model and the meta-algorithm
defined are automatically compiled into the target language (i.e., FlatZinc); at the end, the
encoding obtained is read, the solver program is executed and the tools interact in the way
specified by the user in the modeling phase, to solve the instance of the problem modeled. A
schema of this modeling-translating-solving paradigm is given in figure 8.8.

92 8. GELATO Meta-Tool

Figure 8.8: The overallGELATO tool

With such a tool, developing hybrid algorithms is flexible and straightforward and their
executions will benefit from the use of low level efficient solvers, such as Gecode and Easy-
Local++. As a side effect, this programming framework represents a new way to run declar-
ative models: the user can encode the problems with well-known declarative languages (e.g.,
SICStus Prolog), and then make use of new low-level implementations (e.g., Gecode and
EasyLocal++) for efficient executions. Moreover, the modeling capabilities of our tool can
benefit from the front-end recently developed for the Haskell language [84] and, in general,
from other front-ends to Gecode, listed in the Gecode web-site [67].

9
Installing GELATO

In this chapter instructions about how to properly install GELATO and import its func-
tionalities into a C++ project are given. Since GELATO works on the Gecode and the
EasyLocal++ tools, we first explain how to install these tools (Sections 9.1 and 9.2) and the
focus on theGELATO installation (Section 9.3).

9.1 Installing Gecode

The Gecode environment is available for download from the Gecode website [67]. It is
possible to download precompiled binary packages for Windows (both for the 32 and the
64 bit version) and MAC OS (32 and 64 bit), as well as source packages (to be used on
Linux-like systems). This section focuses on installing the source packages, since the use of
precompiled packages is straightforward. Additional information can be found in [69].

On Linux and similar operating systems Gecode is installed as a set of shared libraries.
Once the source package has been downloaded and unzipped in the desired directory, it need
to be configured with the ./configure command. An example of configuration is:

$./configure CC=gcc CXX=g++ --enable-debug --enable-static

This line build the Gecode library statically, enabling all the assertions and information
for debug, specifying to use gcc as C compiler and g++ as C++ compiler. A list of all
supported configuration options can be obtained by calling ./configure --help. After
the configuration, the sources can be compiled with the command make and then installed
with the command make install.

Once Gecode is installed, it is necessary to set the proper option for the user compiler
and linker. To compile a code using the g++ compiler, the option -I<dir>/includemust
be added, with <dir> being the directory where Gecode has been installed. This option
make gcc able to find the Gecode header files. The linker needs to know where to find
the libraries so the option -L<dir>/lib must be given. It is also necessary to specify the
libraries to link against, using the option -l<library>. The two libraries that always need
to be linked are gecodesupport and gecodekernel. For the other libraries, the rule is
that whenever a header file <gecode/name.hh> is included, then corresponding library
must be linked with the option -lname.

94 9. Installing GELATO

9.2 Installing EasyLocal++

The EasyLocal++ framework can be download using a subversion command line client, with
the following command:
$ svn co http://satt.diegm.uniud.it/svn/easylocal/EasyLocal++/tags/2.0-pre EasyLocal++

The code is written in standard C++ and it has been tested with the GNU C++ compiler 4
and with Microsoft Visual C++ 2005, even if the use of EasyLocal++ with the Microsoft
Compiler is discouraged. Additional information can be found in [28]. As for the Gecode
tool, EasyLocal++needs to be configured, compiled and installed. These three tasks can be
performed with the standard commands configure, make, and make install.

The option for the compiler in order to properly include the EasyLocal++ header files
is -I<dir>/EasyLocalpp/src. For <dir> we indicate the path on the file system to
reach the directory EasyLocalpp, where EasyLocal++ is typically installed. The option
for the linker is -L<dir>/EasyLocalpp/lib to specify the directory of the library and
-lEasyLocalpp, that specify the name of the EasyLocal++ library.

9.3 InstallingGELATO
Once Gecode and EasyLocal++ are properly installed, you are ready to begin theGELATO
installation. First download the tool from [15]. The code is written in standard C++ and has
been tested with the GNU C++ compiler 4.

The functionalities provided byGELATO are typically encoded into parametric class.
This guarantees the possibility to interface GELATO to EasyLocal++ (that make a deep
use of parametric classes as well) and facilitates developing new functionalities and reusing
portions of code. Since in C++ parametric classes have to be stored in header files, almost
the wholeGELATO framework is in header files. Moreover, the not parametric remaining
portion of code is very small, so we decided to keep this into header files too. In this way,
there is no need to configure, compile, and install the GELATO tool. However, it is nec-
essary to specify to the compiler where the header files are stored. Once the header file have
been downloaded in the selected directory, for example <dir>/GELATO, the option for the
compiler is -I<dir>/GELATO. In order to access all the functionalities of theGELATO
internal core, the file GELATOHeaders.hpp must be included at the beginning of a C++
code.

Once these three tools are installed, the proper commands to compile and link a C++ file
that usesGELATO is something similar to:
$ g++ -I<dir>/GELATO -I<dir>/GECODE/include -I<dir>/EasyLocalpp/src

-c -o"mainProgram.o" "mainProgram.cpp"
$ g++ -L<dir>/GECODE/lib -L<dir>/EasyLocalpp/lib -o"mainProgram.exe"

mainProgram.o -lEasyLocalpp -lgecodeflatzinc -lgecodesearch
-lgecodeminimodel -lgecodeserialization -lgecodescheduling
-lgecodeint -lgecodekernel -lgecodesupport -lgecodedriver

Of course, when using an integrated development environment, the command lines for
the compiler and the linker are inserted into a makefile, that contains macros to correctly
build the target executable.

III
Applications

10
Asymmetric Traveling

Salesman Problem

In this chapter and in the following ones we show some experiments on benchmark prob-
lems, performed to test the effectiveness of the toolGELATO. We comparedGELATO
with the basic tool for Local Search and Constraint Programming (i.e., EasyLocal++ and
Gecode), as well as with the current state-of-the-art tool for Large Neighborhood search,
i.e., Comet.

Initial analysis is performed on the Asymmetric Traveling Salesman Problem, an NP-hard
problem in combinatorial optimization, taken from the TSPLib [72]. Given a set of cities and
the travelling costs from each city to the other ones, the Traveling Salesman Problem aims
to find a roundtrip of minimal total cost, visiting each city exactly once. In the asymmetric
formulation considered here, the cost to reach city i from city j may be different than the
cost to reach city j from city i: this formulation is more difficult than the symmetric one,
and can model several real-life situations, such as traffic, uphill and downhill roads etc. The
Asymmetric Traveling Salesman Problems (ATSP) is defined as follows.

