
On Reconstruction of RC4 Keys from Internal States

Shahram Khazaei1 and Willi Meier2

1 EPFL, Lausanne, Switzerland
2 FHNW, Windisch, Switzerland

Abstract. In this work key recovery algorithms from the known internal states of
RC4 are investigated. In particular, we propose a bit-by-bit approach to recover
the key by starting from LSB’s of the key bytes and ending with their MSB’s.

Keywords: Binary Hypothesis Testing, Stream Ciphers, Key Recovery, RC4.

1 Introduction

Synchronous stream ciphers are symmetric cryptosystems which are suitable in soft-
ware applications with high throughput requirements, or in hardware applications with
restricted resources (such as limited storage, gate count, or power consumption). RC4 is
probably the most popular stream cipher in use. In this work we are going to investigate
the key recovery algorithms from the known internal states of RC4. Roos in 1995 [6]
noticed that some of the elements of the initial permutations have a bias towards a linear
combination of the secret key bytes. A theoretical proof of these biases was given by
Paul and Maitra [5] which was later generalized by Biham and Carmeli [2]. In [5,2] the
authors also provide algorithms for key reconstruction from the internal state using the
derived biases. However the algorithms from [5] have high complexities, low success
probabilities and the one from [2] has low complexity, and still low success probabil-
ity. In addition, the authors of [2] did not analyze the complexity of their algorithm for
having a higher success probability. In fact, the newly found generalized biases have
not been exploited to the degree they deserve in the key recovery algorithm of [2]. The
main idea of our work is to fully exploit the whole distribution of noises expressing
these biases. In a hypotheses testing model, we then study how far one can go by using
only the distribution of noises. Having carefully analyzed the noise distributions, we
then propose a bit-by-bit approach to recover the key bits by starting from LSB’s of the
key bytes and ending with their MSB’s. The nice feature of our algorithm is that we
are able to estimate its complexity versus success probability, showing possibility of
recovering the key with high success probability but reasonable time complexity.

2 Description of RC4 and Notations

RC4 is composed of a Key Scheduling Algorithm (KSA) and a Pseudo Random Gener-
ation Algorithm. It works with the set of integers ZN = {0, ..., N − 1} and its internal
state is a permutation S = (S[0], . . . S[N − 1]) over ZN (N = 256 in practice). RC4
uses keys k = (k[0], . . . , k[l−1]) of length l (typically 5 ≤ l ≤ 16) over ZN . The KSA
computes the internal state from the key k to be used by the PRGA in order to produce
a keystream sequence of integers over ZN , see Alg. 1 and 2.

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 179–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

180 S. Khazaei and W. Meier

Notations: K = (K[0], . . . , K[N − 1]) denotes an array of size N over ZN such that
K[i] = k[i mod l] for 0 ≤ i ≤ N − 1. The value of the array S right after the KSA
is denoted by SN and the array C = (C[−1], . . . , C[N − 1]) over ZN is defined as
C[−1] = 0 and C[i] = SN [i] − i(i+1)

2 for 0 ≤ i ≤ N − 1. For an array A we use the

notation A[i, j] =
∑j

t=i A[t].

Algorithm 1. RC4 KSA
1: for i = 0, 1, . . . , N − 1 do
2: S[i] = i.
3: end for
4: j = 0.
5: for i = 0, 1, . . . , N − 1 do
6: j = j + S[i] + K[i].
7: end for

Algorithm 2. RC4 PRGA
1: i = 0.
2: j = 0.
3: repeat
4: i = i + 1.
5: j = j + S[i].
6: Swap S[i] and S[j].
7: Output z = S[S[i] + S[j]].
8: until enought outputs have been produced.

The goal of the attacker is to determine the secret key out of a known segment
of keystream. This can be done in two steps: first to determine a state out from the
keystream segment, and in a second step to determine the key out of the internal state.
Note that the initial state SN can be easily computed given any intermediate internal
state at any time during the PRGA. In this paper we only deal with the second step, i.e.
recovering the secret key k from a given initial state SN (or equivalently from array C).
The interested reader is referred to [4] for the best known attack on the first step, i.e.
recovering the internal state from the known keystream segment. Another type of at-
tack on RC4 is key recovery attack when the secret key contains a known initialization
vector part and the attacker has access to the keystreams of many (chosen) initialization
vectors for the same unknown key part, see [8] for a recent attack.

