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Abstract. In this paper we extend a popular non-cooperative network
creation game (NCG) [11] to allow for disconnected equilibrium net-
works. There are n players, each is a vertex in a graph, and a strategy is
a subset of players to build edges to. For each edge a player must pay a
cost α, and the individual cost for a player represents a trade-off between
edge costs and shortest path lengths to all other players. We extend the
model to a penalized game (PCG), for which we reduce the penalty for a
pair of disconnected players to a finite value β. We prove that the PCG
is not a potential game, but pure Nash equilibria always exist, and pure
strong equilibria exist in many cases. We provide tight conditions under
which disconnected (strong) Nash equilibria can evolve. Components of
these equilibria must be (strong) Nash equilibria of a smaller NCG. But
in contrast to the NCG, for the vast majority of parameter values no
tree is a stable component. Finally, we show that the price of anarchy
is Θ(n), several orders of magnitude larger than in the NCG. Perhaps
surprisingly, the price of anarchy for strong equilibria increases only to
at most 4.

1 Introduction

The study of distributed network creation with selfish agents has attracted much
research interest from various disciplines. A general framework for such an ap-
proach was proposed by Jackson and Wolinsky [14]. In their games there are n
players and each player is a vertex in a graph. A strategy consists of choosing
which incident edges to build. Depending on the network structure there is a pay-
off for each player, and players adjust their strategy to maximize their payoff. A
general finding was that there are games, in which no efficient network is stable
for a concept of pairwise stability, which requires bilateral consent to construct
a connection. The extensions and adjustments to this model are numerous [13].
In particular, several works extended the model to unilateral link creation and
the Nash equilibrium as stability concept [5,9]. A particularly interesting variant
was proposed by Fabrikant et al. [11]. In their network creation game (NCG) the
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Fig. 1. Price of anarchy in the NCG

cost of creating an edge is fixed to a parameter α. Edge creation is unilateral,
and the cost for a player is a trade-off between edge costs and structural network
position measured by shortest path distances to all other players. In [2,8,11] the
inefficiency of Nash equilibria was quantified using the price of anarchy [15], the
ratio of the cost of the worst Nash equilibrium over the cost of a social optimum
state. The presently known results on the price of anarchy are summarized in
Fig. 1. Other equilibrium concepts were also studied, e.g. pairwise stable equi-
libria [7], or strong equilibria [3], as well as extensions to more general edge
costs or different player cost trade-offs [1, 10, 17]. In network analysis [6], the
inverse of the sum of shortest path lengths is one of the most commonly used
measures of centrality known as closeness [12]. A problem with closeness is that
global connectivity is required for the scores to be comparable. This means that
in the NCG for moderate to high edge costs the trade-off is distorted by the
enforcement of connectivity. Thus, it was not surprising that trees proved to be
a prominent equilibrium structure [11].

In this paper, we remedy this problem by replacing the infinite cost of not
being connected by a finite penalty β. This corresponds directly to a variant of
closeness centrality proposed by Botafogo et al. [18], and it was suggested as an
open problem in [11]. For special values of β it is closely related to a measure
called radiality [19]. Our penalized network creation game (PCG) is introduced
in Sect. 2. Since the cost of connected equilibria is the same as in the NCG, we are
interested in existence, structure, and cost of disconnected Nash equilibria. If β is
large, Nash equilibria of the PCG are similar to those of the NCG, in particular,
they are connected. For smaller β, disconnected Nash equilibria evolve, and an
interesting insight gained from Sect. 3 is that the prevalent tree structures of
the NCG are absent whenever β > 2 or α > 1 (see Theorem 3). In addition, we
consider the price of anarchy in Sect. 4. There are parameter values, for which
disconnected Nash equilibria appear but the social optimum is connected, which
could lead to an unbounded price of anarchy. However, we show that the price of
anarchy in the PCG is always bounded by O(n). In addition, Theorem 4 reveals
cases with a tight matching lower bound of Ω(n). This bound is strictly larger
than any bounds for the NCG. In Sect. 5 we consider players that can play
joint coordinated deviations and strong equilibria. Unless α and β are within
a small range, the social optimum is also a strong equilibrium (Theorem 5). In
Theorem 6 we prove that the price of anarchy for strong equilibria is at most
4. This reveals that in the PCG regular Nash equilibria can be several orders of
magnitude more costly than strong equilibria, a question which is still unsolved
for the NCG. Due to spacial constraints proofs are sketched or omitted and will
be given in the full version of the paper.
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2 The Model and Initial Results

