
Deterministic Sparse Column Based Matrix
Reconstruction via Greedy Approximation of

SVD

Ali Çivril and Malik Magdon-Ismail

Computer Science Department, RPI, 110 8th Street, Troy, NY 12180
{civria,magdon}@cs.rpi.edu

Abstract. Given a matrix A ∈ Rm×n of rank r, and an integer k < r,
the top k singular vectors provide the best rank-k approximation to A.
When the columns of A have specific meaning, it is desirable to find
(provably) “good” approximations to Ak which use only a small number
of columns in A. Proposed solutions to this problem have thus far focused
on randomized algorithms. Our main result is a simple greedy determin-
istic algorithm with guarantees on the performance and the number of
columns chosen. Specifically, our greedy algorithm chooses c columns

from A with c = O
(
k2 log k
ε2

µ2(A) ln
(√

k‖Ak‖F
ε‖A−Ak‖F

))
such that

‖A− CgrC+
grA‖F ≤ (1 + ε) ‖A−Ak‖F ,

where Cgr is the matrix composed of the c columns, C+
gr is the pseudo-

inverse of Cgr (CgrC
+
grA is the best reconstruction of A from Cgr), and

µ(A) is a measure of the coherence in the normalized columns of A. The
running time of the algorithm is O(SV D(Ak)+mnc) where SV D(Ak) is
the running time complexity of computing the first k singular vectors of
A. To the best of our knowledge, this is the first deterministic algorithm
with performance guarantees on the number of columns and a (1 + ε)
approximation ratio in Frobenius norm. The algorithm is quite simple
and intuitive and is obtained by combining a generalization of the well
known sparse approximation problem from information theory with an
existence result on the possibility of sparse approximation. Tightening
the analysis along either of these two dimensions would yield improved
results.

1 Introduction

Most data can be represented as an m × n matrix where the columns are ob-
jects and the rows are the features associated with them. Hence, given a matrix
A ∈ Rm×n, one might be interested in obtaining the “important” spectral in-
formation of A by using some compressed representation. The usual approach
to this problem is to take the best rank k (k � min{m,n}) approximation Ak,
which minimizes the error with respect to any unitarily invariant norm. Ak can
be constructed from the top k singular vectors in O(min{mn2,m2n}) time. The

first k singular vectors required to construct Ak can be computed efficiently
using Lanczos methods. The problem with this general approach, which was
also pointed out by [10] is that the singular vector representation might not
be suitable to make inferences about the actual underlying data, because they
are generally combinations of all the columns of the raw information in A. An
example of this is the microarray data where the combinations of the column
vectors have no sensible interpretation [16]. Hence, it is of practical importance
to represent the approximation to A by a small number of columns of A.

1.1 Our Contributions

We give a deterministic greedy algorithm for low rank matrix reconstruction
which is based on the sparse approximation of the SVD of A. We first gener-
alize the sparse approximation problem of approximating vector [18] to one of
approximating a subspace, using a small number of columns from A. We analyse
a greedy algorithm which generalizes the analysis in [18]; in order to correct a
minor technical error in the proof therein, we introduce a coherence parameter
for a matrix, the rank coherence parameter which can be thought of as a more
general and robust version of the coherence parameters defined in [21].

Our algorithm first computes the top k left singular vectors of A, and then
selects columns of A in a greedy fashion so as to “fit” the space spanned by
the singular vectors, appropriately scaled according to the singular values. The
performance charasteristics of the algorithm depend on how well the greedy
algorithm approximates the optimal choice of such columns from A, and on
how good the optimal columns themselves are. We give an existence result on
the quality of the optimal columns, and the necessary analysis of the greedy
algorithm to arrive at the following result:

Theorem 1 The greedy algorithm chooses a column submatrix Cgr ⊆ A with

c = O
(
k2 log k
ε2 µ2(A) ln

(√
k‖Ak‖F

ε‖A−Ak‖F

))
columns such that

‖A− CgrC+
grA‖F ≤ (1 + ε) ‖A−Ak‖F .

The term k log k
ε2 arises from an upper bound on the number of columns the

optimal solution would choose (the existence result), and the remaining terms are
contributed by the analysis of the greedy algorithm. The coherence parameter,
µ(A) restricts the class of matrices for which the algorithm is useful. To the best
of our knowledge, this is the first deterministic algorithm with (1 + ε) approxi-
mation. Note that, in order to achieve this approximation ratio, we choose more
than k columns. When µ = O(1), setting ε =

√
k log k and ignoring logarithmic

factors, we have a 1 +
√
k log k approximation ratio with O(k) columns.

We believe that a result without the coherence parameter should be possible,
however have not been able to construct one. In any case, improving either the
upper bound on the optimal reconstruction of the singular vectors, or improving
the analysis of the greedy algorithm would yield a tighter result. The running
time of the algorithm is governed by the computation of the top k singular
vectors, which is O(SV D(Ak)) and the greedy selection phase, which is O(mnc).

