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Parimutuel Betting on Permutations

Shipra Agrawal *

Abstract

We focus on a permutation betting market under
parimutuel call auction model where traders bet on
the final ranking of n candidates. We present a Pro-
portional Betting mechanism for this market. Our
mechanism allows the traders to bet on any subset
of the n? ‘candidate-rank’ pairs, and rewards them
proportionally to the number of pairs that appear in
the final outcome. We show that market organizer’s
decision problem for this mechanism can be formu-
lated as a convex program of polynomial size. More
importantly, the formulation yields a set of n? unique
marginal prices that are sufficient to price the bets in
this mechanism, and are computable in polynomial-
time. The marginal prices reflect the traders’ be-
liefs about the marginal distributions over outcomes.
We also propose techniques to compute the joint dis-
tribution over n! permutations from these marginal
distributions. We show that using a maximum en-
tropy criterion, we can obtain a concise parametric
form (with only n? parameters) for the joint distri-
bution which is defined over an exponentially large
state space. We then present an approximation al-
gorithm for computing the parameters of this distri-
bution. In fact, the algorithm addresses the generic
problem of finding the maximum entropy distribu-
tion over permutations that has a given mean, and
may be of independent interest.

1 Introduction

Prediction markets are increasingly used as an
information aggregation device in academic re-
search and public policy discussions. The fact
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that traders must “put their money where their
mouth is” when they say things via markets
helps to collect information. To take full ad-
vantage of this feature, however, we should ask
markets the questions that would most inform
our decisions, and encourage traders to say as
many kinds of things as possible, so that a big
picture can emerge from many pieces. Combina-
torial betting markets hold great promise on this
front. Here, the prices of contracts tied to the
events have been shown to reflect the traders’
belief about the probability of events. Thus, the
pricing or ranking of possible outcomes in a com-
binatorial market is an important research topic.

We consider a permutation betting scenario
where traders submit bids on final ranking of n
candidates, for example, an election or a horse
race. The possible outcomes are the n! possi-
ble orderings among the candidates, and hence
there are 2™ subset of events to bid on. In order
to aggregate information about the probability
distribution over the entire outcome space, one
would like to allow bets on all these event com-
binations. However, such betting mechanisms
are not only intractable, but also exacerbate the
thin market problems by dividing participants
attention among an exponential number of out-
comes |6, [L1]. Thus, there is a need for betting
languages or mechanisms that could restrict the
possible bid types to a tractable subset and at
the same time provide substantial information
about the traders’ beliefs.

1.1 Previous Work

Previous work on parimutuel combinatorial mar-
kets can be categorized under two types of mech-
anisms: a) posted price mechanisms including
the Logarithmic Market Scoring Rule (LMSR)
of Hanson [11,10] and the Dynamic Pari-mutuel
Market-Maker (DPM) of Pennock [16] b) call
auction models developed by Lange and Econo-
mides [13], Peters et al. [17], in which all the
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orders are collected and processed together at
once. An extension of the call auction mecha-
nism to a dynamic setting similar to the posted
price mechanisms, and a comparison between
these models can be found in Peters et al. [18].

Chen et al. (2008) [4] analyze the computa-
tional complexity of market maker pricing algo-
rithms for combinatorial prediction markets un-
der LMSR model. They examine both permu-
tation combinatorics, where outcomes are per-
mutations of objects, and Boolean combina-
torics, where outcomes are combinations of bi-
nary events. Even with severely limited lan-
guages, they find that LMSR pricing is #P-
hard, even when the same language admits
polynomial-time matching without the market
maker. Chen, Goel, and Pennock [3] study a spe-
cial case of Boolean combinatorics and provide a
polynomial-time algorithm for LMSR pricing in
this setting based on a Bayesian network repre-
sentation of prices. They also show that LMSR
pricing is NP-hard for a more general bidding
language.

More closely related to our work are the stud-
ies by Fortnow et al. [§] and Chen et al. (2006)
[5] on call auction combinatorial betting mar-
kets. Fortnow et al. [§] study the computational
complexity of finding acceptable trades among a
set of bids in a Boolean combinatorial market.
Chen et al. (2006) [5] analyze the auctioneer’s
matching problem for betting on permutations,
examining two bidding languages. Subset bets
are bets of the form candidate ¢ finishes in posi-
tions x, y, or z or candidate i, j, or k finishes in
position x. Pair bets are of the form candidate 4
beats candidate j. They give a polynomial-time
algorithm for matching divisible subset bets, but
show that matching pair bets is NP-hard.

1.2 Owur Contribution

This paper extends the above-mentioned work in
a variety of ways. We propose a more general-
ized betting language called Proportional Bet-
ting that encompasses Subset Betting [3] as a
special case. Further, we believe that ours is the
first result on pricing a parimutuel call auction
under permutation betting scenario.

In our proportional betting mechanism, the
traders bet on one or more of the n? ‘candidate-
position’ pairs, and receive rewards proportional

to the number of pairs that appear in the final
outcome. For example, a trader may place an
order of the form “Horse A will finish in position
2 OR Horse B will finish in position 4”. He U
will receive a reward of $2 if both Horse A &
Horse B finish at the specified positions 2 & 4
respectively; and a reward of $1 if only one horse
finishes at the position specified. The market
organizer collects all the orders and then decides
which orders to accept in order to maximize his
worst case profit.