3 Previous Results

Roos in 1995 [6] noticed that some of the elements of the initial permutations have a
bias towards a linear combination of the secret key bytes. A theoretical proof of these
biases was given by Paul and Maitra [5], later generalized by Biham and Carmeli [2].
Thanks to our choice C[−1] = 0, these results can be given in a unified theorem as
follows.

On Reconstruction of RC4 Keys from Internal States 181

Theorem 1. Assuming that during the KSA the pseudo-random index j takes its values
uniformly at random from ZN , for every −1 ≤ i1 < i2 ≤ N − 1 then the probability
that the following equation holds

C[i2] − C[i1] = K[i1 + 1, i2] (1)

is at least pi1,i2 where

p−1,i2 = (1 − i2
N

) · (1 − 1
N

)
i2(i2+1)

2 +N +
1
N

(2)

for 0 ≤ i2 ≤ N − 1 [5] and

pi1,i2 = (1− i2
N

)2 ·(1− i2 − i1 + 2
N

)i1 ·(1− 2
N

)N−i2−1
i2−i1−1∏

r=0

(1− r + 2
N

)+
1
N

(3)

for 0 ≤ i1 < i2 ≤ N − 1 [2].

In [5] the probabilities in Eq. (2) are used to retrieve the secret key of RC4. The
algorithm uses equations of (1) for i1 = −1 (which in this case is simplified as C[i2] =
K[0, i2]) in the following way. For each combination of m independent equations out
of the first n equations (i.e. 1 ≤ i2 ≤ n), the algorithm exhaustively guesses the value
of l − m key bytes, and solves the m equations to recover the remaining key bytes. The
success of the the algorithm depends on the existence of m correct and linearly indepen-
dent equations among the first n equations. The success probabilities and the running
time of the the algorithm for different key sizes and some choices for the parameters m
and n are presented in Table 1 (taken from [2], see also footnote 1 therein).

In [2] the probabilities in Eq. (3) along with Eq. (1) are used in a more sophisticated
way which lead to a better key recovery algorithm. The results can be seen in Table 2.
Very recently, Akgün, Kavak and Demirci [1] have developed new biases for RC4,
combined them with previous results and provided a new key recovery algorithm from
the internal state. It performs better than existing ones including ours. In particular, in
a theorem similar to Theorem 1, they provide a lower bound for the probability that
C′[i2]−C′[i1] = K[i1 +1, i2] for 0 ≤ i1 < i2 ≤ N −1 where C′[i] = S−1

N [i]− i(i+1)
2

for 0 ≤ i ≤ N − 1. In this paper we have only used the biases suggested by Theorem 1
since our work had been finalized before having been aware of [1]. Yet [1] does not

Table 1. Success probability and running time of the algorithm from [5] according to [2]

l n m Psucc Time
5 16 5 0.250 218

5 24 5 0.385 221

8 16 6 0.273 234

8 20 7 0.158 229

8 40 8 0.092 233

10 16 7 0.166 243

10 24 8 0.162 240

l n m Psucc Time
10 48 9 0.107 243

12 24 8 0.241 258

12 24 9 0.116 250

16 24 9 0.185 260

16 32 10 0.160 263

16 32 11 0.086 264

16 40 12 0.050 264

182 S. Khazaei and W. Meier

Table 2. Success probability and running time (in seconds) of the algorithm from [2] compared
to [5]

l Psucc Time [2] Time [5]
5 0.8640 0.02 366
8 0.4058 0.60 2900
10 0.0786 1.46 183
10 0.1290 3.93 2932
12 0.0124 3.04 100
12 0.0212 7.43 1000
16 0.0005 278 500

fully exploit the distribution of the noises, leaving a room to unify the biases from [1]
with those from Theorem 1 in a future work.

4 A Hypotheses-Testing Approach to the Problem

Each of the equations (1) gives us a noisy value of K[i1 + 1, i2] which is a linear
combination of the key values k[i]. Let assume that ei1,i2 ∈ ZN , −1 ≤ i1 < i2 ≤ N−1,
denotes the noise of each equation, i.e.

K[i1 + 1, i2] = C[i2] − C[i1] + ei1,i2 . (4)

The random variables corresponding to these noises, denoted by Ei1,i2 , are not indepen-
dent (see proofs of Theorem 1 in [5,2]). Moreover Theorem 1 does not completely char-
acterize their probability distribution, since it only suggests pi1,i2 = Pr{Ei1,i2 = 0}
(we ignore the inequality). However, it is reasonable to assume that Ei1,i2 takes other

values with equal probabilities, i.e. Pr{Ei1,i2 = e} = 1−pi1,i2
N−1 for e ∈ Z

�
N .

