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Squaring the Circle with Weak Mobile Robots
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We present two non-trivial deterministic protocols thadtzedhe circle formation problem (CFP) with 4 and 3 robots,
respectively. Both solutions do not require that each robathes its destination in one atomic step. This paperslose
CFP for any numben (> 0) of robots in the semi-synchronous model.
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1 Introduction

Consider a distributed system where the computing unitmatgle weak robotésensoror agents, i.e.,
devices equipped with sensors and designed to move in aitwendional plane. By weak, we mean that the
robots aranonymousautonomougdisoriented andoblivious i.e., devoid of(1) any local parameter (such
that an identity) allowing to differentiate any of the(®) any central coordination mechanism or scheduler,
(3) any common coordinate mechanism or common sense of dingetiml(4) any way to remember any
previous observation nor computation performed in anyiptesstep. Furthermore, all the robots follow
the same progranutiform or homogeneoysand there is no kind of explicit communication medium.
The robots implicitly “communicate” by observing the pdmit of the others robots in the plane, and by
executing a part of their program accordingly.

In such a weak model, there has been considerable interést iesign ofleterministiccoordination
protocols. One of the common features of these works is tidy sif the minimal level of ability the robots
are required to have to achieve the desired task Gitete Formation ProblenfCFP) consists in the design
of a protocol insuring that starting from an initial arbityzonfiguration (where no two robots is at the same
position),n robots eventually form a circle with equal spacing betwemntao adjacent robots. In other
words, the robots are required to formegular n-gonin finite time.

The first attempt for formally and deterministically solgithe CFP were presented in [1]. It works in
the semi-synchronous model (SSM) in which the cycles ohallrbbots are synchronized and their actions
are atomic. They ensure only asymptotical convergencertba&eaconfiguration in which the robots are
uniformly distributed on the boundary of a circle. In othesrds, the robots move infinitely often and never
reach the desired final configuration. The first solution ilegd robots in a regulan-gon in finite time is
proposed in [4]. Designed for the fully asynchronous mo@RDA), it is also valid in SSM. It works
if n> 5 only. Moreover, ifn is even, the robots may formlzangular circlein the final configuration,
i.e., the distance between two adjacent robots is alternativighgrea or 3. A general solution is given
in [2]. It works in SSM, for any numben of robots, except 3 and 4. The approach in [2] is based on a
technique using tools from combinatorics on words and géaengroperties of theconvex hullformed
by the robots. Following this work, both cases- 4 andn = 3 remain open problems. Indeed, it is very
difficult to maintain a geometric invariant with such a fewnmoer of robotse.g.,the smallest enclosing
circle, concentric cycles, properties of the convex hulla éeader. As a matter of fact, due to the high rate
of symetric configurations, right now, the problem was sugzkto be unsolvable with 4 robots.

In this paper, we first disprove this conjecture by presgnéimon-trivial deterministic protocol that
solves CFP for the case= 4 (Section 3). Next (Section 4), we present a solution forctsen = 3. None
of the two solutions requires that each robot reaches itsnddi®n in one atomic step. Since a cohornof
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robots trivially always form a regular-gon if n € {1, 2}, this paper closes the circle formation problem for
any numben (> 0) of robots in SSM.

2 Preliminaries

Model. We adopt the semi-synchronous model, below referred ®Sid Thedistributed systermonsi-
dered in this paper consists mfnobile robots. Each robot, viewed as a point in the Eucligdane, move
on this two-dimensional space unbounded and devoid of amdntark. Any robot can observe, compute
and move with infinite decimal precision. The robots are pged with sensors enabling to detect the ins-
tantaneous position of the other robots in the plane. Eahtroas its own local coordinate system and
unit measure. The robots do not agree on the orientationecftles of their local coordinate system, nor
on the unit measure. They am@iform andanonymousi.e, they all have the same program using no lo-
cal parameter (such that an observable identity) allowandifferentiate any of them. They communicate
only by observing the position of the others and theyabkvious i.e., none of them can remember any
previous observation nor computation performed in anyiprevstep. At each time instatt(j > 0), each
robotr is eitheractiveor inactive The former means that, during the computattep (t;,tj,1), using a
given algorithmy computes in its local coordinate system a posifiy..1) depending only on the system
configuration atj, and moves towards(tj;+1). In the latter case, does not perform any local computation
and remains at the same position. In every single activati@maximum distance traveled by any robot
is bounded by, .