In particular, we will present the following re-
sults:

e We show that the market organizer’s de-
cision problem for this mechanism can be
formulated as a convex program with only
O(n? + m) variables and constraints, where
m is the number of bidders.

e We show that we can obtain, in polynomial-
time, a small set (n?) of ‘marginal prices’
that satisfy the desired price consistency
constraints, and are sufficient to price the
bets in this mechanism.

e We show that by introducing non-zero
starting orders, our mechanism will produce
unique marginal prices.

e We suggest a maximum entropy criteria to
obtain a maximum-entropy joint distribu-
tion over the n! outcomes from the marginal
prices. Although defined over an exponen-
tial space, this distribution has a concise
parametric form involving only n? param-
eters. Moreover, it is shown to agree with
the maximum-likelihood distribution when
prices are interpreted as observed statistics
from the traders’ beliefs.

e We present an approximation algorithm to
compute the parameters of the maximum
entropy joint distribution to any given accu-
racy in (pseudo)-polynomial time B. In fact,
this algorithm can be directly applied to the
generic problem of finding the maximum en-
tropy distribution over permutations that
has a given expected value, and may be of
independent interest.

!¢he’ shall stand for ‘he or she’
2The approximation factors and running time will be
established precisely in the text.



2 Background

In this section, we briefly describe the Convex
Parimutuel Call Auction Model (CPCAM) de-
veloped by Peters et al. [17] that will form the
basis of our betting mechanism.

Consider a market with one organizer and m
traders or bidders. There are S states of the
world in the future on which the traders are sub-
mitting bids. For each bid that is accepted by
the organizer and contains the realized future
state, the organizer will pay the bidder some
fixed amount of money, which is assumed to be
$1 without loss of generality. The organizer col-
lects all the bids and decides which bids to ac-
cept in order to maximize his worst case profit.

Let a;; € {0,1} denote the trader k’s bid for
state i. Let ¢, and 7 denote the limit quantity
and limit price for trader k, i.e., trader k’s maxi-
mum number of orders requested and maximum
price for the bid, respectively. The number of
orders accepted for trader k is denoted by zp,
and p; denotes the price computed for outcome
state 7. xp is allowed to take fractional values,
that is, the orders are ‘divisible’ in the terminol-
ogy of [5]. Below is the convex formulation of
the market organizer’s problem given by [17]:

max mlx —7r+pu Zle 0;1log(s;)

T,s,T
s. bt D opaikTE+si=r 1<i< S

0<z<gq

s>0

(1)

The ‘parimutuel’ price vector {p;};_, is given
by the dual variables associated with the first
set of constraints. The parimutuel property im-
plies that when the bidders are charged a price
of {>°, aixpi}, instead of their limit price, the
payouts made to the bidders are exactly funded
by the money collected from the accepted or-
ders in the worst-case outcome. 6 > 0 represents
starting orders needed to guarantee uniqueness
of these state prices in the solution. p > 0 is the
weight given to the starting order term.

The significance of starting orders needs a spe-
cial mention here. Without the starting orders,
([Il) would be a linear program with multiple dual
solutions. Introducing the convex barrier term
involving 6 makes the dual strictly convex result-
ing in a unique optimal price vector. To under-
stand its effect on the computed prices, consider

the dual problem for ()

min qu — W Zle 0 log(p:)

Y.p
st. Yupi=1
Y GikDi + Yk > T vk
y=>0

Observe that if 6 is normalized, the second term
in the objective gives the K-L distancdd of 8 from
p (less a constant term ) 6;log6;). Thus, when
w is small, the above program optimizes the first
term ¢y, and among all these optimal price vec-
tors picks the one that minimizes the K-L dis-
tance of p from #. As discussed in the introduc-
tion, the price vectors are of special interest due
to their interpretation as outcome distributions.
Thus, the starting orders enable us to choose the
unique distribution p that is closest (minimum
K-L distance) to a prior specified through 6.

The CPCAM model shares many desirable
properties with the limit order parimutuel call
auction model originally developed by Lange
and Economides [13]. Some of its important
properties from information aggregation per-
spective are 1) it produces a self-funded auction,
2) it creates more liquidity by allowing multi-
lateral order matching, 3) the prices generated
satisfy “price consistency constraints”, that is,
the market organizer agrees to accept the orders
with a limit price greater than the calculated
price of the order while rejecting any order with
a lower limit price. The price consistency con-
straints ensure the traders that their orders are
being duly considered by the market organizer,
and provide incentive for informed traders to
trade whenever their information would change
the price. Furthermore, it is valuable that the
model has a unique optimum and produces a
unique price vector.

Although the above model has many powerful
properties, its call auction setting suffers from
the drawback of a delayed decision. The traders
are not sure about the acceptance of their or-
ders until after the market is closed. Also, it is
difficult to determine the optimal bidding strat-
egy for the traders and ensure truthfulness. In

3 The Kullback Leibler distance (KL-distance) is a
measure of the difference between two probability distri-
butions. The K-L distance of a distribution p from @ is

given by . 6; log %.



a consecutive work, Peters et al. [18] intro-
duced a “Sequential Convex Parimutuel Mech-
anism (SCPM)” which is an extension of the
CPCAM model to a dynamic setting, and has
additional properties of immediate decision and
truthfulness in a myopic sense. The techniques
discussed in this paper assume a call auction set-
ting, but can be directly applied to this sequen-
tial extension.

3 Permutation Betting Mecha-
nisms

In this section, we propose new mechanisms for
betting on permutations under the parimutuel
call auction model described above. Consider a
permutation betting scenario with n candidates.
Traders bet on rankings of the candidates in the
final outcome. The final outcome is represented
by an n xn permutation matrix, where ij™" entry
of the matrix is 1 if the candidate 7 takes posi-
tion j in the final outcome and 0 otherwise. We
propose betting mechanisms that restrict the ad-
missible bet types to ‘set of candidate-position
pairs’. Thus, the trader k’s bet will be specified
by an nxn (0,1) matrix Ay, with 1 in the entries
corresponding to the candidate-position pairs he
is bidding on. We will refer to this matrix as the
‘bidding matrix’ of the trader. If the trader’s bid
is accepted, he will receive some payout in the
event that his bid is a “winning bid”.