With this new view on the problem we try to recover the key in a correlation based
attack by taking a hypotheses-testing approach. This can be seen as a generalization of
the original correlation attack on binary LFSR’s by Siegenthaler [7]. First, we assume
an attacker with an unlimited amount of computational power, capable of making an
exhaustive search over all N l possible keys. Like [7], we make the assumption that
for a wrong guess k̄ (or equivalently the corresponding K̄) of the key, the values of
C[i2] − C[i1] and K̄[i1 + 1, i2] are uncorrelated. Under this assumption, we are facing
the following binary hypothesis testing problem. Given N(N+1)/2 samples of ei1,i2 =
K̄[i1 + 1, i2] − (C[i2] − C[i1]), −1 ≤ i1 < i2 ≤ N − 1, as a realization of the
random variables Ei1,i2 , decide if the guess k̄ is correct. Our ability in distinguishing
between a correct key (k̄ = k) from a wrong key (k̄ �= k) depends on the following two
distributions:

H0 : k̄ = k, Pr{Ei1,i2 = e|H0} =
{

pi1,i2 e = 0
1−pi1,i2

N−1 e ∈ Z
�
N

(5)

H1 : k̄ �= k, Pr{Ei1,i2 = e|H1} =
1
N

, ∀e ∈ ZN . (6)

The quality of a decision rule (distinguisher) is related to two kinds of error probabili-
ties: false alarm probability pfa = Pr{H0|H1} and non-detection probability

On Reconstruction of RC4 Keys from Internal States 183

pnd = Pr{H1|H0}. Ideally, we would like to minimize both error probabilities but
normally there is a trade-off. The optimum decision rule is given by Neyman-Pearson
lemma [3]. It can be shown that for the hypothesis testing problem given by Eq. (5) and
(6), the optimum decision rule chooses H0 if M(SN , k̄) > T and selects H1 otherwise,
where

M(SN , k̄) =
∑

−1≤i1<i2≤N−1

log
(N − 1)pi1,i2

1 − pi1,i2

· δ(ei1,i2) (7)

and δ : ZN → {0, 1} being the Dirac delta function (i.e. δ(e) = 1 iff e = 0). Remember
that ei1,i2 = K̄[i1 + 1, i2] − (C[i2] − C[i1]) only depends on SN and k̄. The parameter
T determines the false alarm and non-detection probabilities. More precisely we have,

pfa = Pr{M(SN , k̄) > T |k̄ �= k} (8)

and
pnd = Pr{M(SN , k̄) ≤ T |k̄ = k} . (9)

4.1 Complexity Analysis

Since there are N(N + 1)/2 terms in the sum (7), the complexity of exhaustive search
algorithm is 1

2N(N + 1)N l. As it was noticed in [2] the sum of all the key elements,
i.e. s = k[0, l − 1] is quite useful for reducing the complexity. In this section we will
show how we can reduce complexity to 1

2 l(l + 1)N l, using Nl(l + 1)/2 memory. The
idea is based on the following relations

K[i1 + 1, i2] = (q2 − q1) · s +

⎧
⎪⎪⎨

⎪⎪⎩

∑r2
t=r1

k[t] if r1 ≤ r2 & (r1, r2) �= (0, l − 1)
0 if r1 = r2 + 1

−
∑r1−1

t=r2+1 k[t] if r2 + 1 ≤ r1 − 1
s if (r1, r2) = (0, l − 1)

(10)
for −1 ≤ i1 < i2 ≤ N − 1 where r1 = (i1 + 1 mod l), q1 = � i1+1

l �, r2 =
(i2 mod l) and q2 = � i2

l �. Eq. (10) suggests that K[i1 + 1, i2] can be written as
u(s, i1, i2)+αk[r1, r2] where α ∈ {−1, 0, 1} and u being a function of s = k[0, l−1],
i1 and i2. It then follows that Eq. (7) can be written as follows:

M(SN , k̄) = v0,l−1(s̄, S) +
∑

0 ≤ r1 ≤ r2 ≤ l − 1
(r1, r2) �= (0, l − 1)

vr1,r2(k̄[r1, r2], s̄, S), (11)

with vi1,i2 , 0 ≤ r1 ≤ r2 ≤ l − 1 being some known functions and s̄ = k̄[0, l − 1].
Once s̄ is known, one can precompute and store v0,l−1 and all other vi1,i2 ’s for all
N possible values of k̄[i1 + 1, i2]. This simply suggests an implementation needing a
feasible amount of N (l(l + 1)/2 − 1) + 1 memory and N ll(l + 1)/2 table look-ups
(we ignore the additive time N2(N + 1)/2 for evaluating vi1,i2 ’s). Note that l(l + 1)/2
table look-ups are much faster than direct evaluation of Eq. (7) since l 	 N .