The network connection game (NCG) is a tuple (V, α) and can be described
as follows. The set of players V is the set of vertices of a graph. Possible edges
{i, j} ∈ V ×V have cost α. A strategy si of a player i is a subset si ⊂ V \{v} and
indicates, which edges player i chooses to build. In this way a strategy vector s in-
duces a set of edges between the players. Given a strategy vector s the individual
cost for a player i is ci(s) = α|si|+

∑
j �=i dists(i, j), where α > 0 and dists(i, j) is

the length of a shortest-path in the undirected graph Gs = (V, Es) induced by the
strategy vector s. Note that Gs is assumed to be undirected, i.e. each edge can be
traversed in any direction, independent of which player pays for it. In the regular
connection game dists(i, j) = ∞ if players i and j are in different components of
Gs. In the penalized network creation game (PCG) we are given a penalty value
β > 1, and dists(i, j) = β for players i and j in different components. A pure
Nash equilibrium (NE) is a state s, in which no player can unilaterally decrease
her cost ci by changing her strategy si. We will restrict our attention to pure equi-
libria throughout. The social cost c(s) of a state s is simply c(s) =

∑
i∈V ci(s).

The social optimum state s∗ is a state with minimum social cost. Note that for
the cost of a state it does not matter, which of the two players connected by
an edge chose to pay for it, and hence we will sometimes use the graph Gs for
s. States that play an important role in the analysis of the PCG are the empty
state s∅ = (∅, . . . , ∅), sK corresponding to the complete graph, in which each
edge {i, j} with i �= j is paid by player min{i, j}, and sZ corresponding to a
center-sponsored star, in which one player purchases edges to all other players.

Fig. 2. NCG with k = 4 and 4 <
α < 6 with cycling better response
iteration. Black dots indicate the
player who pays for the edge.

Fabrikant et al. [11] show that there is al-
ways a pure NE in the NCG and mention that
it might be found by iterative improvement
steps. Finding a best-response for a player in
a NCG, however, was shown NP-hard [11],
and this translates to the PCG for sufficiently
large penalty cost. In addition, we show that
better-response dynamics may cycle, hence
the game is no potential game [16]. As the
dynamics involve no disconnectivities, the re-
sult follows directly for the PCG. Neverthe-
less, in the PCG there is always a pure NE.
This serves as a first insight to motivate the
further study of the properties of pure NE in
the PCG.

Theorem 1. Every PCG has a pure Nash equilibrium, but neither NCG nor
PCG are potential games.

Proof. We first disprove the existence of a potential function. For any α > 3
choose an integer k with k < α < 3k

2 . Now construct a strategy combination for
n = 4k players as depicted in Fig. 2. The following steps each represent a strict
improvement for the players: (1) player 4 removes edge e1, (2) player 2 removes
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edge e2, (3) player 4 builds edges e1 and e2. This leads into an isomorphic state,
and allows to construct an infinite improvement path. For the proof of existence
it can be shown that the following states are NE: for α ≥ β − 1 the empty
network s∅, for 1 ≤ α < β − 1 the center-sponsored star sZ , in which all edges
are bought by the center node, and for α < 1 and α < β − 1 the state sK . 	


3 Disconnected Equilibria

In this section we consider existence and structural properties of disconnected
NE in the PCG. First, we clarify the existence of disconnected equilibria.

Theorem 2. For α ≥ β − 1 the empty graph is always a disconnected NE. For
0 < α < β − 1 there is no disconnected NE.

Proof. The first part follows from Theorem 1. For the second part consider a
player v in a disconnected NE s. Let nv be the size of the component of the graph
Gs, in which v is located. Now suppose v changes her strategy by connecting to
all n − nv players in other components. Then the change is α(n − nv) + (n −
nv)−β(n−nv) = (n−nv)(α− (β −1)) < 0. Hence, under these conditions every
player in a disconnected state can decrease her individual cost. 	


The theorem provides a tight characterization using the empty graph. An in-
teresting issue, however, is to explore whether non-empty disconnected NE are
possible, because in many cases the empty graph represents a rather unrealistic
prediction for a stable network. Note that a component of k players in a discon-
nected NE of a PCG with given α and β must be a NE in the corresponding
NCG with α and k players. A prominent structure that has been identified as
NE in the NCG are trees.