Depending on how this payout is determined,
two variations of this mechanism are examined:
a) Fixed Reward Betting and b) Proportional
Betting. The intractability of fixed reward bet-
ting will provide motivation to examine propor-
tional betting more closely, which is the focus of
this paper.

Fixed reward betting In this mechanism,
a trader receives a fixed payout (assume $1
w.l.o.g.) if any entry in his bidding matrix
matches with the corresponding entry in the
outcome permutation matrix. That is, if M is
the outcome permutation matrix, then the pay-
out made to trader k is given by I(A; e M > 0).
Here, the operator ‘e’ denotes the Frobenius

inner product], and 1 (-) denotes an indicator
function. The market organizer must decide
which bids to accept in order to maximize the
worst case profit. Using the same notations as
in the CPCAM model described in Section
for limit price, limit quantities, and accepted
orders, the problem for the market organizer in
this mechanism can be formulated as follows:

max 7TT.Z' A

s.t. r>Y 0 I(Aye M, > 0)x, Vo eS8,
0<xz<q
(2)

Here, S, represents the set of n dimensional per-
mutations, M, represents the permutation ma-
trix corresponding to permutation o. Note that
this formulation encodes the problem of maxi-
mizing the worst-case profit of the organizer with
no starting orders.

Above is a linear program with exponential
number of constraints. We prove the following
theorem regarding the complexity of solving this
linear program.

Theorem 3.1. The optimization problem in (3)
is NP-hard even for the case when there are only
two mon-zero entries in each bidding matriz.

Proof. The separation problem for the linear
program in (2) corresponds to finding the per-
mutation that “satisfies” maximum number of
bidders. Here, an outcome permutation is said
to “satisfy” a bidder, if his bidding matrix has at
least one coincident entry with the permutation
matrix. We show that the separation problem is
NP-hard using a reduction from maximum sat-
isfiability (MAX-SAT) problem. In this reduc-
tion, the clauses in the MAX-SAT instance will
be mapped to bidders in the bidding problem.
And, the number of non-zero entries in a bidding
matrix will be equal to the number of variables
in the corresponding clause. Since, MAX-2-SAT
is NP-hard, this reduction will prove the NP-
hardness even for the case when each bidding
matrix is restricted to have only two non-zero

4 The Frobenius inner product, denoted as A e B in
this paper, is the component-wise inner product of two
matrices as though they are vectors. That is,

AeB =" AiBj

0,3



entries. See the appendix for the complete re-
duction.

Using the result on equivalence of separation
and optimization problem from [9], the theorem
follows. O

This result motivates us to examine the fol-
lowing variation of this mechanism which makes
payouts proportional to the number of winning
entries in the bidding matrix.

Proportional betting In this mechanism,
the trader receives a fixed payout (assume $1
w.l.o.g.) for each coincident entry between the
bidding matrix A, and the outcome permu-
tation matrix. Thus, the payoff of a trader is
given by the Frobenius inner product of his
bidding matrix and the outcome permutation
matrix. The problem for the market organizer
in this mechanism can be formulated as follows:

max WTx -T

st r>> 0 (Ape My)x, Yoe8, (3)
0<z<gq

The above linear program involves exponen-
tial number of constraints. However, the sepa-
ration problem for this program is polynomial-
time solvable, since it corresponds to finding the
maximum weight matching in a complete bipar-
tite graph, where weights of the edges are given
by elements of the matrix (>, Agxy). Thus,
the ellipsoid method with this separating ora-
cle would give a polynomial-time algorithm for
solving this problem. This approach is similar to
the algorithm proposed in [5] for Subset Betting.
Indeed, for the case of subset betting [5], the two
mechanisms proposed here are equivalent. This
is because subset betting can be equivalently for-
mulated under our framework, as a mechanism
that allows non-zero entries only on a single row
or column of the bidding matrix Ag. Hence, the
number of entries that are coincident with the
outcome permutation matrix can be either 0 or
1, resulting in I(A; @ M, > 0) = Ay e M,, for
all permutations o. Thus, subset betting forms
a special case of the proportional betting mech-
anism proposed here, and all the techniques de-
rived in the sequel for proportional betting will
directly apply to it.

4 Pricing in Proportional Bet-
ting

In this section, we reformulate the market orga-
nizer’s problem for Proportional Betting into a
compact linear program involving only O(n? +
m) constraints. Not only the new formulation is
faster to solve in practice (using interior point
methods), but also it will generate a compact
dual price vector of size n?. These ‘marginal
prices’ will be sufficient to price the bets in Pro-
portional Betting, and are shown to satisfy some
useful properties. The reformulation will also
allow introducing n? starting orders in order to
obtain unique prices.