184 S. Khazaei and W. Meier

4.2 Simulation Results

Our simulation results show that the distributions of M(SN , k̄), given by Eq. (7) or
(11), under H0 and H1 are separated enough to provide a key recovery attack with high
success probability. Note that this is a key recovery attack which ONLY takes advantage
of the probabilities under our assumptions which are not totally correct (independence
of noises and uniform distribution for noise under H1). Moreover, our simulations show
that if we consider the hypotheses H ′

1 : k̄ �= k & s̄ = s, the distributions of M(SN , k̄)
under H0 and H ′

1 get a bit closer but still separated enough, see Fig. 1.

0.01

0.02

0.03

0.04

200 400 600 800

0.01

0.02

0.03

0.04

200 400 600 800

0.01

0.02

0.03

0.04

200 400 600 800

0.01

0.02

0.03

0.04

200 400 600 800

Fig. 1. Empirical distribution of M(SN , k̄) under H0, H1 and H ′
1 (red, blue and green resp.) for

l = 5, 8, 12 and 16 (up right, up left, down left and down right resp.)

We introduced H ′
1 to slightly compensate the ideal assumption that the noise under

H1 is uniformly distributed. This also helps to estimate a more exact bound for the suc-
cess probability of a distinguisher which suggests a small set of candidates for the key
(i.e. the distinguisher having pfa ≈ N−l). In practice it is not possible to do the simu-
lations for this value of pfa due to limited number of samples and therefore a practical
value should be chosen. Table 3 shows the simulated values for pnd corresponding to
pfa ≈ 2−10, and hence an upper bound estimation for the success probability psuc.

We expect that the actual success probabilities be very close to our estimations, espe-
cially for larger values of l. The key recovery algorithm of [2] has a much lower success

Table 3. An upper bound estimation for the success probability

l 5 6 7 8 9 10 12 16
pnd (for pfa ≈ 2−10) 0.215 0.125 0.055 0.020 0.018 0.010 0.005 0.000

psuc 0.785 0.875 0.945 0.980 0.982 0.990 0.995 1.00

On Reconstruction of RC4 Keys from Internal States 185

probability though it slightly takes into consideration the dependencies between noises.
Also notice that for larger values of l, the success probability increases which again
shows that the algorithm of [2] is far from being optimal.

Remark 1. We emphasize that the values of psuc = 1 − pnd (for pfa ≈ N−l), give the
success probability for an algorithm which makes exhaustive search over the key, only
uses the measure M(SN , k̄) to identify a small subset of candidates for the key, and
more importantly does not use the KSA. To achieve a higher success probability one
can allow a higher pfa resulting in a bigger set of candidates for the key which can later
be filtered to find the correct one by applying KSA.

We are interested in algorithms for reconstructing the key which avoid computation of
the measure M(SN , k̄) for all N l keys. In the next section we propose an algorithm
which starts with an estimate on LSB’s of the key bytes and then continues to bits of
higher significance.

5 A Bit-by-Bit Approach for Key Recovery

The idea is to take into account the probability distribution of Pr{Ei1,i2 mod 2r}
instead of Pr{Ei1,i2} and considering these two hypotheses: Hr

0 : k̄ = k mod 2r and
Hr

1 : k̄ �= k mod 2r. Then one can show that Eq. (5) and (6) become as follows

Hr
0 : Pr{Ei1,i2 = e mod 2r|H0} =

{
pr

i1,i2
e = 0

1−pr
i1,i2

2r−1 e ∈ Z
�
2r

(12)

Hr
1 : Pr{Ei1,i2 = e mod 2r|H1} =

1
2r

, ∀e ∈ Z2r . (13)

where

pr
i1,i2 = pi1,i2 +

N − 2r

2r(N − 1)
(1 − pi1,i2) (14)

assuming N is a power of 2. Similarly, the measure which should be computed is as
below

M r(SN , k̄) =
∑

−1≤i1<i2≤N−1

log
(2r − 1)pr

i1,i2

1 − pr
i1,i2

· δ(ei1,i2 mod 2r) (15)

having related pr
fa and pr

nd similar to those in Eq. (8) and (9). Note that M r(S, k̄) only
depends on the first r LSB’s of k̄.