1.2 Comparison to Related Work

With the advent of massive data sets, much work in theoretical computer science
has been spent on finding algorithms for matrix reconstruction by considering a
careful choice of a subset of the columns of the data matrix. The seminal paper
by Frieze, Kannan and Vempala [12] gives a randomized algorithm that chooses
a subset of columns C ∈ Rm×c of A such that ‖A−ΠCA‖F ≤ ‖A−Ak‖F +
ε‖A‖F , where ΠC is a projection matrix obtained by the SVD of C and c =
poly(k, 1/ε, 1/δ), where δ is the failure probability of the algorithm. Subsequent
work [8, 7, 20] introduced several improvements on the dependence of c on k, 1/ε
and 1/δ also extending the analysis to the spectral norm. Recently, the effort has
been towards eliminating the additive term in the inequality thereby yielding a
relative approximation in the form ‖A−ΠCA‖F ≤ (1 + ε)‖A−Ak‖F . Along
these lines, Deshpande et al. [5] first shows the existence of such approximations
introducing a sampling technique related to the volume of the simplex defined
by the column subsets of size k, without giving a polynomial time algorithm.
Specifically, they show that there exists k columns with which one can get a√
k + 1 relative error approximation in Frobenius norm, which is tight. Later,

Deshpande and Vempala [6] provides an algorithm with two steps which yields a
relative approximation in expectation: first, approximate the “volume sampling”
introduced in [5] by successively choosing one column at each step with carefully
chosen probabilities; then, choose O(k/ε+k2 log k) columns in O(k log k) rounds
in a similar fashion. The complexity of their algorithm is O(M(k/ε+ k2 log k) +
(m+ n)poly(k, ε)), where M is the number of non-zero elements in A.

Recent result of Drineas et al. [10] provides two randomized algorithms fir
relative error approximation in Frobenius norm using “subspace sampling”, i.e.
selecting columns proportional to the row-norms of the matrix of top k right
singular vectors. One of the algorithms chooses exactly c = O(k2 log(1/δ)/ε2)
columns; the other chooses c = O(k log k log(1/δ)/ε2) columns in expectation
and both of them runs in O(SV D(Ak)) time, i.e. the time required to compute
Ak, where δ is the failure probability. All of these algorithms exploit the power of
randomization and they introduce a trade-off between the the number of columns
chosen, the error parameter and the failure probability of the algorithm. The
proof techniques presented in these papers break when the random sampling
approach is sacrificed and a deterministic column selection procedure is used.

When it comes to deterministic reconstruction, no (1 + ε) approximation
algorithms are known. The linear algebra community has developed deterministic
algorithms in the framework of rank revealing QR (RRQR) factorizations [1]
which yield some approximation guarantees in spectral norm. Given a matrix
A ∈ Rn×n, consider the QR factorization of the form

AΠ = Q

(
R11 R12

0 R22

)
(1)

where R11 ∈ Rk×k and Π ∈ Rn×n is a permutation matrix. By the interlacing
property of singular values (see [13]), σk(R11) ≤ σk(A) and σ1(R22) ≥ σk+1(A).
If the numerical rank of A is k, i.e. σk(A) � σk+1(A), then one would like

to find a permutation Π for which σk(R11) is sufficiently large and σ1(R22) is
sufficiently small. A QR factorization is said to be a rank revealing QR (RRQR)
factorization if σk(R11) ≥ σk(A)/p(k, n) and σ1(R22) ≤ σk+1(A)p(k, n), where
p(k, n) is a low degree polynomial in k and n.

Much research on finding RRQR factorizations has yielded improved results
for p(k, n) [1, 2, 4, 14, 15, 19]. These algorithms make use of the local maximum
volume concept and are generally complicated. Tight bounds for p(k, n) can be
used to give deterministic low rank matrix reconstruction with respect to the
spectral norm, via the following simple fact.

Theorem 2 Let Πk be the matrix of first k columns of Π in (1). Then,

‖A− (AΠk)(AΠk)+A‖2 ≤ p(k, n)‖A−Ak‖2.

The best p(k, n) was proposed by Gu and Eisenstat [14]. The authors show
that there exists a permutation Π for which p(k, n) =

√
1 + k(n− k). It is

not known whether such a permutation can be computed in polynomial time.
Instead, algorithms with p(k, n) =

√
1 + f2k(n− k) were given which run in

O((m+n logf n)n2) time for f > 1 [14]. Hence, for constant f , the approximation
ratio depends on n and the running time is O(mn2 + n3 log n). Note that, these
algorithms consider choosing exactly k columns and the results are not directly
comparable to ours as they provide bounds on the spectral norm. It is not clear
whether these algorithmic results can be extended to give non-trivial bounds
in Frobenius norm or to choose more than k columns so as to yield (1 + ε)
approximation.