Observe that the first constraint in (3]
implicitly sets r as the worst case payoff over
all possible permutations (or matchings). Since
the matching polytope is integral [9], r can
be equivalently set as the result of following
linear program that computes maximum weight
matching:

r= max Oz Ag) o M

st. MTe=e
Me=¢

Here e denotes the vector of all 1s (column vec-
tor). Taking dual, equivalently,

r= min efv+elw
VW

s.t. v+ w; > Zzl:l(fﬂkAk)ij Vi, j

Here, (z1Af)i; denotes the ij" element of the
matrix (xAg). The market organizer’s problem
in (B) can now be formulated as:

max 7TTIL' — eTU — eTw

T,v,w

st vitw; > Y0 (eR )y Vi (4)
0<z<gq

Observe that this problem involves only n? +2m
constraints. As we show later, the n? dual vari-
ables for the first set of constraints can be well
interpreted as marginal prices. However, the
dual solutions for this problem are not guaran-
teed to be unique. To ensure uniqueness, we can
use starting orders as discussed for the CPCAM
model in Section 2l After introducing one start-
ing order ¢;; > 0 for each candidate-position



pair, and slack variables s;; for each of the n?
constraints, we get the following problem:

max 7'z —elv—elw+ Y, 0i51og(si)

,v,W,8

s.t. Vi +wj— 855 = Zk:l(kak)ij Vl,j
Sij > 0 VZ,j
0<z<gq

()

and its dual:

min q Y — Zwezglog(Qw)

v,Q

st. Qe=ce
Qle=ce (6)
Ap o Q +yr > g vk
y=>0

Next, we will show that model (&) and (@)
possess many desirable characteristics.

Lemma 4.1. Model (3) and (@) are convez pro-
grams. And if 6;; > 0,Vi, j, the solution to (6]
s unique in Q.

Proof. Since logarithmic function is concave and
the constraints are linear, we can easily verify
that (B]) and (@) are convex programs. Also, ac-
cording to our assumption on f#, the objective
function in (6]) is strictly convex in Q). Thus, the
optimal solution of (@) must be unique in Q. O

Therefore, we know that this program can be
solved up to any given accuracy in polynomial
time using convex programming methods and
produces unique dual solution Q.

We show that the dual matrix @ generated
from (6] is well interpreted as a “parimutuel
price”. That is, Q > 0; and, if we charge each
trader k a price of Ay e () instead of their limit
price (7 ), then the optimal decision remains un-
changed and the total premium paid by the ac-
cepted orders will be equal to the total payout
made in the worst case. Further, we will show
that @ satisfies the following extended defini-
tion of “price consistency condition” introduced
n [13].

Definition 4.2. The price matriz Q satisfies the
price consistency constraints if and only if for all

J:

l‘jZO = QOAj:CjZTFj
0<33j<Qj = QOAj:Cj:TFj
xj:qj = QOAj:CjS?Tj

That is, a trader’s bid is accepted only if his limit
price is greater than the calculated price for the
order.

To see this, we construct the Lagrangian func-
tion for program ([B):

L(z,Q,s,v,w,y)
= Ta:—eT’U—e w+z HZ]logs,j
B ZZ,] QZJ (87'] + Ek($kAk)2] (% ZUJ)
+ ZZ vi(qi — xz)

Now, we can derive the KKT conditions:

T — Qe Ay —y, <0 1<k<m
T (Mg — QoA —yr) =0 1<k<m
Qe=c¢

Qle=ce
—Qijéo 1<4,5<n
0; .
Sij - (s] ) 1§Z,]§TL
Yk - (%—%)20 1<k<m
y=>0

Since s;; > 0 for any optimal solution, the
above conditions imply that Q;; = 9—

ij L
s OF Sij =

QUJ for all ij. Since, 6;; > 0, this 1mphes Qi >0,
for all i5. Also, the first constraint in the primal
problem () now gives: v; +w; = >, (x5 Ak)ij +

g’;j. Multiplying with Q;;, and summing over

all 4, 5:
r=elv+elw=73, 1.(Ax e Q)+ >_i; i

Since, r gives the worst case payoff, charging the
bidders according to price matrix ) results in a
parimutuel market (except for the amount in-
vested in the starting orders, an issue that we
address later). Also, if we replace 7, with ApeQ
in the above KKT conditions and set y, = 0,
the solution z, s, @ will still satisfy all the KKT
conditions. Thus, the optimal solution remains
unchanged. Further, observe that the first two
conditions along with the penultimate one are
exactly the price consistency constraints. Hence,
() must satisfy the price consistency constraints.

In the above model, market organizer needs to
seed the market with the starting orders 6;; in
order to ensure uniqueness of the optimum state
price matrix. The market organizer could actu-
ally lose this seed money in some outcomes. In
practice, we can set the starting orders to be very



small so that this is not an issue. On the other
hand, it is natural to ask whether the starting or-
ders can be removed altogether from the model
to make the market absolutely parimutuel. The
following lemma shows that this is indeed possi-
ble.

Lemma 4.3. For any given starting orders 6,
as we reduce 0 uniformly to 0, the price matriz
converges to a unique limit Q, and this limit is
an optimal dual price for the model without the
starting orders given in ().

Proof. The proof of this lemma follows directly
from the discussion in Section 3.1 of |17]. O

Moreover, as discussed in [17], such a limit
Q@ can be computed efficiently using the path-
following algorithm developed in [21].

To summarize, we have shown that:

Theorem 4.4. One can compute in polynomial-
time, an n X n marginal price matriz Q which
is sufficient to price the bets in the Proportional
Betting mechanism. Further, the price matrix
s unique, parimutuel, and satisfies the desired
price-consistency constraints.

5 Pricing the Outcome Permu-
tations

There is analytical as well as empirical evidence
that prediction market prices provide useful es-
timates of average beliefs about the probabil-
ity that an event occurs [1, 14, 15, 20]. There-
fore, prices associated with contracts are typi-
cally treated as predictions of the probability of
future events. The marginal price matrix ) de-
rived in the previous section associates a price to
each candidate-position pair. Also, observe that
@ is a doubly-stochastic matrix (refer to the con-
straints in dual problem (@l)). Thus, the distribu-
tions given by a row (column) of @ could be in-
terpreted as marginal distribution over positions
for a given candidate (candidates for a given po-
sition). One would like to compute the complete
price vector that assigns a price to each of the n!
outcome permutations. This price vector would
provide information regarding the joint proba-
bility distribution over the entire outcome space.
In this section, we discuss methods for comput-
ing this complete price vector from the marginal
prices given by Q.