DEFINITION 10.0.1 (ATSP) Given a complete directed graph G = (V, E) and a function c
that assigns a cost to each directed edge (i, j), find a roundtrip of minimal total cost visiting
each node exactly once. The edge costs might be not symmetric, i.e., in general c(i, j) , c(j, i).

10.1 Modeling the ATSP

Since the ATSP is well established in computer science literature, we used a standard model
to encode this problem.

Let X = {x1, . . . , xn}, n = |V | be the set of variables with domains D1 = D2 = . . . = Dn =

{1, . . . , n}. The value of xi represents the successor of the vertex i in the tour. We exploit the
global constraint circuit([x1, . . . , xn]) available in most CP frameworks, to constrain the
solutions to represent a tour. The objective function is defined as f Ob j =

∑n
i=1 c(i, xi).

98 10. Asymmetric Traveling Salesman Problem

10.2 Experiments
We tested the ATSP on the following instances of growing size, taken from the TSPLib [72]:
br17 (that we call instance 0, with |V | = 17), ftv33 (inst. 1, |V | = 34), ftv55 (inst. 2, |V | = 56),
ftv70 (inst. 3, |V | = 71), kro124p (inst. 4, |V | = 100), and ftv170 (inst. 5, |V | = 171). In
the next sections, we explain the different solving algorithms used as well as the processes to
tune the parameters and analyze the data.

10.2.1 Solving approaches
The problem instances have been solved using:

1. a pure constraint programming approach in Gecode

2. a pure local search approach in EasyLocal++, and

3. LNS meta-heuristics encoded inGELATO and Comet.

Let us analyze the three approaches in more detail.

CP For the sake of showing the possibility of usingGELATO starting from already avail-
able CP models, we used the ATSP model reported in the set of Gecode examples, slightly
adapted for its integration intoGELATO. After trying different search strategies we chose
those with better performances: the variable with smallest domain is selected, and the values
are chosen in increasing order.

LS The pure LS approach in EasyLocal++ is based on an elementary move definition,
called 1-Opt according to the TSP terminology: given a tour, two nodes are randomly selected
and swapped. We used a Randomized Hill Climbing algorithm, i.e., at each step a swap-move
is randomly chosen and it is selected only if it shows improvement. The algorithm is stopped
after 1000 idle iterations. We choose the Hill Climbing scheme in order to compare LS and
LNS on a fair basis, since LNS is basically a “large” hill climbing approach, as explained in
the next paragraph. It is worth noting that for LNS implementation we can directly reuse the
existing Gecode models, whereas in using EasyLocal++ we had to implement from scratch
the basic LS classes for the problem.

LNS The LNS meta-heuristic is composed by a deterministic CP search for the first solution
and then a LNS exploration based on a hill climbing algorithm with a maximum number of
idle iterations. Since LNS actually performs a “large” hill climbing in a wider neighborhood,
we call it mountain climbing. Given a COP O = 〈〈X,D,C〉, FOb j〉, the first solution is
obtained by a CP search without any pre-assigned value of the variables, without any timeout,
as well as with the variable and value selection strategy used for the pure CP approach. The
Large Neighborhood definition we have chosen is as follows. Given a number N < |X| and
a solution in sol(O) we randomly choose a set FV ⊆ X of free variables, so that |FV | = N.
Therefore, the exploration of the neighborhood consists in the possible assignments to the
constrained variables FV . Each neighborhood exploration is performed by the branch and

10.2. Experiments 99

bound search engine (see Section 2.3) with a stop criterion based on a maximum number of
failures. Thus, the exploration is regulated by the value of N (affecting the neighborhood
dimension) and by the number maxF of maximum number of failures in an improving stage
(affecting the time spent exploring a single neighborhood). At each stage variables and values
selection strategies are the same as those used for the first solution.

We use the same model, the same meta-heuristics, and the same parameters for both the
GELATO tool and for the Comet system, in order to guarantee a fair comparison.

All computations were run on an AMD Opteron 2.2 GHz Linux Machine. We used
Gecode 3.1.0, EasyLocal++ 2.0, and Comet 2.0.1.

10.2.2 Parameters tuning and data analysis

We tried several LNS approaches, that differ on the parameters N and maxF. N is deter-
mined as a percentage of |X| (10%, 20%, 30%, etc.). For relating the number maxF to the
exponential growth of the search space w.r.t. the number N of free variables, we calculate
maxF = 2

√
N∗Mult, and allow to fix the values for the parameter Mult. Reasonable values for

Mult range from 0.01 to 2. Of course, these values cannot be chosen independently of the
size of the problem instance and of the problem difficulty. These values are given by optional
arguments of the command-line call to the execution.

Choosing a range to analyze can be done with a few preliminary runs setting Mult = 1
and starting with small N (e.g., 1% and then double it iteratively) in which the number k of
consecutive idle iterations is kept low (e.g., 20). For small values of N the algorithm performs
little improvements at each step and, frequently a number of steps without improvements.
Execution stops sooner with higher values of the objective function. With increasing values
of N the running time becomes slower, but one might note the computation of better optima.
At a certain point one notes that the algorithm is slower and slower, but, even worse, the
optimum is not improved.

Once an interval of “good” behavior is found, one might enlarge the number k of consec-
utive idle iterations allowed before forcing the termination (in all our LNS tests, k = 50) and
starting tests with different values of Mult.

From some preliminary experiments, we discovered that LNS does not work well with
small values of N, since this determines a small sized neighborhood. Even though Gecode
is able to visit the neighborhood within the allotted time, it is difficult to make improvements
when too few free variables are allowed to change. Conversely, when N is large several
variables are allowed to change, thus the spaces to analyze are bigger. In these spaces it is
easier to find to better solutions. However, at the same time it might happen that an improving
solution is hidden within a huge space and it is not reached within the number of failures
or millisecond allowed for the exploration. Obviously this trade-off is dependent on the
particular problem being examined and has to be investigated experimentally. However, on
the basis of the analysis performed in this paper, we find out that a set of reasonable values
for the number of variables and the size of the search spaces is N = 10%, mafF = 1. We set
these value as the default for our tool.