Our results rely on a generalization of the sparse approximation problem
which was formally proposed by Natarajan [18]: given A ∈ Rm×n, a vector
b ∈ Rm, and ε > 0, find a vector x ∈ Rn satisfying ‖Ax− b‖2 ≤ ε such that
x has the fewest non-zero entries over all such vectors. This problem was also
considered by Tropp [21]. Natarajan [18] proves that the problem is NP-hard
and gives a greedy algorithm based on choosing the column vector from A
with largest projection on b at each step. After correcting a minor technical
error in his proof, his result gives that the greedy algorithm chooses at most
d18Opt(ε/2)µ2(A) ln(‖b‖2/ε)e columns, µ(A) is a parameter defining the coher-
ence between the normalized columns of A and Opt(ε/2) is the optimal number of
vectors at error ε/2. More recently, from an information theoretic point of view,
Tropp [21] analyzed some previously known algorithms (e.g. Matching Pursuit
(MP) [11, 17], Basis Pursuit (BP) [3]) for the sparse approximation problem,
showing that these algorithms perform well for dictionaries (matrices) which are
close to orthonormal. A formalization of this notion is represented by the co-
herence parameter [17], which is the maximum absolute inner product betweeen
two distinct column vectors. Tropp gives a natural generalization of this concept,
the cumulative coherence parameter, which is the maximum coherence between
a fixed column vector and a collection of other column vectors. Intuitively, these
parameters measure how “close” the column vectors of a matrix are and smaller
values indicate an incoherent (almost orthonormal) matrix.

1.3 Notation and Preliminaries

From now on A ∈ Rm×n is the matrix we wish to reconstruct. A(i) denotes the
ith row of A for 1 ≤ i ≤ m, and A(j), the jth column of A for 1 ≤ j ≤ n. Aij is the
element at ith row and the jth column. Typically, we use C to denote a subset of
columns of A, written C ⊂ A, i.e. C is a column submatrix of A. span(C) denotes
the subspace spanned by the column vectors in C. The Singular Value Decom-
position of A ∈ Rm×n of rank r is denoted by A = UΣV T where U ∈ Rm×m is
the matrix of left singular vectors, Σ ∈ Rm×r is the diagonal matrix containing
the singular values of A in order, i.e. Σ = (σ1, . . . , σr, 0, . . . , 0), and V ∈ Rn×n
is the matrix of right singular vectors. The “best” rank k approximation to A
is Ak = UkΣkVk where Uk, Σk, and Vk are the first k columns of the corre-
sponding matrices in the full SVD of A. The pseudo-inverse of A is denoted by
A+ = V Σ+UT , where Σ+ =

(
1
σ1
, . . . 1

σr
, 0, . . . , 0

)
. The Frobenius norm of A is

‖A‖F =
√∑m

i=1

∑n
j=1A

2
ij , and the spectral norm of A is ‖A‖2 = σ1(A). We also

define the maximum column norm of a matrix A, ‖A‖col = maxni=1{‖A(i)‖2}.
S⊥ is the space orthogonal to the space spanned by the vectors in S.

1.4 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we define a generalized
version of the sparse approximation problem which asks for a small set of columns
that approximates the subspace spanned by a given set of target vectors. We give
a greedy algorithm along with its analysis. Section 3 gives our column based rank
matrix reconstruction algorithm, which can be viewed as a special case of the
generalized sparse approximation problem, where the target vectors are the left
singular vectors of A.

2 Generalized Sparse Approximation

Instead of seeking sparse approximation to a single vector [18], we propose the
following generalization: given matrices A ∈ Rm×n, a set of vectors B ∈ Rm×k,
and ε > 0, find a matrix X ∈ Rn×k satisfying

‖AX −B‖F ≤ ε (2)

such that
∑n
i=1 νi(X) is minimum over all possible choices of X, where νi(X) = 1

if the row X(i) contains non-zero entries, νi(X) = 0 if X(i) =
−→
0 . Intuitively, the

problem asks for a minimum number of set of column vectors of A whose span
is close to those of B.

2.1 The Algorithm

A greedy strategy for solving this problem is to choose the column v from A at
each iteration, for which ‖BT v‖2 is maximum, and project the column vectors

of B and the other column vectors of A onto the space orthogonal to the chosen
column. The algorithm proceeds greedily on these residual matrices until the
norm of the residual B drops below the required threshold ε. Naturally, if the
error ε cannot be attained, the algorithm will fail after selecting a maximal
independent set of columns.

Greedy(A, B, ε)

1: normalize each column of A to have norm 1.
2: l← 0, Λ← ∅, A0 ← A, B0 ← B.
3: while ‖Bl‖F > ε do

4: choose i ∈ {1, . . . , n} − Λ such that ‖BTl A
(i)
l ‖2 is maximum

5: B
(j)
l+1 ← B

(j)
l −

(
B

(j)
l

T
A

(i)
l

)
A

(i)
l for i = 1, . . . , k, i.e. project B

(j)
l ’s onto

{A(i)
l }
⊥.