Let p, denote the price for permutation o.
Then, the constraints on the price vector p are
represented as:

Q

> oes, PoMy = (7)
po > 0 Voes§,

Note that the above constraints implicitly im-
pose the constraint ) p, = 1. Thus, {p,} is
a valid distribution. Also, it is easy to establish
that if @) is an optimal marginal price matrix,
then any such {p,} is an optimal joint price vec-
tor over permutations. That is,

Lemma 5.1. If @ is an optimal dual solution
for ({{]), then any price vector {p,} that satisfies
the constraints in (7) is an optimal dual solution

for (3).

Proof. The result follows directly from the struc-
ture of the two dual problems. See appendix for
a detailed proof. O

Finding a feasible solution under these con-
straints is equivalent to finding a decomposi-
tion of doubly-stochastic matrix @ into a con-
vex combination of n X n permutation matrices.
There are multiple such decompositions possi-
ble. For example, one such solution can be ob-
tained using Birkhoff-von Neumann decomposi-
tion [2,7]. Next, we propose a criterion to choose
a meaningful distribution p from the set of dis-
tributions satisfying constraints in ().

5.1 Maximum entropy criterion

Intuitively, we would like to use all the informa-
tion about the marginal distributions that we
have, but avoid including any information that
we do not have. This intuition is captured by the
‘Principle of Maximum Entropy’. It states that
the least biased distribution that encodes cer-
tain given information is that which maximizes
the information entropy.

Therefore, we consider the problem of find-
ing the maximum entropy distribution over the
space of n dimensional permutations, satisfying
the above constraints on the marginal distribu-
tions. The problem can be represented as fol-

lows:
min Zoesn Po log po
s.t. ZUESn oMy = Q (8)
Do =0

The maximum entropy distribution obtained
from above has many nice properties. Firstly,



as we show next, the distribution has a con-
cise representation in terms of only n? param-
eters. This property is crucial for combinatorial
betting due to the exponential state space over
which the distribution is defined. Let Y € R™*"
be the Lagrangian dual variable corresponding
to the marginal distribution constraints in (&),
and s, be the dual variables corresponding to

non-negativity constraints on p,. Then, the
KKT conditions for (8) are given by:
log(ps) +1—5s, = Y elMM,
ZU peMy; = Q (9)
50,6 = 0 Vo
PsSe = 0 Yo

Assuming p, > 0 for all o, this gives p, =
eY*Ms=1  Thus, the distribution is completely
specified by the n? parameters given by Y. Once
Y is known, it is possible to perform operations
like computing the probability for a given set of
outcomes, or sampling the highly probable out-
comes.

Further, we show that the dual solution Y is
a maximum likelihood estimator of distribution
parameters under suitable interpretation of Q).

Maximum likelihood interpretation For a
fixed set of data and an assumed underlying
probability model, maximum likelihood estima-
tion method picks the values of the model pa-
rameters that make the data “more likely” than
any other values of the parameters would make
them. Let us assume in our model that the
traders’ beliefs about the outcome come from
an exponential family of distributions D,, with
probability density function of the form f, o
e*Ms for some parameter n € R" ™. Suppose
@ gives a summary statistics of s sample ob-
servations {M*', M? ... M*} from the traders’
beliefs, ie., Q = %Zk MPF*. This assumption
is inline with the interpretation of the prices in
prediction markets as mean belief of the traders.

Then, the maximum likelihood estimator 7 of
n is the value that maximizes the likelihood of
these observations, that is:

7 = argmax,log f,(M', M2 ... M)
= argmax, log(Hk%)

The optimality conditions for the above uncon-
strained convex program are:

7 .MM, = (Y ME

where Z is the normalizing constant, Z =
S, e™Me Since 137, M* = @, observe from
the KKT conditions for the maximum entropy
model given in (9)) that n = Y satisfies the above
optimality conditions. Hence, the parameter Y
computed from the maximum entropy model is
also the maximum likelihood estimator for the
model parameters 7.

5.2 Complexity of the Maximum En-
tropy Model

In this section, we analyze the complexity of
solving the maximum entropy model in (§). As
shown in the previous section, the solution to
this model is given by the parametric distribu-
tion p, = €Y *Mo~1  The parameters Y are the
dual variables given by the optimal solution to
the following dual problem of (g])

max QeY — > eYeMo—l (10)

We prove the following result regarding the com-
plexity of computing the parameters Y:

Theorem 5.2. It is #P-hard to compute the
parameters of the mazximum entropy distribution
{ps} over n dimensional permutations o € Sy,
that has a given marginal distribution.

Proof. We make a reduction from the following
problem:

Permanent of a (0,1) matrix The permanent
of an n X n matrix B is defined as perm(B) =
> ves, i1 B; o(i)- Computing permanent of a
(0,1) matrix is #P-hard [19].

We use the observation that > e¥*Mr =
perm(e¥’), where the notation ¥ is used to mean
component-wise exponentiation: (ey)ij = ¥,
For complete proof, see the appendix. O

Interestingly, there exists an FPTAS based on
MCMC methods for computing the permanent
of any non-negative matrix [12]. Next, we derive
a polynomial-time algorithm for approximately
computing the parameter Y that uses this FP-
TAS along with the ellipsoid method for opti-
mization.

5.3 An Approximation Algorithm

In this section, we develop an approximation al-
gorithm to compute the parameters Y. We first
relax the formulation in (8] to get an equivalent
problem that will lead to a better bounded dual.