Fig. 2 shows the empirical distribution of M r(SN , k̄) (for r = 1, 2, . . . , 8) under
three hypotheses Hr

0 , Hr
1 and H ′r

1 for l = 16 (H ′r
1 is defined similar to Sect. 4.2).

It is clear that the bigger r is, the more separable the distributions become. Hence a
tree-based search can reduce the complexity with a huge factor. The idea is to search
over all 2l possible values of the r-th LSB of the key elements, assuming that the first
r − 1 LSB’s of the key are known, and choose only Nr out of them with the highest
correlation measure M r(S, k̄), given by Eq. (15). The complexity of this tree-based
search algorithm is C = 2l(1 +

∑
R−1
i=0

∏R−1
j=0 Nj) where R = �lg2 N�. The KSA must

186 S. Khazaei and W. Meier

0.02

0.04

0.06

0.08

0.10

0.12

200 400 600 800

r = 1

0.02

0.04

0.06

0.08

0.10

0.12

200 400 600 800

r = 2

0.02

0.04

0.06

200 400 600 800

r = 3

0.02

0.04

0.06

200 400 600 800

r = 4

0.02

0.04

200 400 600 800

r = 5
0.02

0.04

200 400 600 800

r = 6

0.02

0.04

200 400 600 800

r = 7
0.02

0.04

200 400 600 800

r = 8

Fig. 2. Empirical distribution of Mr(SN , k̄) (for r = 1, 2, . . . , 8) under Hr
0 , Hr

1 and H ′r
1 (red,

blue and green resp.) for l = 16

20

30

40

50

60

70

80

90

100

0.2 0.4 0.6 0.8 1.0 psuc

log2(C)

l = 5

l = 6
l = 7

l = 8

l = 9
l = 10

l = 11

Fig. 3. Empirical complexity for l = 5, . . . , 11 versus success probability

On Reconstruction of RC4 Keys from Internal States 187

be applied to the
∏R−1

i=0 Nr key candidates which have reached the final leaves of the
tree in order to identify the (possibly) correct one. The complexity of the second step is
negligible compared to the first step. The success probability of the attack relies on the
parameters Nr’s. Fig. 3 shows the complexity of the attack versus success probability
for optimized parameters of the attack, for different values of l. Refer to Appendix A to
see how these curves have been achieved.

6 Conclusion

A recent statistical weakness in the key initialization of RC4 was used to efficiently
recover the key from the internal state. We started by fully exploiting the whole distri-
bution of noises expressing these newly found biases in RC4 in a hypotheses testing
model. Having carefully analyzed the noise distributions, we proposed a tree-based bit-
by-bit approach to recover the key bits. It turned out that the complexity of our algorithm
can be empirically computed versus its success probability. Further work is still open
thank to the more recently developed biases from [1] which we did not exploit.

References

1. Akgün, M., Kavak, P., Demirci, H.: New Results on the Key Scheduling Algorithm of RC4.
Indocrypt (to appear, 2008)

2. Biham, E., Carmeli, Y.: Efficient reconstruction of RC4 keys from internal states. In: Nyberg,
K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 270–288. Springer, Heidelberg (2008)

3. Cover, T., Thomas, J.A.: Elements of Information Theory. Wiley series in Telecommunication.
Wiley, Chichester (1991)

4. Maximov, A., Khovratovich, D.: New state recovery attack on RC4. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008),
http://eprint.iacr.org/2008/017

5. Paul, G., Maitra, S.: Permutation after RC4 key scheduling reveals the secret key. In: Adams,
C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 360–377. Springer, Heidel-
berg (2007), http://eprint.iacr.org/2007/208.pdf

6. Roos, A.: A Class of Weak Keys in the RC4 Stream Cipher. In: Two posts in sci.crypt. (1995),
http://marcel.wanda.ch/Archive/WeakKeys

7. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE Transactions
on Computers C-34, 81–85 (1985)

8. Vaudenay, S., Vuagnoux, M.: Passive–only key recovery attacks on RC4. In: Adams, C., Miri,
A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 344–359. Springer, Heidelberg (2007)