6: Λ← Λ ∪ {i}.
7: A

(j)
l+1 ← A

(j)
l −

(
A

(j)
l

T
A

(i)
l

)
A

(i)
l for j ∈ {1, . . . , n} − Λ, i.e. project A

(j)
l ’s

onto {A(i)
l }
⊥.

8: normalize A
(j)
l+1 for j ∈ {1, . . . , n} − Λ.

9: l← l + 1.
10: end while
11: return C = Λ(A), the selected columns.

Fig. 1. A greedy algorithm for Generalized Sparse Approximation

We first define the coherence of a matrix.

Definition 3 (Coherence) The rank coherence of A, µ(A) is the inverse of
the least singular value over all non-singular normalized column submatrices of
A. Namely,

µ(A) = max
C⊆A

rank(C)=rank(A)

1
σr(C)

. (3)

Remark 4 1 ≤ µ(A) < ∞. Small values of µ(A) indicate a matrix with near
orthonormal columns.

Theorem 5 The number of columns chosen by Greedy is at most

O

(
Opt(ε/2)µ2(A) ln

(
‖B‖F
ε

))
where Opt(ε/2) is the optimal number of columns at error ε/2.

We will establish Theorem 5 through a sequence of lemmas. The proof follows
similar reasoning to the proof in [18]. Let t be the total number of iterations of

Greedy. At the beginning of the lth iteration of the algorithm, for 0 ≤ l < t, let
Ul be an optimal solution to the generalized sparse approximation problem with
error parameter ε/2, i.e. Ul minimizes

∑n
i=1 νi(X) over X ∈ Rn×k such that

‖AlUl −Bl‖F ≤ ε/2, where νi(X) = 1 if the row X(i) contains non-zero entries,
νi(X) = 0 if X(i) =

−→
0 . Let Nl =

∑n
i=1 νi(Ul) and Ql = AlUl. Define

λ = 4 max
0≤l<t

Nl‖Ul‖2F
‖Bl‖2F

. (4)

The proofs of the following lemmas which essentially bound the number of
iterations of the algorithm, are given in the appendix. Assuming that the Greedy
has not terminated, the first lemma states that the next step makes significant
progress.

Lemma 6 For the lth iteration of Greedy, ‖BTl Al‖col ≥
‖Bl‖2F

2
√
Nl‖Ul‖F

.

Thus, there exists a column in the residual Al which will reduce the residual
Bl significantly, because Bl has a large projection onto this column. Therefore,
since every step of Greedy makes significant progress, there cannot be too many
steps, which is the content of the next lemma.

Lemma 7 t ≤
⌈
2λ ln

(
‖B‖F

ε

)⌉
, where t is the number of Greedy iterations.

What remains is to bound λ. First, we will bound ‖Ul‖F in terms of ‖Bl‖F
both of which appear in the expression for λ. Let σl = {i|Ul(i) 6=

−→
0 } be the

indices of rows of Ul which are not all zero. Recall that these indices denote
which columns are chosen by the optimal solution for Al. Let τl = {i1, i2, . . . , il}
be the indices of the first l columns picked by the algorithm. Given an index set
γ, let the set of column vectors {A(i)|i ∈ γ} be denoted by γ(A). The proofs of
the following lemmas are also in the appendix.

Lemma 8 σl(A) ∪ τl(A) is a linearly independent set for all l ≥ 0.

Lemma 9 For 0 ≤ l < t, ‖Ul‖F ≤
3
2µ(A)‖Bl‖F .

Proof of Theorem 5: First, we note that the number of non-zero rows in the
optimal solution is non-increasing as the algorithm proceeds, that is Nl ≥ Nl+1

for l > 0, which follows from an argument identical to the proof of Lemma 3 in
[18]. Since Opt(ε/2) = N0, we have

λ ≤ 4 max
0≤l<t

N0‖Ul‖2F
‖Bl‖2F

≤ 9Opt(ε/2)µ2(A)

where the last inequality is due to the result of Lemma 9. Combining this with
Lemma 7, we have that the number of iterations of the algorithm is bounded by

t ≤
⌈

18Opt(ε/2)µ2(A) ln
(
‖B‖F
ε

)⌉

3 Deterministic Low-Rank Matrix Reconstruction

In this section, we give a deterministic algorithm for low rank matrix reconstruc-
tion based on the greedy approach that we have introduced and analyzed for the
generalized sparse approximation problem:

LowRankApproximation(A, k)

1: compute Uk and Σk of A
2: return Greedy(A, UkΣk, ε‖A−Ak‖F)

Fig. 2. The low-rank approximation algorithm

The algorithm first computes Uk, the top k left singular vectors of A and Σk
the first k singular values of A, which can be performed by standard methods
like Lanczos. The columns of A are then selected in a greedy fashion so as to
“fit” them to the subspace spanned by the columns of UkΣk. Intuitively, we
select columns of A which are close to the columns of UkΣk and the analysis
shows that the submatrix C of A we obtain is provably close to the “best” rank-
k approximation to A. The error parameter which is given as an input to the
greedy algorithm is ε‖A−Ak‖F . The following result provides an upper bound
on the number of columns of the optimal solution at error ε‖A−Ak‖F /2.