Consider the problem below:

min Y p,(logp, — 1)
st YpeMs <Q (11)
Do >0

We prove the following lemma;:

Lemma 5.3. The problem in (1)) has the same
optimal solution as (8).

Proof. See the appendix. O

The Lagrangian dual of this problem is given
by:
max QeY — > VoMo
st. Y <0

Note that Y is bounded from above. Next, we
establish lower bounds on the variable Y. These
bounds will be useful in proving polynomial run-
ning time for ellipsoid method.

Lemma 5.4. The optimal value OPT and the
optimal solution Y to (I2) satisfy the following
bounds:

0
0

(12)

OPT > —nlogn—1
Yi; > —nlogn/qmin Vi, j

Vv IV

Here, qmin = min{Q;;}.
Proof. See the appendix. O

Remark: Note that if Q;; = 0 for any ¢, 7, in
a pre-processing step we could set the corre-
sponding Y;; to —oo and remove it from the
problem. So, w.l.o.g. we can assume ¢, > 0.
However, some @);; could be very small, making
the above bounds very large. One way to handle
this would be to set very small Q;;s (say less
than § for some small § > 0) to 0, and remove
the corresponding Yj;s from the problem. This
would introduce a small additive approximation
of § in the constraints of the problem, but
ensure that ¢, > 0.

From KKT conditions for the above problem,
we obtain that p, = e¥*Mv at optimality. Sub-
stituting p, into the primal constraints > p, = 1
and > p,M, < Q, we can obtain the follow-
ing equivalent dual problem with additional con-
straints:

max QeY —1

st. SeVeMopr, < Q
Yij = (—nlogn)/qmin Vi, j
Yi; <0 Vi, j

(13)

The problem can be equivalently formulated
as that of finding a feasible point in the convex
body K defined as:

Ki QeY —-1>1t
ZeY.MUMo S Q
Yij > (—nlogn)/qmin Vi, j

Here, t is a fixed parameter. An optimal solution
to (I3) can be found by binary search on t €
[-nlogn — 1,0]. We define an approximate set
K. by modifying the RHS of second constraint
in K defined above to Q(1+¢). Here, € is a fixed
parameter.

Next, we show that the ellipsoid method can
be used to generate (1+ ¢)-approximate solution
Y. We will make use of the following lemma
that bounds the gradient of the convex func-
tion f(Y) = 3. eY*Ms )M, appearing in the con-
straints of the problem.

Lemma 5.5. For any ij, the gradient of the
function g(Y) = fi;(Y) =3 e¥*Me(M,);; sat-
isfies the following bounds:
ng(Y)

IVg(Y)ll2 < < Vnl[Vg(Y)ll2

Proof. See the appendix. O

Now, we can obtain an approximate separat-
ing oracle for the ellipsoid method.

Lemma 5.6. Given any Y € R"™™ "™, and any
parameter € > 0, there exists an algorithm with
running time polynomial in n, 1/e and 1/qmin
that does one of the following:

e asserts that Y € K,
e or, finds C € R™" such that Ce X < CeY
for every X € K.

Algorithm

1. If Y violates any constraints other than the
constraint on f(Y), report Y ¢ K. The
violated inequality gives the separating hy-
perplane.

2. Otherwise, compute a (1+4)-approximation

f(Y) of f(Y'), where § = min{5,1}.

~

(a) If f(Y) < (1+30)Q, then report Y €
K..



(b) Otherwise, say ij"* constraint is

violated. Compute a (1 £ 7)-
approximation of the gradient of the
function g(Y') = fi;(Y), where v
8Gmin/2n*. The approximate gradient
C = ﬁg(Y) gives the desired separat-
ing hyperplane.

Running time Observe that f;;(Y)

perm(eyilj)7 where Y} denotes the matrix ob-
tained from Y after removing the row ¢ and col-
umn j. Thus, (1 £+ ) approximation to f(Y)
can be obtained in time polynomial in n,1/§ us-
ing the FPTAS given in [12] for computing per-
manent of a non-negative matrix. Since, 1/0 is
polynomial in n,1/€,1/qmin, this gives polyno-
mial running time for estimating f(Y). Simi-
lar observations hold for estimating the gradient
V £i;(Y) in above.

Correctness The correctness of the above al-
gorithm is established by the following two lem-
mas:

~

Lemma 5.7. If f(Y) < (1 +30)Q and all the
other constraints are satisfied, then Y € K..

Proof. See the appendix. O

Lemma 5.8. Suppose the it constraint is vi-
olated, i.e., fij(Y) > (1 + 30)Q;;. Then, C =
@fij(Y) gives a separating hyperplane for K,
that is, C e (X —Y) <0,VX € K.

Proof. See the appendix. The proof uses the
bounds on X,Y and Vf;;(Y) established in
Lemma [5.4] and Lemma [5.5] respectively. d

Theorem 5.9. Using the separating oracle

given by Lemma [5.8 with the ellipsoid method, a

distribution {p,} over permutations can be con-
11

structed in time poly(n, ¢, qmﬁ), such that

hd (1 - E)Q < ngoMcr < Q

e p has close to maximum entropy, i.e.,
Y oPologp, < (1 — €OPTg, where
OPTg(<0) is the optimal value of (8).

