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Abstract. Emergent Semantics is a new paradigm for inferring semantic
meaning from implicit feedback by a sufficiently large number of users
of an object retrieval system. In this paper, we introduce a universal
architecture for emergent semantics using a central repository within a
multi-user environment, based on solid linguistic theories.

Based on this architecture, we have implemented an information re-
trieval system supporting keyword queries on standard information
retrieval corpora. Contrary to existing query refinement strategies, feed-
back on the retrieval results is incorporated directly into the actual doc-
ument representations improving future retrievals.

An evaluation yields higher precision values at the standard recall
levels and thus demonstrates the effectiveness of the emergent semantics
approach for typical information retrieval problems.

1 Introduction

The elementary challenge in all retrieval tasks is to find an object representation
that can later effectively and efficiently be matched against a user query in order
to find and rank the objects according to the user’s needs.

Researchers in information retrieval (IR), to select a prominent example, have
been very successful in finding document representations for later retrieval. Al-
beit being today’s state of the art, the vector space model [I] used in conjunc-
tion with Latent Semantic Indexing [2], constitute only a syntactical approach
in finding a so-called semantic representation.

Emergent semantics aims to emerge object representations by aggregating
many user’s opinions about the object content, therefore providing object rep-
resentations that a majority of actual users of a system agree upon. We believe
that finding such a representation considerably improves precision, since it was
created by the users themselves. A basic example illustrates the idea behind
emergent semantics: In a park near our campus, the landscape architects decided
on not paving walkways initially. Instead, they covered the entire area with lawn.
After a year they came back and knew exactly where to pave walkways, since the
walkers had obviously decided which pathways they will use by actually walking
them: the paths were all torn and muddy. We claim that this approach can be
transferred into the area of computer science and, termed emergent semantics,
represents a major advancement in the way object representations are created
and maintained.
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Our contribution with this paper is a formal approach to the emergent seman-
tics paradigm, an architecture for utilizing its full potential and an implemen-
tation within the area of IR that demonstrates the possibilities associated with
this paradigm. Our preliminary results show higher precision values at the stan-
dard recall levels, thus demonstrating the effectiveness of the emergent semantics
approach for typical IR problems.

Structure of this paper. This paper is structured as follows: in Section [2]
“Groundwork”, we introduce the linguistic background of syntax, semantics, and
pragmatics. We then adopt these cognitions for computer science by introducing
a universal architecture for emergent semantics in “Model House” (Section[d). In
Section @ “Construction”, we introduce our implementation of this architecture
for a classic IR scenario in order to be able to present the promising results of our
evaluation in Section Bl Related work is outlined in “Neighborhood” (Section [6)
and “Roof and windows” (Section [7]) concludes the paper with an outlook on
open research issues and future work.

2 Groundwork

In this section, we introduce the linguistic background of syntax, semantics,
and pragmatics in order to motivate our universal architecture for emergent
semantics. This is essential for understanding the process leading from the user
need, expressed by a query, to the retrieval and ranking performed by the system.
Semiotics is the study of signs, their meaning, and their interpretation by
humans. The three subfields of semiotics are, in accordance with Morris [3]:

Syntax: the study of signs and their interrelation
Semantics: the study of signs and their relation to the objects they represent
Pragmatics: the study of signs and their relation to the user interpreting them

According to this theory, every sign is assigned a meaning within the context
of a person’s understanding. So the letters ¢, r, e, and e form the word tree which,
in English, refers to the biological wooden structure. Different people, however,
may have something different in mind when being confronted with the word tree.
Concepts may reach from a beautiful day in the park to the latest forest fire in
Portugal. Similarly, the section headlines of this paper were deliberately chosen
to potentially carry different meanings within this paper and outside its scope.

Algorithms for generating object representations from objects are usually syn-
tactical with the implied hope of inferring something similar to semantics by ap-
plying clever extraction algorithms. An example for such an advanced algorithm
is Latent Semantic Indexing (LSI) in the context of textual IR [2] which claims
to extract document representations that are — by human judgment — considered
good representations for the respective documents.