Lemma 10 There exists a column submatrix C of A with c = O(k log k/ε2)
columns such that ‖UkΣk − CC+UkΣk‖F ≤ ε‖A−Ak‖F /2.

Proof. The proof is given in the appendix due to space limitations.

We now, give the proof of Theorem 1.

Proof of Theorem 1: By the algorithm, we have

UkΣk = CgrC
+
grUkΣk + E.

for some generic error matrix E satisfying ‖E‖F ≤ ε‖A−Ak‖F . Multiplying
both sides by V Tk , we get

Ak = CgrC
+
grAk + EV Tk ,

Hence, A−CgrC+
grAk = A−Ak +EV Tk . Taking norms of both sides, and noting

that ‖Vk‖F =
√
k, and C+

grA is the minimizer of ‖A− CgrX‖F , we obtain

‖A− CgrC+
grA‖F ≤ ‖A− CgrC

+
grAk‖F

≤ ‖A−Ak‖F + ε
√
k‖A−Ak‖F

= (1 + ε
√
k)‖A−Ak‖F

Choosing an error parameter ε′ = ε/
√
k and combining Theorem 5 and Lemma

10 gives the desired result.
Note that, the number of columns chosen by the algorithm depends on µ(A),

i.e. the structure of A. To get an idea of what this result implies when the
number of columns chosen is of order k, we give the following corollary, which
immediately follows upon a careful choice of error parameter.

Corollary 11 The greedy algorithm chooses a submatrix C of Õ(k) columns of
A for which ‖A− CC+A‖F ≤ µ(A)

√
k log k‖A−Ak‖F .

Acknowledgments: We would like to thank Petros Drineas for helpful dis-
cussions.

References

1. T. F. Chan. Rank revealing QR factorizations. Linear Algebra Appl., (88/89):67–
82, 1987.

2. S. Chandrasekaran and I. C. F. Ipsen. On rank-revealing factorizations. SIAM J.
Matrix Anal. Appl., 15:592–622, 1994.

3. S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Review, 43(1):129–159, 2001.

4. F. R. de Hoog and R. M. M. Mattheijb. Subset selection for matrices. Linear
Algebra and its Applications, (422):349–359, 2007.

5. A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation
and projective clustering via volume sampling. In SODA ’06, pages 1117–1126.
ACM Press, 2006.

6. A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix ap-
proximation. In RANDOM’06, pages 292–303. Springer, 2006.

7. P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large
graphs and matrices. In SODA ’99: Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms, pages 291–299. SIAM, 1999.

8. P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix. SIAM Journal on
Computing, 36(1):158–183, 2006.

9. P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Subspace sampling and
relative-error matrix approximation: Column-based methods. In APPROX-
RANDOM, pages 316–326, 2006.

10. P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Subspace sampling and
relative-error matrix approximation: column-row-based methods. In ESA’06: Pro-
ceedings of the 14th conference on Annual European Symposium, pages 304–314.
Springer-Verlag, 2006.

11. J. H. Friedman and W. Stuetzle. Projection pursuit regressions. J. Amer. Statist.
Soc., 76:817–823, 1981.

12. A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for finding
low-rank approximations. Journal of the Association for Computing Machinery,
51(6):1025–1041, 2004.

13. G. H. Golub and C. V. Loan. Matrix Computations. Johns Hopkins U. Press, 1996.

14. M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-
revealing QR factorization. SIAM Journal on Scientific Computing, 17(4):848–869,
1996.

15. Y. P. Hong and C. T. Pan. Rank-revealing QR factorizations and the singular
value decomposition. Mathematics of Computation, 58:213–232, 1992.

16. F. G. Kuruvilla, P. J. Park, and S. L. Schreiber. Vector algebra in the analysis of
genome-wide expression data. Genome Biology, (3), 2002.

17. S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, 1993.

18. B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal
on Computing, 24(2):227–234, 1995.

19. C. T. Pan and P. T. P. Tang. Bounds on singular values revealed by QR factor-
izations. BIT Numerical Mathematics, 39:740–756, 1999.

20. M. Rudelson and R. Vershynin. Sampling from large matrices: An approach
through geometric functional analysis. J. ACM, 54(4), 2007.

21. J. A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE
Transactions on Information Theory, 50(10):2231–2242, 2004.