Since the Gecode approach is deterministic, we perform only one run of Gecode for
each instance, with a timeout of one hour. Conversely, pure LS and LNS computations are

100 10. Asymmetric Traveling Salesman Problem

stochastic in nature, thus we collect the results of 20 runs in order to allow basic statisti-
cal analysis. In each run, we stored the values of the objective function that correspond to
improvements of the current solution, together with the running time spent. This data has
been aggregated in order to analyze the average behavior of the different LNS and pure LS
strategies on each sample. To this aim we performed a discretization of the data in regu-
lar time intervals; subsequently, for each discrete interval we computed the average value of
the objective function. For ATSP the range of parameter we have tested is the following:
N ∈ {20%, 25%, 30%, 35%, 40%, 45%} and Mult ∈ {1, 1.5, 2}. We experimentally determine
that for ATSP the best parameter combinations is N = 35% and Mult = 2.

10.3 Results
In order to compare the various solvers, i.e., Gecode, EasyLocal++, GELATO, and
Comet, we shows the result of the solvers on the six ATSP instances (see Figure 10.1).

ForGELATO and Comet we report the results obtained with the best parameters com-
bination (N = 35% and Mult = 2). In these figures, the horizontal dotted line represents the
best known solution for the instance considered.

It is clear from the results that pure CP (Gecode) is unsuitable to improve the objective
function and to reach a satisfactory solution in reasonable time. Indeed, after some improve-
ments in the very first stage, CP is not able to find better solutions (as the almost horizontal
line shows). The CP engine is exploring systematically the whole search space and is unable
to extend the searches to furthest regions. Nevertheless, Gecode is very useful to provide a
good starting point for the LS and LNS approaches.

Conversely, the pure hill-climbing method (implemented in EasyLocal++) is fast, finding
appropriate solutions in few seconds. The visual representation indicates rapid and substantial
improvements, with a near vertical plot of the objective function, which reaches values com-
parable to the one reached by the LNS approaches. While in some instances the LS method
is the most effective, in difficult instances (such as the last one attempted) it is outperformed
byGELATO and Comet.

LNS approaches are more regular, in that they improve the objective function more slowly
than LS, but with a constant trend. Comparing the two LNS approaches, it is noticeable that
GELATO is faster than Comet. The graphs shows the solutions found byGELATO are
always below the Comet ones, and the final solution reached is always better or equal to the
one obtained by Comet. We remark that the LNS algorithm and the search strategy are the
same for GELATO and Comet, in order to provide a fair comparison. In general, LNS
is the most effective approach. In difficult cases it finds better solutions than hill-climbing,
because it can perform a deeper search and fall later into more global local-minima.

10.3. Results 101

0.00 0.05 0.10 0.15 0.20

10
0

15
0

20
0

ATSP − Instance 0

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0.0 0.2 0.4 0.6 0.8 1.0
12

00
14

00
16

00
18

00
20

00
22

00

ATSP − Instance 1

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 2 4 6 8

15
00

20
00

25
00

30
00

35
00

40
00

ATSP − Instance 2

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 5 10 15

20
00

25
00

30
00

35
00

40
00

45
00

50
00

ATSP − Instance 3

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 50 100 150 200 250

50
00

0
10

00
00

15
00

00
20

00
00

ATSP − Instance 4

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 100 200 300 400 500 600 700

30
00

40
00

50
00

60
00

70
00

ATSP − Instance 5

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

Figure 10.1: Methods comparison on the ATSP instances

102 10. Asymmetric Traveling Salesman Problem

11
The Minimum Energy

Broadcast Problem

The Minimum Energy Broadcast Problem (MEB) is drawn from CSPLib [40] where is listed
as problem number 48. It is an NP-hard optimization problem for the design of ad hoc
Wireless Networks.

An ad hoc Wireless Network is a collection of wireless devices that form a network with-
out any centralized infrastructure. When the devices are deployed they must first configure
themselves to form a correctly functioning network. One configuration task when operating
in a battery limited environment is the Minimum Energy Broadcast (MEB) problem. Assume
a network of devices with omnidirectional antennas. The aim is to configure the power level
in each device such that if a specified source device broadcasts a message it will reach every
other device either directly or by being retransmitted by an intermediate device (a broadcast
tree is formed). The desired configuration minimizes the total energy required by all devices,
thus increasing the lifetime of the network.

Further information can be found in [82]. The formal definition for the Minimum Energy
Broadcast Problem is the following.

DEFINITION 11.0.1 (MEB) Given a set of n nodes V = {1, . . . , n} forming a complete
graph Kn, a source node s ∈ V and a cost function p : V × V → R, representing the
transmission cost between two nodes, the problem consists in finding a (directed) spanning
tree rooted at s that minimizes a cost function f , which measures the energy needed by a
node for broadcasting information. The function f is defined as follows: assume a tree τ
is given, and let us denote by next(i) the set of nodes reachable from a node i in τ; then
f (τ) =

∑n
i=1 max{p(i, j) : j ∈ next(i)}.

11.1 Modeling the MEB
We model the problem using a set X = {xi, j ∈ {0, 1}|i, j ∈ V} of n2 Boolean variables, with
the meaning that xi, j = 1 if and only if node i communicates with node j in the solution. Let
us define the function δ : V → V as follows: δ(j) = s if j = s, and δ(j) = i if j , s and
xi, j = 1 (the function is well-defined as soon as we know that for all j , s exists exactly one

104 11. The Minimum Energy Broadcast Problem

i such that xi, j = 1). Then, for k ∈ N, δk(i) is recursively defined as follows: δ0(j) = j and
δk+1(j) = δ(δk(j)).

The constraints added to the problem to ensure the tree structure of the output are the
following:

n∑
i=1

xi, j = 1 j = 1, . . . , n, j , s (H1.1)

n∑
i=1

xi,s = 0 (H1.2)

n∑
i=1

n∑
j=1

xi, j = n − 1 (H2)

δn(j) = s j = 1, . . . , n (H3)

and the objective function is: f =
∑n

i=1 maxn
j=1(xi, j, p(i, j)).

As a minor implementation note, we observe that we have multiplied input data by 100 so
as to use (finite) integer values for p instead of the real values stored in the problem instances
used.

11.2 Experiments

For the MEB problem we selected the following six instances of size |V | = 20 (hence, |X| =
400) from the set used in [82]: p20.02, p20.03, p20.08, p20.14, p20.24, p20.29.

11.2.1 Solving approaches

As for the ATSP, we solved the MEB using Gecode, EasyLocal++,GELATO and Comet.
Now we give some more detailed information about the various approaches.