Basic Definitions and Properties. Given a seP of n > 2 pointspy, pz,-- -, Pn On the plane, the convex
hull of P, denotedH (P) (H for short), is the smallest polygon such that every poin®iis either on an
edges oH(P) orinside it. Informally, it is the shape of a rubber-ban@t&thed aroungs, p,---, pn. The
convex hull is unique and can be computed with time comple{nlogn) [3].

A convex hullH is called a ¢onve) quadrilateral (respectivelytriangle) if H forms a polygon with
four (resp. three) sides (or edges) and vertices (or, ceynerthe sequel, we consider convex quadrilaterals
(resp. triangle) only. A quadrilateral is said toferpendiculaif and only if its diagonals are perpendicular.
Otherwise, it is called aon-perpendiculaguadrilateral.

A triangle is said to besquilateralif all its sides are of equal length. Aisosceledriangle has two
sides of equal length. A triangle having all sides of differengths is said to becalene A trapezoidis a
quadrilateral with at least one pair of opposite sides perdin isosceles trapezoid a trapezoid whose the
diagonals are of equal length.garallelogramis a quadrilateral with both pairs of opposite sides palkalle
A rectangles defined as a parallelogram where all four of its anglesight angles. Asquares a rectangle
perpendicular quadrilateral.

3 Four Robots

In this section, we present our algorithm that leads 4 mabiets to eventually form a square. We refer
to Figure 1 to explain our scheme.

Consider the convex hull formed by the robots on the plane. If the 4 robots belong teémee Lind.,
thenH is reduced to the segment of line linking the 4 points (Figur€asesL). Otherwise (the 4 robots
are not aligned), there are only two possible formsHor H forms either a quadrilateral or a triangle. If
H forms a triangle, then there is a robobeing located either insidd (CasenD-T) or between two of
the three corners of the triangle (CaseB-D andP-D). In the latter case, three out of the four robgts,
andsare aligned on a link (r belonging to the segmefd, §), whereas the fourth robbtoes not. Such a
configuration is called aafbitrary) delta If the line L’ passing through andt is perpendicular td., then
the delta is said to bperpendiculafCaseP-D).

Our propotol is made of two steps : (1) Starting from an aabjtrconfiguration, move the robots to
eventually form an arbitrary perpendicular quadrilaterg®) Starting from an arbitrary perpendicular qua-
drilateral, the robots eventually form a square.

Indeed, when the convex hul forms an arbitrary perpendicular quadrilateral (FigureCasePQ),
the diagonals oH are perpendicular if. The system eventually forms a square by sliding the closest
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(P-D) Perpendicular Delta

(nR-P) Non-Rectangle Parallelogram

(nR-IT) Non-Rectangle Isosceles Trapezo

(PQ) Perpendicular Quadrilateral "~-.._

(S) Square

FiG. 1: General Scheme with 4 robots.

robots away frond along their diagonal until they reach the positions beinthatsame distance from
than the farthest onedfaxin Figure 1). To reach such an arbitrary perpendicular glsdral, we aim to
bring the system into an arbitrary delta. Starting from gopadicular delta, Case-D in Figure 1 €, r,
ands are aligned one a link, the linel’ passing througih andt is perpendicular td.), in one step, the
system becomes an arbitrary perpendicular quadrilatgralithing r on L’ in the opposite direction df.
Starting from a non-perpendicular delta (CageD), the system eventually becomes a perpendicular delta
by movingt alongL”, the line passing througtthat is parallel td_, until L’ andL become perpendicular.
Clearly, the above scheme does not cover all the possibés clsparticular, it gives no details about the
“arbitrary” configurations considered in the above firsiritdn fact, we can detail the different classes of
such “arbitrary” configurations and the corresponding ns@a®follows :
1. The convex hull H forms an arbitrary quadrilateral that istrmerpendicular, a rectangle, an isosceles
trapezoid, nor a parallelogramin the sequel, such a configuration is calledasymmetricquadrilateral
(CaseAQ, in Figure 1). In that case, we show that there always existsbatr being either the unique
closest or the unique farthest robot from the ceatefthe quadrilateral. By moving eitheror the opposite
robot (w.r.t. to0) along its diagonal toward, the moving robot eventually reach@sBy the way, it crosses
one side of the triangle formed by the 3 other robots. Theesyshen becomes a non-perpendicular delta,
and from this point on, adopts the above behavior.
2. The convex hull H of thd robots forms a symmetric non-perpendicular quadrilatehelt is not redu-
ced to a line segmenin that caseH forms either an isosceles trapezoid (CaBdT) or a parallelogram
(CasenR-P) — note thatH can be a non-perpendicular rectangle (GaBe- R) if it is both an isosceles
trapezoid and a parallelogram. In these cases, the robats trydng to form a square in one step. Clearly,
if they move synchronously and reach their respective jpostto form a square, then they succeed. The-
refore, in every executing starting from either a non-negltaisosceles trapezoid or a non-rectangle paral-
lelogram, the four robots eventually form either an asymimefuadrilateral, or a square. Starting from a
non-square rectangle, the four robots eventually formeeiim asymmetric quadrilateral, a non-rectangle
isosceles trapezoid, a non-rectangle parallelogram, quars—refer to Figure 1.
3. The convex hull H forms a triangle that is not an arbitrary delSo, one of the four robots is located
inside the triangle (CaseD-T in Figure 1). In that case, the robotnside the triangle moves toward the
closest side of the triangle —iifis at the center of the triangle, then it arbitrarily chooses side to move