Proof. Using the above separating oracle with
the ellipsoid method [9], after polynomial num-
ber of iterations we will either get a solution
Y € K(t), or declare that there is no feasi-
ble solution. Thus, by binary search over the

10

t, we can get a solution Y such that Y € K,
and QeY —1 > OPT. The dual solution
thus obtained will have an objective value equal
to or better than optimal but may be infeasi-
ble. We reduce each of the Y;;s by a small
amount (1log(1+ €)) to construct a new fea-

sible but sub-optimal solution Y. Some simple
algebraic manipulations show that the new solu-

tion ¥ satisfies: (1 —€)Q < Yoo VoMo \f < Q
Thus, Y is a feasible solution to the dual, and,

Qo?— 1 < OPT. We can now construct the dis-

tribution p, as py, = €¥*Me. Then from above,

(1 - E)Q < Zo—po‘Mo < Q AISO7

Za’ pologp, = Zo e¥ oMo M, e i}
< (1-9QeY
< (1-€¢(OPT+1)
= (1-¢OPTEg

6 Conclusion

We introduced a Proportional Betting mecha-
nism for permutation betting which can be read-
ily implemented by solving a convex program of
polynomial size. More importantly, the mecha-
nism was shown to admit an efficient parimutuel
pricing scheme, wherein only n? marginal prices
were needed to price the bets. Further, we
demonstrated that these marginal prices can be
used to construct meaningful joint distributions
over the exponential outcome space.

The proposed proportional betting mecha-
nism was developed by relaxing a ‘fixed reward
betting mechanism’. An interesting question
raised by this work is whether the fixed bet-
ting mechanism could provide further informa-
tion about the outcome distribution. Or, in gen-
eral, how does the complexity of the betting lan-
guage relates to the information collected from
the market? A positive answer to this ques-
tion would justify exploring approximation algo-
rithms for the more complex fixed reward bet-
ting mechanism.

Acknowledgements We thank Arash Asad-
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discussions.
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APPENDIX

Proof of Theorem [3.1] Consider the com-
plete bipartite graph with the n candidates in
one set and the n positions in the other set. In
our betting mechanism, each bidder k bids on
a subset of edges in this graph which is given
by the non-zero entries in his bidding matrix
Ag. A bidder is “satisfied” by a matching (or
permutation) in this graph if at least one of the
edges he bid on occurs in the matching. The
separation problem for the linear program in
@) corresponds to finding the matching that
satisfies the maximum number of bidders. Thus,
it can be equivalently stated as the following
matching problem:

Matching problem: Given a complete bipartite
graph K,, = (V1,V2,E), and a collection
C ={E1,E,,...,E,} of m subsets of E. Find
the perfect matching M C FE that intersects
with maximum number of subsets in C.

MAX-SAT problem: Given a boolean formula
in CNF form, determine an assignment of {0, 1}
to the variables in the formula that satisfies the
maximum number of clauses.

Reduction from MAX-SAT to our matching
problem: Given the boolean formula in MAX-
SAT problem with n variables z,y,z.... Con-
struct a complete bipartite graph K», o, as fol-
lows. For each variable z, add two nodes x and
2’ to the graph. And, for the possible values 0
and 1 of x, construct two nodes xg and z1. Con-
nect by edges all the nodes corresponding to the
variables to all the nodes corresponding to the
values. Now, create the collection C as follows.
For k' clause in the boolean formula, create a
set E} in C. For each negated variable x in this
clause, add edge (x, z¢) to Ey; and for each non-
negated variable z in the clause, add an edge
(z,21) to E.

We show that every solution of size [ for the
MAX-SAT instance corresponds to a solution of
size [ for the constructed matching problem in-
stance and vice-versa. Let there is an assignment
that satisfies [ clauses of MAX-SAT instance.
Output a matching M in the graph K as fol-
lows. For each variable z, consider the nodes
x,x’, 10, 71. Let the variable x is assigned value

0 in the MAX-SAT solution. Then, add edges
(xz,xg), (2/,21) to M. Otherwise, add edges
(z,21), (', 20) to M. Tt is easy to see that the
resulting set M is a matching. Also, if a clause
k satisfied in the MAX-SAT problem, then the
matching M will have an edge common with Fj.
Therefore M intersects with at least [ subsets in
C.

Similarly, consider a solution M to the match-
ing problem. Form a solution to the MAX-SAT
problem as follows. Let the set E} is satisfied
(intersects with M). Then, one of the edges in
Ej, must be present in M. Let (z,20) ((z,z1))
is such an edge. Then, assign 0 (1) to z. Be-
cause the M is a matching, any node x will have
at the most one edge in M incident on it, and
both (z,z¢) and (x,z1) cannot be present M.
This ensures that takes x will take at the most
one value 0 or 1 in the constructed assignment.
For the remaining variables, assign values ran-
domly. By construction, if a set Ej is satisfied
in the matching solution, the corresponding k"
clause must be satisfied in the MAX-SAT prob-
lem - resulting in a solution of size at least [ to
MAX-SAT. This completes the reduction.

Note that in above, if we reduced from MAX-
2-SAT, then each subset Ej would contain ex-
actly two edges, that is, we would get an in-
stance in which each bidder bids on exactly two
candidate-position pairs. Because MAX-2-SAT
is NP-hard, this proves that this special case is
also NP-hard.