CP Differently from the ATSP case, for MEB we encoded the Gecode model from scratch.
The CP strategies chosen, since they were showing the best performance, are the following:
the variable with smallest domain is selected and the values are chosen randomly. Let us
observe that even if some random choices are used, this randomness of Gecode is in fact
deterministic.

LS For MEB we define a change-parent-move: given a directed rooted tree, two nodes A
and B are selected, so that B is not an ancestor of A; then A becomes the parent of B. The
LS algorithm used is a Randomized Hill Climbing (as for the ATSP): at each step a change-
parent-move is randomly chosen and it is selected only if it is an improving move. The
algorithm is stopped after 1000 idle iterations.

11.3. Results 105

LNS The same LNS schema used for ATSP (i.e., the mountain climbing schema) has been
used for the MEB problem. Thus, the first solution is obtained by a pure CP search. The Large
Neighborhood definition we have chosen is parametric to N (neighborhood dimension) and
maxF (stop criterion). In each neighborhood exploration variables and values selection strate-
gies are the same used for the first solution. The GELATO and Comet implementations
share the same model, the same meta-heuristics, and the same parameters values.

11.2.2 Parameters tuning and data analysis
The parameters tuning follows the same approach used for the ATSP, explained in Section
10.2.2. After some preliminary tests, we chose to perform the experiments with the following
parameters: N ∈ {35%, 40%, 45%, 50%} and Mult ∈ {0.5, 0.75, 1}. From the experiment, we
determined that the best parameter combination is N = 50% and Mult = 0.5.

As for the ATSP, we executed just one run of Gecode for each instance (because it is
deterministic), and 20 runs for EasyLocal++andGELATO. The information obtained by
the 20 runs has been then discretized and aggregated, as explained in section 10.2.2.

11.3 Results
Figure 11.1 shows the comparison between the four solver on six instances of the MEB prob-
lems. As in the graphs in Figure 10.1, the horizontal dotted line represents the best known
solution for the instance considered. In the experiments on the MEB instances, EasyLo-
cal++, Gecode and GELATO starts the search process from the same initial solution
provided by Gecode, while Comet starts from a different one. However, the LNS algorithm
implemented in GELATO and Cometshare the same exploration strategy, and the same
parameters (i.e., N = 50% and Mult = 0.5).

As in the results for ATSP problem, the pure CP programming in Gecode does not
lead to good improvements of the objective function. On the other side, the meta-heuristic
approaches (LS and LNS) quickly find good improvements, often very close to the best value
known. The pure Local Search approach is the weakest one: even if it is very fast and on
instances p20.03 and p20.29 reach solutions near to the best know one, in the other four
instances it falls quickly in a local minimum and stops improving the solution. Thus the
solutions obtained are worse than the ones provided byGELATO and Comet.

The behavior of the two LNS implementations is similar: they both show a regular trend,
that constantly decrease the objective function value, until a value very close or equal to the
best known one is reached. Moreover, GELATO has a better performance than Comet:
its line is always below the Comet one and the solution reached by GELATO are usually
slightly better than the one reached by Comet.

106 11. The Minimum Energy Broadcast Problem

0 5 10 15 20 25 30

50
00

00
10

00
00

0
15

00
00

0
20

00
00

0
25

00
00

0

MEB − Instance 20.02

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 10 20 30 40 50 60
50

00
00

10
00

00
0

20
00

00
0

30
00

00
0

MEB − Instance 20.03

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 10 20 30 40 50 60

50
00

00
10

00
00

0
15

00
00

0
20

00
00

0
25

00
00

0

MEB − Instance 20.08

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 10 20 30 40 50

50
00

00
10

00
00

0
15

00
00

0
20

00
00

0
25

00
00

0

MEB − Instance 20.14

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 10 20 30 40 50

50
00

00
10

00
00

0
15

00
00

0
20

00
00

0
25

00
00

0

MEB − Instance 20.24

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 10 20 30 40

50
00

00
10

00
00

0
15

00
00

0
20

00
00

0
25

00
00

0

MEB − Instance 20.29

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

Figure 11.1: Methods comparison on the MEB instances

12
The Course Time Tabling

Problem

In this chapter we present the original formulation of the Course Time Tabling Problem,
that we already introduced in Chapter 1 in its simplified version (SCTT). The Course Time
Tabling (CTT) problem has been introduced as Track 3 of the second International Timeta
bling Competition held in 2007 [49]. It consists of the weekly scheduling of the lectures for
several university courses within a given number of rooms and time periods, where conflicts
between courses are set according to the curricula published by the University. This formu-
lation applies to the School of Engineering of the University of Udine (Italy) and to many
Italian and indeed International Universities, although it is slightly simplified with respect to
the real problem to maintain a certain level of generality. The CTT is defined as follows.

DEFINITION 12.0.1 (CTT) Given a set of courses C = {c1, . . . , cn}, each course ci consists
of a set of lectures Li = {li1 , . . . , lia } ∈ L, is taught by a teacher t : C → T = {t1, . . . , tg},
it is attended by a number of students s : C → N, and belongs to one or more curricula
Q = {q1, . . . , qb}, where qi ⊆ C, i = 1, . . . , b, which are subset of courses that have students
in common. Moreover it is given a set of periods P = {1, . . . , p}, each period belonging to
a single teaching day d : P → {1, . . . , h}, and a set of rooms R = {r1, . . . , rm}, each with a
capacity w : R→ N. Each teacher ti can be unavailable for some periods u : T → 2P.

The problem consists in finding an assignment τ : L → R × P of a room and period to
each lecture of a course (H1) so that lectures of courses in the same curriculum (H3.2) or
taught by the same teacher (H3.1) are scheduled in distinct periods, teacher unavailabilities
are taken into account (H4), and for each (room, period) pair, only one lecture is assigned
(H2).

Moreover, a cost is defined for the following criteria (soft constraints): (S1) each lecture
should be scheduled in a room large enough for containing all its students; (S2) the lectures
of each course should be spread into a given minimum number of days δ : C → {1, . . . , h};
(S3) lectures belonging to a curriculum should be adjacent to each other; (S4) all lectures of
a course would be preferably assigned to the same room.