Appendix

Proof of Lemma 6 : Let E ∈ Rm×k be a generic error matrix such that
‖E‖F ≤ ε/2, and Let ‖E(j)‖2 = εj/2 for i = 1, . . . , k. Hence,

∑k
i=1 ε

2
j ≤ ε2. Now,

we can write B(j)
l =

(∑n
i=1A

(i)
l Ulij

)
+ E(j) for j = 1, . . . , k. Then,

‖Bl‖2F =
k∑
j=1

B
(j)
l

T
B

(j)
l =

k∑
j=1

n∑
i=1

UlijB
(j)
l

T
A

(i)
l +

k∑
j=1

B
(j)
l

T
E(j) (5)

We will first bound the double summation in the above expression.

k∑
j=1

n∑
i=1

UlijB
(j)
l

T
A

(i)
l ≤

n∑
i=1


 k∑
j=1

Ul
2
ij

1/2 k∑
j=1

(
B

(j)
l

T
A

(i)
l

)2
1/2


≤ max

1≤i≤n


 k∑
j=1

(
B

(j)
l

T
A

(i)
l

)2
1/2


n∑
i=1

 k∑
j=1

Ul
2
ij

1/2

≤ ‖BTl Al‖col
√
Nl‖Ul‖F

The first line is due to Cauchy-Schwartz inequality. The last inequality bounds
the double summation in the second line as follows. Define n dimensional vectors

a and b such that ai =
(∑k

j=1 Ul
2
ij

)1/2

and bi = 1 if there exists a non-zero

entry in the ith row of Ul, bi = 0 if all the elements in the ith row of Ul are
zero, for i = 1, . . . , n. Then, applying Cauchy-Schwartz inequality to a and

b, we obtain
∑n
i=1

(∑k
j=1 Ul

2
ij

)1/2

=
∑n
i=1 aibi ≤

(∑n
i=1 a

2
i

)1/2 (∑n
i=1 b

2
i

)1/2.

Since
∑n
i=1 a

2
i =

∑n
i=1

∑k
j=1 Ul

2
ij = ‖Ul‖F

2, and
∑n
i=1 b

2
i = Nl, we have that∑n

i=1

(∑k
j=1 Ul

2
ij

) 1
2 ≤
√
Nl‖Ul‖F .

We will now bound the second term in (5).

k∑
j=1

B
(j)
l

T
E(j) ≤

k∑
j=1

‖B(j)
l

T
‖
2
‖E(j)‖2 (Cauchy − Schwartz)

=
1
2

k∑
j=1

εj‖B(j)
l

T
‖
2

≤ 1
2

 k∑
j=1

ε2j

1/2 k∑
j=1

‖B(j)
l

T
‖
2

2

1/2

(Cauchy − Scwartz)

≤ 1
2
ε‖Bl‖F

≤ 1
2
‖Bl‖2F

where the last inequality is due to the fact that ‖Bl‖F > ε, i.e. the algorithm is
still running.

Combining these bounds in (5), we have ‖Bl‖2F ≤ ‖BTl Al‖col
√
Nl‖Ul‖F +

1/2‖Bl‖2F , which gives ‖Bl‖2F ≤ 2‖BTl Al‖col
√
Nl‖Ul‖F . The lemma then imme-

diately follows.

Proof of Lemma 7 : Let i be the index of the chosen column at step l and
let j be a column index of B. Then, by the execution of the algorithm, B(j)

l+1 =

B
(j)
l −

(
B

(j)
l

T
A

(i)
l

)
A

(i)
l . Since B(j)

l+1 is orthogonal to A(i)
l and ‖A(i)

l ‖2 = 1, we

can write ‖B(j)
l+1‖

2

2
= ‖B(j)

l ‖
2

2
−|B(j)

l

T
A

(i)
l |

2

. Summing over all column indices of
Bl+1, we obtain

‖Bl+1‖2F =
k∑
j=1

‖B(j)
l+1‖

2

2
=

k∑
j=1

‖B(j)
l ‖

2

2
−

k∑
j=1

|B(j)
l

T
A

(i)
l |

2

= ‖Bl‖2F − ‖B
T
l A

(i)
l ‖

2

2

= ‖Bl‖2F − ‖B
T
l Al‖

2

col

≤ ‖Bl‖2F −
‖Bl‖4F

4Nl‖Ul‖2F
(Lemma 6)

= ‖Bl‖2F

(
1− 1

λ

)
(Equation (4))

where the third line follows since the algorithm chooses i to maximize ‖BTl A
(i)
l ‖2.

Hence, ‖Bl‖2F ≤ (1−1/λ)‖B0‖2F . Since the algorithm stops when ‖Bt‖2F ≤ ε2, it
suffices for t to satisy (1−1/λ)t‖B0‖2F ≤ ε2. Rearranging, and taking logarithms

we obtain t ln(1 − 1/λ) ≤ ln(ε2/‖B0‖2F). Since ln(1 − 1/λ) ≤ −1/λ, we get
that t ≥ λ ln(‖B‖2F /ε2) = 2λ ln(‖B‖F /ε) iterations are enough for Greedy to
terminate.