The semiotic triangle (see Figure[Il) puts the three semiotic concepts (syntax,
semantics, and pragmatics) into relation. The directed edges between the con-
cepts stand for semiotic transitions that can potentially be explored by computer
science algorithms.
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Latent semantic indexing tries to walk the line from syntax to semantics: they
analyze the document content and create a term-document matrix identifying
the most important terms for each document and the most discriminating terms
within a document collection. These algorithms therefore extract the meaning
of a document by representing a document with terms found in the document
collection. The obvious drawback of this purely syntactical approach is that
only terms already found in the document collection itself can be used within
document representations.

Emergent semantics in turn walks
the line from pragmatics to semantics.
It aggregates different users’ opinions
about the meaning of an artifact and
creates an artifact representation that
the majority of users agress upon.

Pragmatics includes the specific
user background, i.e., culture, educa- Fig. 1. Semiotic triangle
tion, and social background, as well
as very time-dependent influences like the user’s mood, for example. It is our
assumption that this diverse background will lead to a lot of noise, if applied
unconditionally to the document representations. It is therefore necessary to
somehow eliminate this noise. This elimination of unwanted noise can essen-
tially be accomplished in two ways: (1) by applying user specific filters (“user
profiles”) and possibly aggregating these into opinion networks (“collaborative
filtering”) or (2) by assuming that the majority of users knows best and incor-
porating users’ opinions directly into the document representation — through the
noise semantics will emerge.

We believe that an architecture for emergent semantics needs to provide facili-
ties for both approaches (see Section[3]), however, we already achieved promising
results with the later approach alone (see Section Hl).

Semantics Pragmatics

3 Model House

In this section, the basic building blocks of an emergent semantics (EmSem) ar-
chitecture are introduced and their functionality is explained. The architecture is
best explained describing the query processing workflow. Please refer to Figure 2]
for an overview of both the architecture and the fundamental query processing
steps. For now we assume a simple environment consisting of a central repository
storing all data and a large number of clients querying the server.

3.1 Ingredients

In the context of emergent semantics, we understand object retrieval as a four
step process. At first, a user develops an idea of her information need and for-
mulates a query to the best of her knowledge (arrow 1). This query implicitly
includes her individual context, e.g., her academic or social background.



428 S. Herschel, R. Heese, and J. Bleiholder

know-_% 7 corpus/ B4 keywords
edge o & dec. repry

1

Query Engine

Interpreter

ranking |retrieval
function | engine

1
1
1
1
1
1
1
< :
< 31 |
i LR
1 1
: 5 i
o= [0
] e
| a1 S,
1 S 11 TE
: S —
Pragmatics { Semantics i Syntax
What do I mean i Howdomostusers |} How is the corpus
by my query? ! formulate this query? ! queried?

Fig. 2. An architecture for emergent semantics

The query is then analyzed by a component we term the interpreter. The
interpreter is responsible for reformulating the query in such a way that the
user’s pragmatic background is resolved and explicitly stated as part of the
query. This is accomplished in two ways: (a) utilizing query expansion or query
reduction strategies in order to include a specified user context and thus reduce
the possibilities of (mis)interpreting the query, (b) calibrating the query to be
in accordance with the retrieval system, i.e., replacing terms with terms from a
controlled vocabulary. An example for (a) is detailed in [4].

The result of this interpretation step is what we term a canonical query, i.e.,
a query that does not contain any pragmatic context any more (arrow 2). The
interpreter thus bridges pragmatics and semantics on the query processing side.

The canonical query is then fed to the retrieval system. Three ingredients
are used by the query engine to retrieve and rank suitable objects: keywords
(a syntactical representation of stored objects), corpus knowledge (knowledge
that is derived from the entirety of the object collection) and external knowledge
(knowledge that is independent from the object collection). The query engine
therefore bridges semantics and syntax within our architecture.