108 12. The Course Time Tabling Problem

12.1 Modeling the CTT
We model the CTT problem by defining the set X of C · P variables xc,p ∈ {0, . . . , r}, with the
intuitive meaning that xc,p = r > 0 if and only if course c is scheduled at period p in room r,
and xc,p = 0 if course c is not scheduled at period p. The constraints are modeled as follows:

∑
j∈P

(xci, j = 0) = p − |Li| i = 1, . . . , n (H1)

n∑
i=1

(xci, j = 0) ≥ n − m j = 1, . . . , p (H2)

xc, j · xc′, j = 0 c, c′ ∈ C s.t. t(c) = t(c′), j = 1, . . . , p (H3.1)∑
c∈qi

xc, j ≤ 1 i = 1, . . . , b, j = 1, . . . , p (H3.2)

xc, j = 0 j ∈ u(t(c)), c ∈ C (H4)

The objective function f is the sum of the following four components:

s1 =

n∑
i=1

p∑
j=1

max(0, s(ci) − w(xci, j)) (S1)

s2 = 5 ·
n∑

i=1

max(0, δ(ci) − |{d(j) : xci, j > 0}|) (S2)

s3 = 2 ·
b∑

i=1

∣∣∣{k ∈ P : start(k) ∧
∑
c∈qi

xc,k , 0 ∧
∑
c∈qi

xc,k+1 = 0}
∣∣∣ + (S3)

∣∣∣{k ∈ P : end(k) ∧
∑
c∈qi

xc,k , 0 ∧
∑
c∈qi

xc,k−1 = 0}
∣∣∣ +

∣∣∣{k ∈ P : mid(k) ∧
∑
c∈qi

xc,k , 0 ∧
∑
c∈qi

xc,k−1 = 0 ∧
∑
c∈qi

xc,k+1 = 0}
∣∣∣

s4 =

n∑
i=1

(|{r : ∃p(xci,p = r)}| − 1) (S4)

where start, end, and mid are three Boolean functions that state if a period is initial, ending,
or in the middle of a day, respectively.

12.2 Experiments
For the CTT problem we selected from http://tabu.diegm.uniud.it/ctt/ six
instances with different features (instance size, average number of conflicts, average teacher
availability, average room occupation, . . .): comp01, comp04, comp07, comp09, comp11,
comp14.

12.3. Results 109

12.2.1 Solving approaches
We solved the CTT with Gecode, EasyLocal++,GELATO and Comet.

CP As for the MEB problem, we encoded the Gecode model of CTT from scratch. After
having tried several different search strategies, we obtained the best performances with the
following combination: the most constrained variable is selected, breaking ties randomly,
and values are chosen randomly. As previously said, the randomness of Gecode is in fact
deterministic.

LS For CTT we use a time-and-room exchange move. Given a timetable, we randomly
select a lesson scheduled at period p in room r and move it to another period p1 into another
room r1, chosen from the empty ones. Also for the CTT we used the Randomized Hill
climbing algorithm, with the limit of 1000 idle iterations.

LNS The LNS algorithm used is the same used for ATSP and MEB, i.e. the mountain
climbing schema: first solution is obtained by a CP search using Gecode; Large Neighbor-
hood definition parametric to N (neighborhood dimension) and maxF (stop criterion); each
neighborhood exploration performed with the same variables and values selection strategies
used for the first solution.

12.2.2 Parameters tuning and data analysis
The parameters tuning approach is the same already explained for ATSP and MEB. We fo-
cused the experiments on the following promising parameters: N ∈ {2%, 3%, 4%, 5%, 10%, 15%}
and Mult ∈ {0.1, 0.5, 1}. We obtained the best results from the following parameter combina-
tion: N = 5% and Mult = 0.5.

As for the ATSP and MEB, we executed just one run of Gecode for each instance, and 20
runs for EasyLocal++ and GELATO. The information obtained by the 20 runs has been
then discretized and aggregated, as explained in section 10.2.2. TheGELATO and Comet
implementations share the same model, the same meta-heuristics, and the same parameters
values.

12.3 Results
Figure 12.1 shows the results obtained from the experiment on six instances of the CTT prob-
lem. As for the previous experiments, the horizontal dotted line represents the best known
solution. Gecode and GELATOstarts the search process from the same initial solution,
provided by Gecode. For EasyLocal++ we exploited the hill climbing implementation de-
veloped by the Udine team for the competition in [49]: this algorithm starts from an initial
solution heuristically obtained. We report the LNS searches performed with the best param-
eters combination (i.e., N = 5% and Mult = 0.5).

The observations made in for the previous experiments are confirmed also by these one.
Moreover, the behavior of the solvers is now clearer, since the CTT is an harder problem

110 12. The Course Time Tabling Problem

(with an higher number of variables and constraints). The Gecode approach is confirmed
to be the worse one in order to find improving solutions. Then comes the EasyLocal++
algorithm: it is very fast, but quickly falls into local minima and stops the search without
deep improving. GELATO and Comet show comparable behaviors leading to objective
function values close to the best known one. However, GELATO outperforms Comet,
being faster and reaching better solutions.

12.3. Results 111

0 10 20 30 40 50

0
50

0
10

00
15

00
20

00

CTT − Instance 01

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 200 400 600 800
0

50
0

10
00

15
00

20
00

25
00

30
00

CTT − Instance 04

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 200 400 600 800 1000 1200

0
10

00
20

00
30

00
40

00

CTT − Instance 07

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 50 100 150 200

0
50

0
10

00
15

00
20

00

CTT − Instance 09

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 20 40 60 80

0
50

0
10

00
15

00
20

00

CTT − Instance 11

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

0 200 400 600 800

0
50

0
10

00
15

00
20

00
25

00
30

00

CTT − Instance 14

Time (s)

F
O

bj

GECODE
EL
COMET
GELATO

Figure 12.1: Methods comparison on the CTT instances

112 12. The Course Time Tabling Problem

Conclusions

In this thesis we investigated several approaches for the solution of NP-hard problems ranging
from traditional to innovative techniques. The main contribution of this thesis is the develop-
ment of a multi-paradigm, hybrid tool for modeling and solving combinatorial problems.

Encouraged by the positive results of a combination of the SICStus Prolog constraint
solver and Easylocal++ on a real-world application [13], we systematized our approach and
developed theGELATO solver [14, 15]. GELATO is based on the state-of the art solvers
Gecode and EasyLocal++ and inherits all their characteristics: it is free (downloadable
from [15]), open-source, written in C++, and easy to interface to/from other systems. It
provides all the functionalities of these tools, together with several new hybrid possibilities,
that allow programmers to solve Constraint Satisfaction/Optimization problem in a very easy
and effective way.