Trees. Tree graphs are a structure whose appearance is wide-spread in the
NCG [2, 11]. The following analysis shows that this property is only due to the
requirement that a NE must be connected. The following discussion reveals that
in the PCG these structures can appear only in very special cases.

Lemma 1. For β > 2 every non-singleton player v in a disconnected NE has
at least one incident edge that was created by a different player w �= v.

Proof. Consider a player v in a component C with k players, who pays for all
her dv incident edges. As we have a NE, it is not profitable for v to disconnect
from C, i.e. αdv +

∑
w∈C dist(v, w) ≤ β(k−1). Consider a different player v′ �∈ C

that chooses to connect to all neighbors of v. This must not be profitable, so
αdv +

∑
w∈C dist(v, w) + 2 ≥ βk. Adding the inequalities yields β ≤ 2. 	


Lemma 2. Suppose there is a disconnected NE with a component C of k > 1
vertices. If α > (k − 1)(β − 2) + 1, then for every player v there is an incident
edge paid by a different player w �= v.
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Proof. Suppose there is a player v that pays for all her dv ≥ 1 incident edges. As v
does not want to remove all edges, we have αdv+

∑
w∈C dist(v, w) ≤ β(k−1), and

thus α ≤ 1
dv

(
β(k − 1) − ∑

w∈C dist(v, w)
)
. Every pair of non-neighbor vertices

in C has a distance of at least 2, so
∑

w∈C dist(v, w) ≥ 2(k−1)−dv. Substitution
yields α ≤ (k − 1)(β − 2) + 1 as desired. 	

Theorem 3. For β > 2 or α > 1 no component of a disconnected NE is a tree.

Proof. The first bound is a direct consequence of Lemma 1 and the fact that for
a tree |E| = |V | − 1. Thus, for disconnected NE with tree components β ≤ 2,
and the second bound follows with Lemma 2. 	


Non-empty Equilibria. It can be shown that the appearance of currently
known NE topologies from the NCG as components in disconnected NE of the
PCG is quite limited. The existence of disconnected NE, however, is guaranteed
by the empty network. This raises the question under which conditions on α and
β non-empty disconnected NE can evolve. We first present a positive result.

Lemma 3. For 3 ≤ α ≤ 4 and β ≤ (α + 11)/5 a cycle C5 of 5 vertices can be
a component of a disconnected NE.

In contrast to the restricted interval, for which we can show existence, there is
an unbounded region of parameter values, for which the empty network is the
only disconnected network - in particular if α or β are large compared to n.

Lemma 4. In a non-empty disconnected NE let nl be the minimum size and
diaml the minimum diameter of any non-singleton component. Then (1) α <
12nl log nl, (2) β ≤ 1 + 2 · diaml, (3) β < 1 + 14

√
nl log nl, and (4) if n > 6,

then β < n/2.

Proof. We only prove the first three bounds here. For the first bound consider
α ≥ 12nl log nl and a component with nl players. This component must represent
a NE in a NCG with the same α and nl players, and thus according to [2] must be
a tree. This contradicts Theorem 3 and the bound follows. Now consider a non-
empty disconnected NE s for β > 2, and let C be a non-singleton component.
As C is no tree, it must contain at least one cycle. Let U be a smallest of all
cycles in C, and let v be an arbitrary player that constructed some edge e of
U . Denote by s′ the state that evolves if player v removes edge e. Note that
by this removal no additional pair of players gets disconnected. As s is a NE,
we have α ≤ ∑

w∈C(dists′(v, w) − dists(v, w)). As we have chosen U to be of
minimum size, all shortest distances between vertices of U are given by the
paths along the cycle. Thus, there is always a vertex u, for which the distances
in s and s′ are the same. This yields dists′(v, w) ≤ dists′(v, u) + dists′(u, w)
= dists(v, u) + dists(u, w) for all w ∈ C. With nC = |C| we can conclude α ≤
2nC ·diam(C)− ∑

w∈C dists(v, w). On the other hand, no vertex outside C must
be able to profit from a connection to v, hence α+nC +

∑
w∈C dist(v, w) ≥ nCβ.

The last two inequalities deliver the second bound. We know from [11] that
diam(C) ≤ √

4α + 1. Together with the bounds (1) and (2) shown above this
implies the third bound. 	
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In contrast to these bounds, we have not been able to derive any non-empty
disconnected NE for values of β > 3. This led us to formulate the following
conjecture. Note that our bounds imply that if the conjecture is false, then there
must be non-tree NE in the NCG with a diameter of size ω(1). This seems quite
unlikely, as all non-tree NE found so far have diameter at most 3.