Yoann Dieudon&and Franck Petit

on. Again, the system reaches a configuration where the tohabots forms a delta.

4. The4 robots are aligned on the same LingCasesl). In that case, both robots andr; located bet-
ween the two extremities of the segment formed by the 4 radretable to move perpendicularlyltoWith
respect to the asynchrony, there are 5 possible resultinfigemations : either a non-perpendicular qua-
drilateral (possibly, an isosceles trapezoid or a parlelm) or a triangle (possibly, a non-perpendicular
delta).

4 Three Robots

In this section, we show that starting from an arbitrary agunfation, 3 robots can form an equilateral
triangle in finite time. As for the case= 4, consider the convex hull formed by the robots on the plane.
If the 3 robots belong to the same LihethenH is reduced to the segment of line linking the 3 points.
OtherwiseH forms a non-aligned triangle. (In the following, when we sioler a non-aligned triangle, we
will omit the term “non-aligned”.)

Let us consider the three following cases :

1. The three robots form an isosceles triangtethat case, if the triangle is also equilateral, then tlodfam

is solved. If the triangle is not equilateral, then ddie the unique robot being placed at the unique angle
different from the two others robossandt. Let p be the position of, the perpendicular bisector ],
such thatp, s, andt form an equilateral triangle. Sind¢¢ forms an isosceles triangle belongs toL. So,

it can move alond. toward p. Clearly, while the triangle is not equilateral +e., r does not reaclp —, r
remains the single robot allowed to move. By fairness, thelagral triangle is formed in finite time.

2. The three robots are on the same linellet s andt be the two robots located at the extremities of the
segment formed by the three robots. L&te the median robot ard{s,r) (respectivelyd(t,r)) denotes the
distance betweesandr (resp.r andt). There are two cases to consider :

a. d(s;r) =d(t,r) — r is located at the middle dk,t]. In that caser can move on any position on the
perpendicular bisector d$,t]. After one step, the robots form an isosceles triangle, hadystem behaves
as in the previous case.

b.d(s,r) #d(t,r). Then,r can move toward the positignsuch thad(s, p) = d(t, p). Clearly,r reachep

in finite time, and the three robots behaves as above thereaft

3. The three robots form a scalene triang&ince the three robots form a scalene triangle, the threeiak
angles are all different. Latbe the robots corresponding to the greatest internal afbkn,r can move
toward the intersection between the opposite side formethéywo others robots and the line passing
throughr that is perpendicular to the opposite side of the trianglail®\the robots are not on the same
line, r remains the only robots allowed to move because its intemmgle increases whereas the two others
internal angles decrease. By fairness, the three robot/argually on the same line. Then, they behave as
above.

5 Conclusion

We closed the circle formation problem for any numhér > 0) of robots in SSM. We proposed two
non-trivial deterministic protocols solving CFP for 4 ando®ots, respectively. The proposed solutions do
not require that each robot reaches its destination in coriatstep. In a future work, we would like to
address and solve the problem for any number of robots in CORD
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