A Deriving Optimized Parameters for Tree-Based Bit-by-Bit
Search Algorithm

In order to derive the complexity diagram versus success probability, Fig. 3, for the
optimized parameters Nr’s for the tree-based bit-by-bit search algorithm in Sect. 5 we

http://eprint.iacr.org/2008/017
http://eprint.iacr.org/2007/208.pdf
http://marcel.wanda.ch/Archive/WeakKeys

188 S. Khazaei and W. Meier

proceed as follows. For every given key size l, we produce N random keys ki =
(ki[0], . . . , ki[l − 1]), 1 ≤ i ≤ N . Then for each key ki, we compute a vector
N i = [N i

0, . . . , N
i
7] where N i

r, 0 ≤ r ≤ 7, satisfies 1 ≤ N i
r ≤ 2l and denotes the

number of choices of the r-th LSB of k̄ (out of 2l possible choices) having a correla-
tion measure M r(SN , k̄) greater than M r(SN , ki) provided that k̄[j] = ki[j] mod 2r,
0 ≤ j ≤ l − 1. As it was mentioned in Sect. 5, for given parameters Nr’s for the bit-by-
bit recovery algorithms, the complexity of the attack is C = 2l(1 +

∑
R−1
i=0

∏R−1
j=0 Nj)

where R = �lg2 N�. The success probability of the attack can then be estimated as the
percentage of the samples for which N i

r ≤ Nr, ∀ 0 ≤ r ≤ 7. However, the parame-
ters Nr’s may not be optimal and a better choice for them may exist having less time
complexity while providing the same success probability. In our simulation we chose
N = 1000 and we tried to find the optimal parameters using a simulated-annealing-like
procedure.

B Improved Recovery of Sum of the Key Elements

In [2] a method has been proposed to recover s, the sum of the key elements. Our sim-
ulations show that using the optimal measure v0,l−1(s̄, S) slightly improves the results.
Table 4 gives the probabilities that the measure v0,l−1(s̄, S) suggest that s has the i-th
highest measure (i = 1, 2, 3, 4) along with results from [2].

Table 4. Probabilities that s has any of the first four highest measure

l Measure Highest Second highest Third highest Fourth highest

5 v0,l−1 0.888 0.041 0.012 0.016
[2] 0.8022 0.0618 0.0324 0.0195

8 v0,l−1 0.641 0.064 0.042 0.023
[2] 0.5428 0.1373 0.0572 0.0325

10 v0,l−1 0.539 0.091 0.044 0.025
[2] 0.4179 0.1604 0.0550 0.0332

12 v0,l−1 0.441 0.070 0.051 0.041
[2] 0.3335 0.1618 0.0486 0.0287

16 v0,l−1 0.279 0.070 0.039 0.026
[2] 0.2309 0.1224 0.0371 0.0240

C Potential Improvements

The tree-based bit-by-bit search algorithm still has some potential for improvements.
For example one can imagine a path-ranking on the tree according to their correlation
measures and start proceeding on tree from the ones with highest correlation measure
at each step. Another idea could be just to ignore some branches in middle if their
correlation measure is less than some threshold value. Although these techniques can
definitely improve the average time complexity for a given success probability, they are
harder to analyze. Another way to improve the bit-by-bit search algorithm is to first

On Reconstruction of RC4 Keys from Internal States 189

recover the sum of the key elements, and then to use the same method. This way the
attack complexity reduces by a factor of about 28.

One can also consider the problem as an optimization problem and apply the known
methods like genetic algorithm, etc. These methods can easily converge to a key k̂
that maximizes M(SN , k). Our simulations show that the achieved value M(SN , k̂) is
almost always much greater than the correct one M(SN , k). The reason is that there
is very small fraction of the keys which have a measure greater than correct key. The
fraction is so small that they do not show up in the simulation which provides Fig. 1 and
as a result we have separated curves. However, once we use optimization algorithms,
it always end up with one of these false keys with highest amount of measure M .
Although it is very unlikely that the resultant key k̂ be the same as correct key k, but
they are quite correlated. For example, usually at least one of the elements of k̂ and k
are the same. It is an open question if we can somehow try to end up with the correct
key.

	On Reconstruction of RC4 Keys from Internal States
	Introduction
	Description of RC4 and Notations
	Previous Results
	A Hypotheses-Testing Approach to the Problem
	Complexity Analysis
	Simulation Results

	A Bit-by-Bit Approach for Key Recovery
	Conclusion
	References
	Deriving Optimized Parameters for Tree-Based Bit-by-Bit Search Algorithm
	Improved Recovery of Sum of the Key Elements
	Potential Improvements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