The result of the query engine is a list of ranked results (arrow 3) which is
returned to the user. These results include an object surrogate which the user
evaluates to determine which documents fulfill her information need.

By actually retrieving the relevant documents the user feeds her original
query, including all its implicit pragmatic context, back to the system (arrow 4).

If this last step is performed a sufficiently large number of times by a suf-
ficiently large number of users, new document semantics will be created. This
is the reason for us calling it emergent semantics: the pragmatic view of many
users of an information system is gradually converted into document semantics.

In complex scenarios, an annotation filter with a specified quality measure,
could reject the addition of new keywords, i.e., if it is not in accordance with
regulations or to suit a specific retrieval model.
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3.2 Distinctions

Three aspects of the emergent semantics paradigm should be emphasized, since
they differentiate the approach from current state of the art:

Entirely new keywords. EmSem allows entirely new terms to be introduced
into the system. Even advanced approaches like LSI or query expansion can
only work with terms already contained in the collection. In addition, we
tackle the synonym problem, since a sufficient number of users will annotate
the document with relevant synonyms.

Changing document representations. Keeping things simple, EmSem di-
rectly alters document representations. No new layers in query processing,
no user specific state to be held, instant gratification to all users.

Living document representations. The entire process is based on the as-
sumptions that most users “know best”. If users change their mind about
the supposed meaning of an object, the meaning of the respective object will
change over time (e.g., historic events that are reevaluated after some time,
cars that become oldtimers, or changes in the use of language).

4 Construction

In this section, we instantiate the previously motivated architecture within the
area of information retrieval. IR aims at satisfying a user information need usu-
ally expressed in natural language [5]. To accomplish this task and to effectively
rank documents according to a user’s needs, an IR system models the relationship
between a query and the relevant documents to this query. Approaches include
the Boolean model, the vector space model [6], or the probabilistic model [7].
In the following, we introduce basic terminology and give a global view on the
problem of IR within our architecture.

4.1 Terminology

We consider a collection of objects, e.g., (text) documents or images, forming
the corpus C on which retrieval is performed. A common way to summarize
content and meaning of these objects is to represent them using keywords (in-
terchangeably called terms in this paper). Therefore, each document contained
in the corpus is represented by a finite set of terms taken from a universe of
terms T . This annotation is called the document representation.

Definition 1 (Document Representation). The document representation
of a document is a set of terms: r(d) = {t1,...,tn},d€C,t; €T.

In full-text IR, the prevalent form of IR today, these keywords correspond to
the words of a (text) document, usually preprocessed and filtered, i.e., by a
stopword filter or a stemmer, eliminating the most frequent words of a language
and converting the remaining words into their canonical form.
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The user expresses her information need by issuing a query to the system in
natural language. As a query itself is interpreted as a document, we define it in
the same way as the document representation:

Definition 2 (Query). A user query is a set of terms: q = {t1,...,tn}, t; € T.

As a result of query evaluation, the system returns a ranked list of document
surrogates to the user. Based on this list, the user selects the documents which
fulfill her information need. We define the answer to a query as follows:

Definition 3 (Answer). Let g be a query. The answer of q is defined as Dy =
{d1,...,dn},d; € C. We denote with D, C D, the set of documents classified as
relevant by the user.

Please note, that set D, is specific for each user and each query of the sys-
tem. Particularly, this implies that a specific D,. does not necessarily contain all
relevant documents but only the ones classified as relevant by the user.

4.2 Running the System

Before effective IR can be performed, the entire collection must be indexed. This
phase is called the bootstrapping phase and usually needs to be performed only
once for each collection. As a result of bootstrapping, the components keywords
and corpus knowledge of our architecture (see Figure[2]) are initialized: while key-
words represent the syntactical document representations, stemmed and reduced
by stopwords, the corpus knowledge in our case is the term-document matrix of
our collection filled with TF/IDF weights.