By using GELATO, those more accustomed to Gecode will have a library that adds
local search features and allows them to easily define LS/LNS algorithms. For those who
use EasyLocal++,GELATO is an extension that allows programmers to delegate to a CP
engine tasks related to LS search. It is worth noting that in order to use GELATO, there
is no need to learn a new language, since it is developed entirely in C++ and furthermore all
the models written in Gecode or FlatZinc can be directly used in conjunction with this tool.
Thus, with a single Gecode or FlatZinc model, one can exploit pure Constraint Program-
ming, traditional Local Search and hybrid LNS algorithms with different strategies. We tested
GELATO on a set of benchmark problems, and showed its effectiveness also compared to
Comet, a state-of-the-art proprietary environment for (hybrid) optimization.

In order to simplify the use ofGELATO for non C++ users, we made theGELATO
functionalities accessible by declarative languages, such as MiniZinc, SICStus Prolog, Haskell.
We developed a meta-heuristic modeling language that allows users to specify the hybrid al-
gorithm to use together with its strategy and parameters. We also developed a compiler that
can translate a SICStus Prolog model into a FlatZinc model (a preliminary version of the
compiler was presented in [16]). Exploiting this and other compilers from high-level lan-
guages to the target language FlatZinc (such as the compilers presented in [57, 84]), one
can model a problem in his/her favorite language and use the GELATO functionalities
on the respective low-level encoding. Thus, GELATO is a multi-language tool for com-
binatorial optimization, which is able to deal with CSP/COP models expressed in different
modeling languages and to use a combination of local search and constraint programming
techniques for solving them. Being built upon Gecode, GELATO allows the user to ex-
ploit the emerging literature of problems already encoded in Gecode and use GELATO
for speeding-up the search. GELATO is also built upon EasyLocal++, so the user can in-
herit various local search techniques from EasyLocal++, without the need of reformulating
the model.

This approach also presents some limits since up to now,GELATO does not yet provide
support for global constraints of the high level languages or facilities to easily model complex

114 Conclusions

multi-neighborhood Local Search approaches. Let us briefly analyze these two aspects.
Modern Prolog systems such as SICStus Prolog provide libraries for constraint program-

ming endowed with several high-level facilities to model CSPs and COPs. For example,
predicates for global constraints are usually handled with ad-hoc constraint propagators, de-
fined in those libraries. It is not easy to translate these global constraints to the corresponding
FlatZinc statements, since they are not supported by the FlatZinc language (see [56] for the
complete list of constraints). Thus, when the original model contains global constraints, the
use of GELATO is not as straightforward. There are several possible ways to overcome
this problem: 1) remodel the problem, replacing the global constraints with simpler ones
having the same meaning, and then using the normal compiler; 2) enrich the compiler, in
order to recognize the global constraints and translate them into an equivalent set of simple
FlatZinc statements; 3) translating the global constraints into special annotations, that will be
read and correctly handled by the Gecode solver with an ad-hoc implementation (to develop
in Gecode if not already present). Using approaches 1) and 2) will reduce the propagation
power since a global consistency property will be replaced by a conjunction of local con-
sistency properties. Thus, considering also that Gecode already implements several global
constraints, the third approach seems the most promising.

The meta-modeling language provided by GELATO is able to define the degree of
interaction between LS ans CP, thus leading to a very straightforward definition of LNS algo-
rithms (allowing to set several combinations of strategies and parameter values). The Easy-
Local++ tool also provides the possibility to define combinations of different neighborhood
and/or different local search paradigms (i.e., Multi-Neighborhood Search [24]). This Multi-
Neighborhood approach can be exploited inGELATO, but it requires an adept knowledge
of the EasyLocal++ tool, in order to properly define the combination of the Local Search
strategies. It would be desirable to extend the current meta-modeling language in order to
support also the definition of such complex Local Search approaches. In this way, Multi-
Neighborhood Search can easily be used by a wider community of users, including those
preferring an high level declarative approach.

In the immediate we plan to do more work to enrich the compiler and the meta-modelling
language. The compiler will be improved by adding the possibility to recognize and translate
at least the most common global constraints. The meta-modeling language will likely be
extended with structures supporting the definition of Multi-Neighborhood approaches. We
also plan to develop a more clever technique for determining good candidates for the values
of the tool parameters so as to allow the user to exploitGELATO as a black-box. Once all
this high level features are realized, we can develop a Graphic User Interface, that allows any
programmer to choose algorithms and parameters to solve a model, and access the black-box
GELATO without modifying the underlying code. However, GELATO is completely
written in C++, so the skilled programmer can use it as a free fully configurable search engine.

We want to apply GELATO on other challenging problems in order to gain feedback
from its use and continue further improvement of the tool. In particular, we will apply
GELATO on the Protein Folding problem that we dealt with in [12], where we integrated
Gecode and EasyLocal++ in a direct fashion. We want to compare the performances of
GELATO on the Protein Folding problem with the results recently presented in [71], where
the constraint solver [18] is combined with a Simulated Annealing algorithm. Finally we in-
tend to develop a user-oriented tutorial, downloadable from [15], that will show step by step

Conclusions 115

instructions on the use ofGELATO at the various levels.

116 Conclusions

Bibliography

[1] Emile Aarts and Jan K. Lenstra. Local Search in Combinatorial Optimization. John
Wiley & Sons, Chichester (UK), 1997.

[2] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University Press,
Cambridge (UK), 2003.

[3] Various Authors. Cp-ai-or conference series. http://www.cpaior.org/.

[4] Roberto Battiti, Giampietro Tecchioli, and Istituto Nazionale Fisica Nucleare. The re-
active tabu search. ORSA Journal on computing, 6(2):126–140, 1994.

[5] Russell Bent and Pascal Van Hentenryck. A two-stage hybrid local search for the vehicle
routing problem with time windows. Transportation Science, 38:515–530, November
2004.

[6] George D. Birkhoff. Proof of the Ergodic Theorem. Proceedings of the National
Academy of Sciences of the United States of America, 17(12):656–660, 1931.

[7] George D. Birkhoff. What is the ergodic theorem? The American Mathematical
Monthly, 49(4):222–226, April 1942.

[8] Ivo Blöchliger and Nicolas Zufferey. A graph coloring heuristic using partial solutions
and a reactive tabu scheme. Computers & Operations Research, 35(3):960–975, 2008.

[9] Christian Blum, Maria J. Blesa Aguilera, Andrea Roli, and Michael Sampels. Hybrid
Metaheuristics: An Emerging Approach to Optimization. Springer Publishing Com-
pany, 2008.

[10] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput. Surv., 35:268–308, September
2003.

[11] Wen-Chyuan Chiang and Robert A. Russell. A reactive tabu search metaheuristic for
the vehicle routing problem with time windows. INFORMS Journal on Computing,
9(4):417–430, 1997.

[12] Raffaele Cipriano, Alessandro Dal Palù, and Agostino Dovier. Hybrid approach mix-
ing local search and constraint programming applied to the protein structure prediction
problem. In WCB 2008 (Workshop on Constraint Based Methods for Bioinformatics).

[13] Raffaele Cipriano, Luca Di Gaspero, and Agostino Dovier. Hybrid approaches for ros-
tering: a case study in the integration of constraint programming and local search. In
Maria J. Blesa Aguilera, Christian. Blum, Andrea Roli, and Michaels Sampels, editors,
HM 2006, volume 4030 of LNCS, pages 110–123. Springer, 2006.

118 Bibliography

[14] Raffaele Cipriano, Luca Di Gaspero, and Agostino Dovier. A Hybrid Solver for Large
Neighborhood Search: Mixing Gecode and EASYLOCAL++. In Maria J. Blesa Aguil-
era et al., editor, Hybrid Metaheuristics, volume 5818 of Lecture Notes in Computer
Science, pages 141–155. Springer, 2009.

[15] Raffaele Cipriano, Agostino Dovier, and Luca Di Gaspero. Gelato: Gecode + easylocal
= a tool for optimization. http://www.dimi.uniud.it/dovier/GELATO.

[16] Raffaele Cipriano, Agostino Dovier, and Jacopo Mauro. Compiling and executing
declarative modeling languages to gecode. In ICLP ’08: Proceedings of the 24th Inter-
national Conference on Logic Programming, pages 744–748, Berlin, Heidelberg, 2008.
Springer-Verlag.

[17] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, STOC ’71, pages 151–158,
New York, NY, USA, 1971. ACM.

[18] Alessandro Dal Palù, Agostino Dovier, and Enrico Pontelli. A constraint solver for
discrete lattices, its parallelization, and application to protein structure prediction. Softw.
Pract. Exper., 37:1405–1449, November 2007.

[19] Emilie Danna and Laurent Perron. Structured vs. unstructured large neighborhood
search. In Principles and Practice of Constraint Programming, volume 2833/2003 of
LNCS, pages 817–821. Springer, CP 2003.

[20] G. B. Dantzig and P. Wolfe. Decomposition Principle for Linear Programs. Operations
Research, 8(1):101–111, 1960.

[21] George B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In Activity Analysis of Production and Allocation, Cowles Commission
Monograph No. 13, pages 339–347. John Wiley & Sons Inc., New York, N. Y., 1951.

[22] George B. Dantzig and Mukund N. Thapa. Linear programming 1: introduction.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[23] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. Column Generation.
GERAD 25th anniversary. Springer, 2005.

[24] Luca Di Gaspero. Local Search Techniques for Scheduling Problems: Algorithms and
Software Tools. PhD thesis, Dipartimento di Matematica e Informatica – Università
degli Studi di Udine, Udine, Italy, 2003.

[25] Luca Di Gaspero, Johannes Gärtner, Nysret Musliu, Andrea Schaerf, Werner
Schafhauser, and Wolfgang Slany. A hybrid ls-cp solver for the shifts and breaks design
problem. In Maria Blesa, Christian Blum, Günther Raidl, Andrea Roli, and Michael
Sampels, editors, Hybrid Metaheuristics, volume 6373 of Lecture Notes in Computer
Science, pages 46–61. Springer Berlin / Heidelberg, 2010.

Bibliography 119

[26] Luca Di Gaspero and Andrea Schaerf. Writing local search algorithms using EASYLO-
CAL++. In Stefan Voß and David L. Woodruff, editors, Optimization Software Class
Libraries, OR/CS. Kluwer Academic Publisher, Boston (MA), USA, 2002.

[27] Luca Di Gaspero and Andrea Schaerf. EASYLOCAL++: An object-oriented frame-
work for flexible design of local search algorithms. Software — Practice & Experience,
33(8):733–765, July 2003.

[28] Luca Di Gaspero, Andrea Schaerf, and Andrea Roli. Easylocal++ version 2.0.
http://tabu.diegm.uniud.it/EasyLocal++/, 2009.

[29] Roger Eckhardt. Stan ulam, john von neumann, and the monte carlo method. Los
Alamos Science, Special Issue dedicated to Stanislaw Ulam:131–143, 1987.

[30] George S. Fishman. Monte Carlo: Concepts, algorithms, and applications. Springer
Series in Operations Research. Springer-Verlag, New York, 1996.

[31] Filippo Focacci, François Laburthe, and Andrea Lodi. Local search and constraint pro-
gramming. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics,
chapter Local Search and Constraint Programming, pages 369–403. Kluwer Academic
Publishers, 2003.

[32] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

[33] Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuristic for the
vehicle routing problem. Manage. Sci., 40:1276–1290, October 1994.

[34] Paul C. Gilmore and Ralph E. Gomory. A Linear Programming Approach to the
Cutting-Stock Problem. Operations Research, 9(6):849–859, 1961.

[35] Fred Glover. Tabu Search–Part I. INFORMS JOURNAL ON COMPUTING, 1(3):190–
206, 1989.

[36] Fred Glover. Tabu Search–Part II. INFORMS JOURNAL ON COMPUTING, 2(1):4–32,
1990.

[37] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

[38] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algorithm for
the linear ordering problem. Operations Research, 32:1195–1220, 1984.

[39] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms for the
satisfiability (sat) problem: A survey. In DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 19–152. American Mathematical Society, 1996.

[40] Brahim Hnich, Ian Miguel, Ian P. Gent, and Toby Walsh. Csplib: a problem library for
constraints. http://www.csplib.org/, September 2010.

120 Bibliography

[41] John H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge,
MA, USA, 1992.

[42] Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Appli-
cation. Morgan Kaufmann, 1 edition, September 2004.

[43] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.

[44] Narendra Jussien and Olivier Lhomme. Local search with constraint propagation and
conflict-based heuristic. Artificial Intelligence, 139(1):21–45, 2002.

[45] Scott Kirkpatrick, D. Gelatt, and Mario P. Vecchi. Optimization by Simulated Anneal-
ing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[46] Tony Lambert, Eric Monfroy, and Frédéric Saubion. Solving strategies using a hy-
bridization model for local search and constraint propagation. In SAC ’05: Proceedings
of the 2005 ACM symposium on Applied computing, pages 398–403, New York, NY,
USA, 2005. ACM.

[47] Alisa H. Land and Alison G. Doig. An automatic method of solving discrete program-
ming problems. Econometrica, 28(3):497–520, 1960.

[48] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2nd edition, 1993.

[49] Barry McCollum, Andrea Schaerf, Ben Paechter, Paul McMullan, Rhyd Lewis, An-
drew J. Parkes, Luca Di Gaspero, Rong Qu, and Edmund K. Burke. Setting the research
agenda in automated timetabling: The second international timetabling competition.
INFORMS Journal on Computing, 22(1):120–130, 2010.

[50] Nicholas Metropolis. The beginning of monte carlo method. Los Alamos Science,
Special Issue dedicated to Stanislaw Ulam:125–130, 1987.

[51] Nicholas Metropolis and Stanislaw Ulam. The Monte Carlo Method. Journal of the
American Statistical Association, 44(247):335–341, 1949.

[52] Laurent Michel and Pascal Hentenryck. The comet programming language and system.
In Peter van Beek, editor, Principles and Practice of Constraint Programming - CP
2005, volume 3709 of Lecture Notes in Computer Science, pages 881–881. Springer
Berlin / Heidelberg, 2005. 10.1007/11564751/119.

[53] Laurent Michel, Andrew See, and Pascal Van Hentenryck. Transparent parallelization
of constraint programming. INFORMS J. on Computing, 21:363–382, July 2009.

[54] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimizing
conflicts: a heuristic repair method for constraint satisfaction and scheduling problems.
Artif. Intell., 58:161–205, December 1992.

Bibliography 121

[55] Eric Monfroy, Frédéric Saubion, and Tony Lambert. On hybridization of local search
and constraint propagation. In ICLP, pages 299–313, 2004.

[56] Nicholas Nethercote. Specification of flatzinc.
http://www.g12.cs.mu.oz.au/minizinc/flatzinc-spec.pdf.

[57] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tack. Minizinc: Towards a standard cp modelling language. In Christian
Bessiere, editor, CP 2007, volume 4741 of LNCS, pages 529–543, 2007.

[58] Swedish Institute of Computer Science. Sicstus prolog. www.sics.se/sicstus.html.

[59] Manfred Padberg and Giovanni Rinaldi. Optimization of a 532-city symmetric traveling
salesman problem by branch and cut. Operations Research Letters, 6(1):1 – 7, 1987.

[60] Steven Prestwich. The relation between complete and incomplete search. In Christian
Blum, Maria Aguilera, Andrea Roli, and Michael Sampels, editors, Hybrid Metaheuris-
tics, volume 114 of Studies in Computational Intelligence, pages 63–83. Springer Berlin
/ Heidelberg, 2008.

[61] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Program-
ming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY,
USA, 2006.

[62] Andrea Schaerf, Marco Cadoli, and Maurizio Lenzerini. Local++: A c++ framework
for local search algorithms. Software: Practice and Experience, 30(3):233–257, 2000.
John Wiley & Sons, Ltd.

[63] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the tenth national conference on Artificial
intelligence, AAAI’92, pages 440–446. AAAI Press, 1992.

[64] Paul Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Michael J. Maher and Jean-Francois Puget, editors, Principles and
Practice of Constraint Programming - CP98, 4th International Conference, Pisa, Italy,
October 26-30, 1998, Proceedings, volume 1520 of Lecture Notes in Computer Science,
pages 417–431. Springer, 1998.

[65] Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res., 35:254–265, April 1987.

[66] Richard M. Stallman, Peter T. Brown, and Sullivan John. Free software foundation.
http://www.fsf.org, December 2010.

[67] Gecode Team. Gecode: Generic constraint development environment. http://www.
gecode.org.

[68] Gecode Team. Gecode reference documentation. http://www.gecode.org/
doc-latest/reference/index.html.

122 Bibliography

[69] Gecode Team. Modeling and programming with gecode. http://www.gecode.
org/doc-latest/MPG.pdf.

[70] Edward Tsang and Chris Voudouris. Fast local search and guided local search and
their application to british telecom’s workforce scheduling problem. Technical report,
Operations Research Letters, 1995.

[71] Abu Zafer M. Dayem Ullah and Kathleen Steinhöfel. A hybrid approach to protein
folding problem integrating constraint programming with local search. BMC Bioinfor-
matics, 11(S-1):39, 2010.

[72] Universität Heidelberg, Institut für Informatik. TSPLIB. http://www.iwr.
uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

[73] Pascal Van Hentenryck, Russell Bent, and Yannis Vergados. Online stochastic reserva-
tion systems. In In CPAIOR’06. Springer, 2006.

[74] Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search. The MIT
Press, 2005.

[75] Pascal Van Hentenryck and Laurent Michel. Comet. http://www.comet-online.org,
January 2008.

[76] Vlado Černý. Thermodynamical approach to the traveling salesman problem: An effi-
cient simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41–
51, January 1985.

[77] M. Wallace, S. Novello, and J. Schimpf. Eclipse: A platform for constraint logic pro-
gramming. Technical report, Imperial College.

[78] Mark Wallace. G12 - towards the separation of problem modelling and problem solving.
In Proceedings of the 6th International Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR
’09, pages 8–10, Berlin, Heidelberg, 2009. Springer-Verlag.

[79] Peter Walters. An Introduction to Ergodic Theory, volume 79 of GTM. Springer-Verlag,
New York, NY, 2000.

[80] Jan Wielemaker. An overview of the SWI-Prolog programming environment. In Fred
Mesnard and Alexander Serebenik, editors, Proceedings of the 13th International Work-
shop on Logic Programming Environments, pages 1–16, Heverlee, Belgium, december
2003. Katholieke Universiteit Leuven. CW 371.

[81] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. Swi-prolog.
CoRR, abs/1011.5332, 2010.

[82] Steffen Wolf and Peter Merz. Evolutionary Local Search for the Minimum Energy
Broadcast Problem. In Jano van Hemert and Carlos Cotta, editors, EvoCOP 2008 –
Eighth European Conference on Evolutionary Computation in Combinatorial Optimiza-
tion, volume 4972 of LNCS, pages 61–72, Naples, Italy, mar 2008. Springer.

Bibliography 123

[83] David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[84] Pieter Wuille and Tom Schrijvers. Monadic constraint programming with gecode. In
Proc. of ModRef 2009, Eighth International Workshop on Constraint Modelling and
Reformulation, Lisbon, Portugal, September 2009.

[85] Neng-Fa Zhou. B-prolog: An overview. ALP Newsletter, June 2007.
www.bprolog.com.