Conjecture 1 (Constant Penalty Conjecture). There is a constant β′ such that
for β > β′ the only disconnected NE is s∅.

4 Price of Anarchy
In this section we consider the price of anarchy in the PCG. We first consider
the social optima of the game. For α ≤ min{2, 2β − 2} the complete graph sK

is the optimum. For α ≤ 2 and α ≥ 2β − 2 the empty graph s∅ is the optimum.
s∅ remains the optimum for α ≥ 2 and α ≥ βn − 2(n − 1). For the remaining
range the star sZ is the optimum. For α < β − 1 we have seen in Theorem 2
that no disconnected NE exists. In addition, it can be shown that in this case a
finite penalty for disconnectivity cannot disrupt any NE of the NCG. Hence, for
this parameter range the price of anarchy is identical to the NCG. In general,
however, the price of anarchy in the PCG can be strictly larger than for the
NCG. Fig. 3 provides an overview of the bounds we obtained. Note that all
these bounds are in O(n) for the respective parameter values. We concentrate
on the case max{2, β − 1} < α < βn − 2(n − 1), in which disconnected NE can
appear and the star is the social optimum.

Theorem 4. For 2β − 2 ≤ α ≤ nβ − 2(n − 1) the price of anarchy is bounded
by Θ

(
nβ
α

)
for α ≥ 12n logn and O

(
5
√

log n log n + nβ
α+n

)
for α < 12n logn. For

β − 1 ≤ α ≤ 2β − 2 the price of anarchy is Θ(min{β, n}).

Proof. For the proof of the first bound consider α ≥ 12n logn. According to
Lemma 4 in this case every NE is either connected or s∅. For α ≥ 12n logn
all connected NE have a constant price of anarchy [2], while s∅ leads to an
increase and proves our first bound: c(s∅)

c(sZ) = βn
α+2(n−1) ∈ Θ

(
nβ
α

)
. This bound

increases from Θ(1) to Θ(n) if α drops from nβ − 2(n − 1) to 2β − 2. It also
shows that the price of anarchy induced by s∅ is never more than O(n) for
s∗ = sZ and α ≥ β − 1. Another range, for which s∅ is the most expensive
NE, is β − 1 ≤ α ≤ 2β − 2 with β ≥ 7. Then any directly connected pair
induces a cost of α + 2 ≤ 2β. Any indirectly connected pair in a NE induces a
cost 2dists(v, w) ≤ 2

√
4α + 1 ≤ 2

√
8β − 7 ≤ 2β. Thus, the cost of 2β induced

by s∅ is maximal for every pair of players. c(s∅)/c(sZ) characterizes the price
of anarchy and results in Θ(min{β, n}), which proves the third bound. For the
remaining range with α < 12n logn there might be worse disconnected NE
than s∅. However, components of these NE must be connected NE of smaller
NCGs. We bound the price of anarchy for these NE by the fraction for s∅ plus
the maximum factor of any component NE in the corresponding NCG. With the
bound of 5

√
log n log n ∈ o(nε) on the price of anarchy for the NCG [8] this proves

our second bound O(max{5
√

log n log n, min{n, β}}), which is at most O(n). 	
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Fig. 3. Price of anarchy in the PCG

5 Strong Equilibria

In this section we assume agents are able to jointly deviate to different strategies.
As stability concept we consider the strong equilibrium [4], in which no coalition
C of players can decrease the cost for each of its members by taking a joint
deviation. More formally, if a state s is a strong equilibrium (SE), then for each
coalition of players C and each possible strategy profile s′C for the players in C
it holds that if there is a player i ∈ C with ci(s′C , s−C) < ci(s), then there is
another player j ∈ C with cj(s′C , s−C) ≥ ci(s). The price of anarchy for SE is a
direct adaption of the price for NE and was studied in [3] for the NCG. The next
theorem summarizes structural and existence properties of SE in the PCG. It
shows, in particular, that with the exception of a small range of parameter values
strong equilibria always exist in the PCG. Finally, the main result in this section
is a general constant upper bound on the price of anarchy for SE in the PCG.

Theorem 5. For α < β − 1 the SE of the PCG are exactly the SE of the
corresponding NCG. For α ≥ β − 1 the social optimum in the PCG is a SE for
all parameter values except β < 3, and βn− 2n+2− (β − 1) < α < βn− 2n+2.

Theorem 6. The price of anarchy for SE in the PCG is at most 4.
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