The retrieval engine is based on an inverted index of all terms 7 and the
ranking function is based on the vector space model: both documents and queries
are represented as term vectors carrying term weights from the term-document
matrix above. The similarity between a query and each document is calculated
as the angle between these vectors: the smaller the angle, the more relevant is
the document for the respective query.

After the query has been processed, the user selects the relevant documents
D, by actually retrieving them. We assume that the result list contains enough
information that a user can decide on the relevance of a document. This ac-
tual retrieval of the document leads to the document annotation of the relevant
documents being completed with the query: Vd € D, : r(d) = r(d) Ur(q). The
intuition behind this is that if a document is found by the terms within the query
and this document is additionally marked as relevant then all terms of the query
are also related to the content of the document.

Since the TF/IDF-matrix depends on the document representation, some
parts of the matrix have to be recalculated. The following list enumerates the
possible changes to the document representation and recalculated elements of
the TF/IDF-matrix. Let be ¢t € r(¢q) and be d € D,

1. Existing term (¢ € r(d)): The weight of the term ¢ increases for the document
d, all other values for other documents remain unchanged.
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2. New term/document combination (¢t & r(d) At € 7¢): Weights for all docu-
ments are calculated, because the document frequency changes for t.

3. New term to corpus (t &€ r(d) At € T¢): Since the document frequency of ¢ is
known in advance, it is sufficient to calculate the weight of the term ¢ with
regard to d.

In the context of the architecture presented in the previous section, adding
all query terms to the document representation is only one way of a quality
measure for the annotation filter, where all terms are considered to be of some
and equal good quality. In the following, we outline some more sophisticated
strategies to modify the document representation: A variation of the method
described above is to ignore terms contained in the query having a high document
frequency. These terms are not discriminative and thus, do not improve the
document representation. As a side effect of omitting such terms, a smaller region
of the TF/IDF-matrix has to be recalculated. Although they have yet not been
validated we present two further strategies: (a) inclusion of additional external
knowledge and (b) measuring the quality of a document representation with
regard to its semantic precision. The first approach utilizes external knowledge
to select the terms of a query being added to the document representation. For
example, the decision of adding a query term may be based on a domain ontology,
e.g., a term is only added if it is contained in the ontology. Considering the second
approach, we will develop a quality function which measures the quality of the
document representation and only add a new term if it increases the quality of
the document representation.

5 Assessment

To evaluate our approach we chose the standard “Communications of the ACM”
information retrieval collection (CACM). We chose this collection because it
features an overlap between query terms as well as between corresponding result
sets (see “Evaluation remarks” below).

5.1 Evaluation Setup

We used the document title and, if available, the document abstract, for in-
dexing and retrieval. They were tokenized and indexed by the Apache Lucene
inverted index [§] using the Vector Space Model with TF/IDF weighting. Then,
the following steps were repeated for each query in the corpus:

Query. From the CACM corpus, a query is chosen and presented to the system
as a disjunctive query (“or” semantics).

Retrieval and ranking. Documents are retrieved from the index and ranked
using the vector space model with TF/IDF weighting of terms.

Feedback. According to the given gold standard, precision and recall measures
are calculated. The query is then tokenized and attached to all relevant
documents as content.
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5.2 Evaluation Results

As performance indicators for our emergent semantics approach, we determined
precision-recall-measures along the eleven standard recall levels. See [5] for a
discussion of individual IR performance indicators.

The results in Figure [3l demonstrate a major improvement in retrieval per-
formance after feeding back all query terms unconditionally. These results mean
that retrieval performance increases with each query if multiple users pose the
same query to the system. In addition, we experimented with a quality measure
(see Figure [2)), which only allows feeding back terms with a document frequency
smaller than 300 (10% of the documents). This prevents feedback of frequent
terms. However, we were surprised to see that the results were identical to the
results before; we expected these frequent terms to introduce a lot of noise and
therefore reduce precision. We believe that his lack of noise results from the
very distinctive query terms within the CACM corpus: since the queries mostly
contain infrequent terms, the amount of noise introduced did not do much harm.