Proof of Lemma 8 : Note that for l = 0, we only have σ0(A) and by the
definition of the optimality of U0, this set should be linearly independent. For
l ≥ 1, we will argue by contradiction. Assume that the given set, σl(A)∪ τl(A) is
not a linearly independent set. Hence, some linear combination of some vectors
from the set sum to 0. Since, by the execution of the algorithm, τl(A) is a
linearly independent set, at least one of these vectors should be from σl(A), and
this vector u can be written as a linear combination of some other vectors in
σl(A) ∪ τl(A). To this end, recall that σl denotes the indices of columns of Al
chosen by the optimal solution Ul, and σl(A) is the set of columns of A with these
indices. Consider a column vector v in σl(A). According to the algorithm, at the
end of the lth iteration, the residual vector vl (which is in σl(Al)) is precisely the
projection of v onto the space orthogonal to the vectors chosen by the algorithm,
namely τl(A). Since this is the case for all possible v’s, we have that σl(Al) is
the projection of σl(A) onto the space orthogonal to τl(A). Hence, according to
our last assumption, ul which is the projection of u onto the space orthogonal to
τl(A) can be expressed as a linear combination of some other vectors in σl(Al)
since no vector from τl(A) can contribute in the expansion of ul. This contradicts
the optimality of Ul, i.e. that the number of columns it “selects” from Al is the
fewest among all possible choices.

Proof of Lemma 9 Consider the column indices {i1, i2, . . . , il} of the first l
vectors chosen by the algorithm. Specifically, let τl(Al) = {A(i1)

l , A
(i2)
l , . . . , A

(il)
l }

be the columns in Al chosen by the algorithm in the order selected. Note that
these vectors are orthogonal. At the end of the lth iteration of the algorithm, for
i ∈ σl, we can write

A
(i)
l =

A
(i)
l−1 − v

(i)
l√

1− ‖v(i)
l ‖

2

2

(6)

where v(i)
l is in the span of A(il)

l . Similarly, we can express A(i)
l−1 in terms of A(i)

l−2,
i.e.

A
(i)
l−1 =

A
(i)
l−2 − v

(i)
l−1√

1− ‖v(i)
l−1‖

2

2

where v(i)
l−1 is in the span of A(il−1)

l . Note that, since the vectors in τl(Al) are

orthogonal, we have ‖v(i)
l + v

(i)
l−1‖

2

2
= ‖v(i)

l ‖
2

2
+ ‖v(i)

l−1‖
2

2
. Using this, we can re-

cursively express A(i)
l in (6) as

A
(i)
l =

A(i) − v(i)√
1− ‖v(i)‖22

(7)

for some v(i) ∈ span(τl(A)). (Note that span(τl(Al) = span(τl(A0) = span(τl(A)
and the columns of A are normalized). Thus, noting that Q(j)

l =
∑
i∈σl

A
(i)
l Ulij ,

and v(i) can be expressed as a linear combination of the column vectors of τl(A),
we have

Q
(j)
l =

∑
i∈σl

Ulij
A(i) − v(i)√
1− ‖v(i)‖22

=
∑
i∈σl

Ulij√
1− ‖v(i)‖22

A(i) +
∑
i∈τl

δiA
(i) (8)

where δi’s are appropriate coefficients in the expansion of v(i). Now, let Sl be the
matrix of the columns from σl(A)∪τl(A). Note that, Sl is a column submatrix of
A which has full rank by Lemma 8. Since Sl is a linearly independent set, Ql has
a unique expansion in the basis Sl given by Wl = S+

l Ql. Specifically, for i ∈ σl,

Wlij = Ulij/

√
1− ‖v(i)‖22, and for i ∈ τl, Wlij = δi. Since

√
1− ‖v(i)‖22 < 1,

|Ulij | ≤ |Wlij | for i ∈ σl. For i ∈ τl, we have Ulij = 0 and hence trivially |Ulij | ≤
|Wlij |. Applying this inequality to the jth column of Ul, we obtain ‖U (j)

l ‖2 ≤
‖Wl

(j)‖2 ≤ ‖S
+
l ‖2‖Q

(j)
l ‖2. The last inequality is due to sub-multiplicativity of

the spectral norm. Noting that Q(j)
l = B

(j)
l + E(j), where E is a generic error

matrix with ‖E‖F ≤ ε/2, and hence
∑k
j=1 ‖E(j)‖22 ≤ ε2/4, we obtain

‖Ul‖2F =
k∑
j=1

‖U (j)
l ‖

2

2

≤ ‖S+
l ‖

2

2

k∑
j=1

‖Q(j)
l ‖

2

2

≤ ‖S+
l ‖

2

2

k∑
j=1

(
‖B(j)

l + E(j)‖
2

2

)

≤ ‖S+
l ‖

2

2

k∑
j=1

(
‖B(j)

l ‖2 + ‖E(j)‖2
)2

(Triangle Inequality)

= ‖S+
l ‖

2

2

 k∑
j=1

‖B(j)
l ‖

2

2
+

k∑
j=1

‖E(j)‖
2

2 + 2
k∑
j=1

‖B(j)
l ‖2‖E

(j)‖2


≤ ‖S+

l ‖
2

2

‖Bl‖2F +
ε2

4
+ 2

k∑
j=1

‖B(j)
l ‖2‖E

(j)‖2


≤ ‖S+

l ‖
2

2

5
4
‖Bl‖2F + 2

k∑
j=1

‖B(j)
l ‖2‖E

(j)‖2

 (‖Bl‖F > ε)