Proof of Lemma [5.3] The dual for () is:

min ¢"y
y,Q
st. ApeQ 4wy >m VEk
Qe=e (14)
Qle=ce
y=>0
Q>0

The dual for () is:

min ¢y
Y,p
s.t. EO’(Ak o Mo)pg + Yk = Tk Vk (15)
Eo‘ Do = 1
y=>0
Suppose p. is a solution to (1), and
Y o PeM, = @', then the first constraint in (I5])



is equivalent to Ay @ Q' + yr > . Hence, for
any solution p/ to (IH)), there is a corresponding
solution Q" = > _pl M, to ([I4) with the same
objective value. Thus, if Q) is an optimal solution
to (I4)), then all {p,} satistying > p,M, = Q
have the same objective value and are optimal.
Proof of Lemma The optimality condi-
tion for the dual problem in (I0) is specified as
(setting derivative to 0):

Q = Y, e M, (16)

Thus, given a certificate Y, verifying its opti-
mality requires computing the function f(Y")
SteY*Mo0p, for a given Y. Note that the ij™"
component of this function is given by

. . /
eYii E eY oMo — Yiiperm(e¥)

o:j=0(%)

where Y’ is the matrix obtained from Y after
removing row ¢ and column j. We show that
computing the permanent of eY is #P-hard by
reducing it to the problem of computing perma-
nent of a (0,1) matrix. The reduction uses the
technique from the proof of Theorem 1 in [4].
We repeat the construction below for complete-
ness. Suppose A is a (n — 1) x (n — 1) (0,1)
matrix whose permanent we wish to find. Then,
construct a matrix Y’ as follows:

Ag=1
Yk/l:{

A =0
Then, perm(e¥’) mod (n! + 1) = perm(A)
mod (n! + 1) = perm(A), since perm(4) < nl.
Hence, even the verification problem for this op-
timization problem is at least as hard as com-
puting the permanent of a (0, 1)-matrix.

Proof of Lemma [5.3] Observe that the prob-
lem in () involves implicit constraints Y p, =
1. Further, we show that the equality constraints
can be relaxed to inequality. We will show that
it is impossible that Y p,M, < @ for some el-
ements in the optimal solution. Observe that
the matrix @ — Y p,M, has the property that
each row and each column sums up to 1 — ) p,-.
That is, (Q — > poMs)/(1 —>  ps) is a doubly-
stochastic matrix. Birkhoff-von Neumann theo-
rem [2] proves that any doubly stochastic matrix
can be represented as a convex combination of

log(n! + 2)
log(n!+1)

13

permutation matrices. Since Q — > psM, > 0,
there must be at least one strictly positive co-
efficient in the Birkhoff-von Neumann decompo-
sition of this matrix. This means that we can
increase at least one p, a little bit without vi-
olating the inequality constraint. However, the
derivative of the objective w.r.t one variable is
log ps. Therefore, when p, < 1 , increasing p,
will always decrease the objective value, which
contradicts with the assumption that we have al-
ready reached the optimal. Thus we have shown
that the problem in (IT]) shares the same optimal
solution as (§]).

Proof of Lemma [5.4 Note that Y
—logn x ones(n,n) forms a feasible solution to
(I2). Hence, the optimal value to the dual must
be greater than —nlogn—1, thatis, 0 > OPT >
—nlogn—1. Also, from KKT conditions, the op-
timal solutions to the primal and dual are related
as py, = e’ *Mo Hence, as discussed in proof
of Lemma [5.3] for the primal solution, the opti-
mal dual solution must satisfy >~ e¥*Mo M, = Q,
implicitly leading to > eY*Ms =1 at optimal-
ity. Along with the lower bound on OPT, this
gives Q ¢ Y > —nlogn, which implies Y;; >
~nlog 1/ gmin-

Proof of Lemma The gradient of g(Y) is
Vg(Y) =, (e¥*Mo M, ;i )M,. That is, Vg(Y)
is an n X n matrix defined as:

Vg(Y)r1 =

ZU:jzo(i) e oMo

Za:jza(i) JI=o(k) €

if (k,0)=(i,5)
if {k1}N{i =0
o.w., if {k1}N{ij}#¢

YeM,

@)

We will use the notation ¥, where Y is a ma-
trix, to mean component-wise exponentiation:
(e¥)ij = €Y . Let x denote the permanent of
the non-negative matrix e¥. Denote by Xij, the
“permanent” of the submatrix obtained after re-
moving row i and column j from e¥. Then, ob-
serve that g(Y) = e¥ii - y;;. Also, the gradient
of g(Y) can be written as:

V(¥ )k =
eYii -\ if (k,0)=(.5)
eYieYr i if (kI N{ig}=0
0 o0.w., if {k1}N{ij}#e



where x;; 1 denotes the permanent of the matrix
obtained after removing rows i,k and columns
4,1 from eV

Using the relation between permanent of a

matrix and its submatrices, observe that:

VgVl = €% xij+e 3 e xim
Kl:ij#kl
neYinij
= ng(Y)
Hence,

IVg(Y)[la < ng(Y) < Vnl[Vg(Y)ll2

Proof of Lemma [5.7] For any such Y,

for) _(+39)

<05 =19

Q < (14+126)Q < (1+6)Q

Proof of Lemma [5.8 Suppose the it con-
straint is violated. That is, f;;(Y) > (1+30)Q;;.
This implies that f;;(Y) > (1 + 9)Q;;. This is
because if f;;(Y) < (1 4 6)Q;j, then ﬁ-j(Y) <
(1+0)f(Y) < (1+30)Qy;5.

In below we denote the function f;;(Y) by
g(Y) and Q;; by b. Given any X € K, since
g(+) is a convex function,

Vg(¥) (X —Y) < g(X) —g(Y) <b—g(Y)
Therefore, using the bounds on X and Y,

Vg(V)T(X ~Y) ~
<Vg(V)'(X-Y)+ ||V92(Y) - Vgl - [|X =Y/
<b—g(Y)+7||Vg(Y)||len

min

<b—g(Y)+7y-ng(Y)- Sl
<b—b(1+06)(1 — y2loen)

dmin

where the second last inequality follows from the
bound on gradient given by Lemmal5.5l The last
inequality follows from the observation made
earlier that g(Y') = f;;(Y) > 1+ 4. Now,

_ 5Qmin J dmin
Y= < :
2n4 1+4d n3logn

Hence, from above,

Vg(¥)'(X -Y) <0
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