Feeding back all terms Exploiting corpus correlations -
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Fig. 3. Augmenting document representa- Fig. 4. Augmenting corpus part 1 with all
tion with all query terms. query terms. Querying corpus part 2.

These results might have been anticipated: Few people would deny that feed-
ing back the exact queries into the system will lead to improved retrieval per-
formance for the same queries. Therefore, we split the corpus into halves and
processed queries of the first half as described above. After different numbers
of these runs (which we call “EmSem runs” in the figure), the second half was
queried without feeding back these queries into the system. We were therefore
able to measure the impact of query processing from the first half of the corpus
onto the second (see Figure H]). While these results were not as stunning as the
results in Figure B we were content to see that emergent semantics made an
impact even in this scenario where neither the overlap between queries nor the
overlap between result sets is big enough for a real-world scenario.

5.3 Evaluation Remarks

We chose the CACM collection after evaluation of the (also standard) Medline
collection. It turned out, however, that there is no overlap in retrieval results
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between the queries defined in the Medline collection and therefore the emergent
semantics approach will not work. Ideally, we look for a collection of highly cor-
related queries with a highly overlapping result set. In such a scenario, emergent
semantics unfolds its full potential.

It should be noted that we do compare our results to today’s best preci-
sion/recall values. It is our ambition to introduce the new paradigm of actu-
ally modifying document representations instead of using (possibly user-specific)
query refinement strategies. Therefore, the baseline of our comparison is stan-
dard document retrieval using the vector space model and TF/IDF weighting.
We expect emergent semantics techniques to have a similar impact on more
sophisticated IR algorithms.

6 Neighborhood

Emergent semantics claims to integrate many users’ opinions on objects in order
to find better document representations. While the user context plays an impor-
tant role both in collaborative filtering approaches [9/10] as well as in contextual
service adaptation [4], they both introduce a separate layer into the object re-
trieval process. Emergent semantics as a paradigm leaves the underlying retrieval
system untouched and achieves its goal through direct modification of document
representations. This is also contrary to the standard approach in using relevance
feedback where the query is expanded [5].

Annotation or tagging systems [I1] bear some similarity to the emergent se-
mantics paradigm, however, they usually require the user to explicitly determine
suitable tags or annotations for the object. During system usage, object descrip-
tions are not altered. Emergent semantics takes advantage of the user query
(implicit information) to accomplish its goal. Similarly, Grosky et al. emerge the
semantics of multimedia objects (i.e., web pages) by including objects along a
user’s browsing path into the context of the respective object [12].

Emergent semantics through gossiping [I3] aims at determining schema map-
pings between independent information provider nodes through measuring the
information quality along feedback cycles.

Emergent semantics relies on an underlying IR infrastructure, whether this is
based on the vector space model with TF /IDF weights [I] or with LSI weights [2].
It advances these approaches to the integration of users’ opinions into the system,
thus allowing for more representative terms or even additional terms that have
not yet existed within the collection. In addition, recalculation of LST weights in
the event of changes in the document collection is quite expensive.

7 Roof and Windows

In this paper, we presented emergent semantics, a new paradigm for integrating
many users’ opinions directly into an object retrieval system. On the linguistic
side, this paradigm represents the shift from many user’s individual pragmatic



434 S. Herschel, R. Heese, and J. Bleiholder

views to a unifying semantic representation of the object. We introduced an ar-
chitecture capturing all aspects of emergent semantics and detailed the expected
functionality of its components. An implementation of the emergent semantics
approach within the area of IR, including promising results within a standardized
evaluation on the CACM corpus, demonstrates the feasibility of our approach.

Future work includes exploration of other applications of emergent semantics,
especially its potential ability to reduce the size of object representations, while
still allowing for good retrieval results. We will also evaluate the applicability of
the emergent semantics paradigm within a distributed environment.
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