Applying Cauchy-Schwartz inequality to the second term in the parantheses, we
obtain

‖Ul‖2F ≤ ‖S
+
l ‖

2

2

5
4
‖Bl‖2F + 2

 k∑
j=1

‖B(j)
l ‖

2

2

1/2 k∑
j=1

‖E(j)‖
2

2

1/2


= ‖S+
l ‖

2

2

(
5
4
‖Bl‖2F + 2‖Bl‖F ‖E‖F

)
≤ ‖S+

l ‖
2

2

(
5
4
‖Bl‖2F + ε‖Bl‖F

)
(‖E‖F ≤ ε/2)

≤ ‖S+
l ‖

2

2

(
5
4
‖Bl‖2F + ‖Bl‖2F

)
(‖Bl‖F > ε)

=
9
4
‖S+

l ‖
2

2
‖Bl‖2F .

Hence, we have ‖Ul‖F ≤
3
2‖S

+
l ‖2‖Bl‖F . Now, note that the rank of Sl is less than

or equal to r, the rank of A. Sl can be obtained by deleting columns of a full-rank
submatrix Z of A, which has exactly r columns. ‖S+

l ‖2, which is the inverse of

the least singular value of Sl is smaller than that of such a matrix Z (see [13]).
Then, by the definition of µ(A), we clearly have ‖S+

l ‖2 ≤ ‖Z
+‖2 ≤ µ(A) and

the lemma follows.

Proof of Lemma 10 : We will make use of the following result which is proved
in [9]. They give a randomized algorithm which constructs, with non-zero prob-
ability a set of columns with a particular approximation property. This imme-
diately translates to an existence result. For a set of columns C ∈ A, denote
the sampling matrix which selects the columns by S so that C = AS. Let Vk
be the matrix of the first k right singular vectors of A. Let Vr−k be the matrix
containing the last r−k right singular vectors of A, and let Σk and Σr−k be the
diagonal matrices containing the first k and the last r − k singular values of A.

Theorem 12 ([9]) There exists a set of c = O(k log k/ε2) columns from A
and corresponding sampling matrix S, with C = AS such that rank(V Tk S) =
rank(Vk), ‖Σr−kV Tr−kS(V Tk S)+‖

F
≤ ε‖A − Ak‖F where Σr−k is the diagonal

matrix containing the smallest r−k singular values of A, and Vr−k is the matrix
containing the last r − k right singular vectors of A.

Let C = AS be the column sub-matrix whose existence is guaranteed by the
theorem above. We have

ε2‖A−Ak‖2F ≥ ‖Σr−kV
T
r−kS(V Tk S)+‖2

F

= ‖Σk −ΣkV Tk S(V Tk S)+‖2F + ‖Σr−kV Tr−kS(V Tk S)+‖2
F

where the first term in the last expression is just 0 as V Tk S(V Tk S)+ = Ik. Com-
bining the last two terms into one expression, we have

ε2‖A−Ak‖2F ≥
∥∥∥∥(Σk0

)
−
(

ΣkV
T
k

Σr−kV
T
r−k

)
S(V Tk S)+

∥∥∥∥2

F

=
∥∥∥∥(Σk0

)
−
(
Σk 0
0 Σr−k

)(
V Tk
V Tr−k

)
S(V Tk S)+

∥∥∥∥2

F

=
∥∥∥∥(Σk0

)
− (ΣV TS)(ΣkV Tk S)+Σk

∥∥∥∥2

F

=
∥∥∥∥(Σk0

)
− (ΣV TS)Y

∥∥∥∥2

F

where Y = (ΣkV Tk S)+Σk. LetA,B be arbitrary matrices. Then, minX ‖A−BX‖F
2 =

‖A−BB+A‖F
2 (see [13]). Hence, we continue as follows,

∥∥∥∥(Σk0
)
− (ΣV TS)Y

∥∥∥∥2

F

≥ min
X∈Rc×k

∥∥∥∥(Σk0
)
− (ΣV TS)X

∥∥∥∥2

F

=
∥∥∥∥(Σk0

)
− (ΣV TS)(ΣV TS)+

(
Σk
0

)∥∥∥∥2

F

=
∥∥∥∥(Ik0

)
Σk − (ΣV TS)(ΣV TS)+

(
Ik
0

)
Σk

∥∥∥∥2

F

=
∥∥∥∥U (Ik0

)
Σk − (UΣV TS)(ΣV TS)+UTUkΣk

∥∥∥∥2

F

=
∥∥UkΣk − (UΣV TS)(UΣV TS)+UkΣk

∥∥2

F

=
∥∥UkΣk − CC+UkΣk

∥∥2

F

where we have used UΣV T = A and C = AS. Choosing an error parameter
ε′ = ε/2 gives the desired result.

