Skip to main content

Combine LHS with MOEA to Optimize Complex Pareto Set MOPs

  • Conference paper
Book cover Advances in Computation and Intelligence (ISICA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5370))

Included in the following conference series:

  • 2151 Accesses

Abstract

The Pareto set (PS) of real multi-objective optimization problems (MOPs) are often unknown and complex, so, it is significant for multi-objective evolutionary algorithms (MOEAs) to solve complex PS MOPs (CPS_MOPs namely). In this paper, we combined Latin hypercube sampling (LHS) with MOEA, proposed a LHS based MOEA (LHS-MOEA). We suggested two kinds of LHS-MOEA, in which LHS local search and evolutionary operator are combined to handle CPS_MOPs. Through some experiments, the results demonstrate that LHS-MOEA performs much better than the traditional prevalent MOEA — NSGA-II in solving CPS_MOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  3. Knowles, J., Corne, D.: Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary Computation 7(2), 100–116 (2003)

    Article  Google Scholar 

  4. Zhang, Q., Zhou, A., Jin, Y.: RM-MEDA: A Regularity Model Based Multiobjective Estimation of Distribution Algorithm. IEEE Transactions on Evolutionary Computation 12(1), 41–63 (2008)

    Article  Google Scholar 

  5. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation Journal 7(3), 205–230 (1999)

    Article  MathSciNet  Google Scholar 

  6. Deb, K.: Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Technical Report CI-49/98, Dortmund: Department of Computer Science/LS11, University of Dortmund, Germany

    Google Scholar 

  7. Deb, K., Sinha, A., Kukkonen, S.: Multi-objective test problems, linkages, and evolutionary methodologies. In: Proceeding of Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, vol. 2, pp. 1141–1148 (2006)

    Google Scholar 

  8. Li, H., Zhang, Q.: A multiobjective differential evolution based on decomposition for multiobjective optimization with variable linkages. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 583–592. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Mckay, M.D., Beckman, R.J., Conover, W.J.: A Comparison of Three Methods for the Selecting Values of Input Variables in the Analysis of Out Put from a Computer Code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Deb, K., Agrawal, R.B.: Simulated Binary Crossover for Continuous Search Space. Complex Systems 9(6), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Deb, K., Beyer, H.: Self-Adaptive Genetic Algorithms with Simulated Binary Crossover. Evolutionary Computation 9(2), 195–219 (2001)

    Article  Google Scholar 

  12. Deb, K., Goyal, M.: A Combined Genetic Adaptive Search (geneAS) for Engineering Design. Computer Science and Informatics 26(4), 30–45 (1996)

    Google Scholar 

  13. Sierra, M.R., Coello Coello, C.A.: A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization. In: Proceeding Congress on Evolutionary Computation (CEC 2005), Edinburgh, U.K., pp. 65–72 (2005)

    Google Scholar 

  14. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence to a Pareto front. In: Late Breaking Papers at the Genetic Programming Conf., Madison, WI, pp. 221–228 (1998)

    Google Scholar 

  15. David, H.W., William, G.M.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, J., Luo, B., Li, M., Li, J. (2008). Combine LHS with MOEA to Optimize Complex Pareto Set MOPs. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2008. Lecture Notes in Computer Science, vol 5370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92137-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92137-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92136-3

  • Online ISBN: 978-3-540-92137-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics