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Abstract. Here we study the plausibility of a phase oscillators dynami-
cal model for TDMA in wireless communication networks. We show that
emerging patterns of phase locking states between oscillators can even-
tually oscillate in a round-robin schedule, in a similar way to models of
pulse coupled oscillators designed to this end. The results open the door
for new communication protocols in a continuous interacting networks
of wireless communication devices.

1 Introduction

Nowadays, wireless communications have become pervasive. This form of telecom-
munication between elements forming a network has technically evolved to the
third generation of wireless systems, that incorporates the features provided by
broadband. With this evolution, wireless networks become a plausible candidate
for the main telecommunication mechanism in the next future. At the same time,
this technical advance comes along with new problems which requires the use
of innovative ideas to solve them. One of the problems we are aware, is that of
maintaining decongestion in single-hop networks, where time division for multi-
ple access (TDMA) strategies have been shown to be a good scheme for message
transmission [1]. TDMA is a channel access method for shared medium (usu-
ally radio) networks. It allows several users to share the same frequency channel
by dividing the signal into different timeslots. The users transmit in rapid suc-
cession, one after the other, each using his own timeslot. This allows multiple
stations to share the same transmission medium (e.g. radio frequency channel)
while using only the part of the bandwidth they require.

Between the algorithms that have been proposed to solve this problem, a bio-
inspired solution called desynchronization, has attracted our attention [2, 3]. The
idea is to mimic some synchronization processes in biological systems, modeled
by pulse-coupled oscillators in networks. Within this scenario a mapping between
wireless nodes in a network and pulse-coupled oscillators is possible, providing a
simple and elegant protocol for TDMA communication. Here, desynchronization
refers specifically to a state where nodes perfectly interleave periodic events to
occur in a round-robin schedule, in contrast with synchronization where all the
oscillators collapse their phase behavior.



The model presented in Ref. [2] recalls some results in lattices of coupled oscil-
lators where spatio-temporal pattern form in a ring of oscillators with inhibitory
unidirectional pulse-like interactions [4, 5] inspired in the behavior of elementary
neural systems. The attractors of the dynamics are limit cycles where each os-
cillator fires once and only once in a cycle, and some of them correspond to the
desired behavior of round-robin schedule, that maintain order in the firing suc-
cession. The limit cycle structure of the attractors of pulse-coupled oscillators
system shown in [4, 5], is akin to those limit cycle emergent in coupled phase
oscillators, in particular in the Kuramoto model [6, 7]. Using this similarity on
the final states, between both descriptions, here we study the plausibility of a
self-organized algorithm between nodes communicating in a wireless network,
using the dynamics of phase oscillators. The results show that an equivalent
desynchronized state is obtained for a finite set of initial conditions, in a con-
tinuous interacting model. A reseting mechanism is proposed to account for the
entry and exit of nodes of the network, while maintaining the desynchronized
state.

The paper is organized as follows ........

2 Patterns in pulse-coupled oscillators in a ring

Pulse-coupled oscillators account for some biological processes like heart pace-
maker cells, integrate and fire neurons, and other systems made of excitable
units.3 The instantaneous interactions that take place in a very specific moment
of its period makes the treatment of these systems more complicated from a theo-
retical point of view. In any case, the richness of behaviors os these pulse-coupled
oscillatory systems include synchronization phenomena, spatio-temporal pattern
formation (travelling waves, chess-board structures, and periodic waves), rythm
annihilation, self-organized criticality, etc.4

In these models, the pase of each oscillator evolves linearly in time, usually all
units have the same period. When reaching some precise value it fires emitting
a pulse that is received instantaneously by its set of neighbors. At this point the
neighbors change their phases according to some specific function, called phase
response curve. One should notice that this response function plays the crucial
role in the dynamics of the population. Since two different time scales are in
play, a continuous description makes no sense and the usual way to describe
mathematically the system is by means of maps. A map represents the total
evolution of driving and firing processes and the change in state after a complete
map reflects the nature os the dynamical behavior. Thus, we can observe the
evolution towards the attractors and analyze the stability of the fixed points.

3 Aqui posaria una referencia de cada un. De les pacemaker cells el llibre del peskin,
de les IFO neurons al article hi ha un article del Kuramoto (un Physica D del 91)
pero no crec que sigui correcte, i dels altres sistemes excitables una cita del Treves
del 93.

4 Potser podriem posar alguna referencia del les que hi ha en els articles o posar
l’article mateix,per no carregar-lo massa.



In particular, in a set of works by the authors of the current paper, it was
theoretically analyzed the behavior of rings of oscillators subjected to a linear
phase response curve. In the first work [4] we dealt with unidirectional couplings
in the ring obtaining exact values of the fixed points of the dynamics. As we
said before, the stability of the fixed points is given by the return maps of the
driving plus firing process. We computed the bounds of the eigenvalues of the
matrix that describes the map and showed that any excitatory coupling (positive
linear phase response curve) has unstable fixed points and the only solution is
a synchronized state in which the oscillators collapse one by one. On the other
hand, for an inhibitory coupling (negative linear phase response curve) the fixed
points become stable, giving rise to spatio-temporal patterns where a constant
phase-difference between oscillators is achieved. In a second work [8] we extended
the previous result to a population of bidirectionally coupled units. Finally, in
a third work [5] we analyze in much more detail the patterns that appear for
inhibitory couplings (negative phase response curve). In particular, we were able
to find the probability of selecting a given pattern under arbitrary initial condi-
tions. In a ring of N oscillators there are (N − 1)! possible permutations of the
firing sequence, by keeping one of the oscillators as the initial firing one. But all
these possible sequences can give rise a smaller number of fixed points, which is
N − 1. Then these fixed points or patterns have some degeneracy that can be
computed analytically. From this degeneracy, it can be computed the probability
of pattern selection, that depends also on the coupling strength. For instance,
it can be easily found that, in the case of small coupling, the most probable
state is that with tha maximum phase difference between neighbors, i.e. the
phase-opposition (antisynchronization) state, and as we increase the number of
oscillators the patterns distribution gets sharpened around this value. There is
an additional effect in the pattern selection for this construction. When the cou-
pling strength increases there are some fixed points that disappear, i.e. there are
no longer part of the available configuration space. Depending on the number of
oscillators and on the periodicity of the patters, we could estimate the critical
value of the coupling strength for which the pattern disappears. This effect is,
of course, very important since it alters the distribution of the pattern selection.

3 Coupled phase oscillators

Generally speaking, coupled oscillators interact via mutual adjustment of their
amplitudes and phases. When coupling is weak, amplitudes are relatively con-
stant and the interactions could be described by phase models. Phase coupled os-
cillators are described then only by the interaction between their relative phases.

ϕ̇i(t) = fi(ϕi(t)) + ε
∑

j

g(ϕi(t), ϕj(t)) (1)

where ϕ stands for the phases, ε for the coupling, and f and g for general
functions of the specified parameters.



The behavior of 1D lattices of phase models is considerably complex, even
for nearest neighbor coupling. In the case of chains of oscillators, for example,
when coupling is local, oscillators at the ends get different inputs from those in
the middle so that phase locking may not even exist. As long as the differences
in the frequencies are small enough, there will be a phase-locked solution. In-
terestingly, nearest neighbor interaction chains can support very small gradients
when the coupling term has the form of the sinus of the phase difference (and,
in fact, any odd periodic function). However, if the coupling function contains
even components (that is, replace sin(ϕ) with sin(ϕ + δ)), then frequency gra-
dients as that are can be supported in nearest neighbor chains of coupled phase
oscillators [9, 10].

One of the most useful connections between the description of pulse-coupled
oscillators and phase oscillators is exploited in the so-called transformation to
phase models [11]. Fulfilling the condition of weak coupling, and autonomous os-
cillatory behavior of the pulse oscillators, the entire network can be transformed
into a simpler phase model by a piece-wise continuous change of variables. The
interest of this mathematical equivalence is that many pulse-coupled systems
can be viewed as phase-coupled systems whose continuous description is more
amenable. Driven by this analogy we explore the performance of a simple set
of phase oscillators in a ring compared to the use of pulse-coupled oscillators
described in [2], for TDMA on wireless networks.

4 The Kuramoto model in a locally-coupled ring

We consider here a particular model of phase oscillators that was introduced
by Kuramoto [6]. In the original paper, Kuramoto analyzed a population of
oscillators with an all-to-all pattern of connectivity. In principle, each oscillator
has its own frequency drawn from a random distribution and is coupled via a
sine function to the rest of the population

dϕi

dt
= ωi + σ

∑

j

sin(ϕj − ϕi) i = 1, ..., N (2)

In most of the analysis the interesting issue has been the transition to the syn-
chronized state that appears above some critical value of the coupling strength
σ [7]. However, our goal here is to analyze the stationary states that can appear
for a particular topology of the connections when all oscillators are driven by the
same frequency (that can be taken as 0 without loss of generality). Hence, we
consider a 1D ring of N oscillators, where each unit is connected to its nearest
neighbors, and have zero inner frequency

ϕ̇i = sin(ϕi+1 − ϕi + δ) + sin(ϕi−1 − ϕi + δ) ∀i = 1, ...N (3)

here we have also introduced an arbitrary phase shift δ that will play a key role
when considering the symmetries of the final stationary state.
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Fig. 1. Stable configurations for a ring of 10 oscillators. Top: for δ = 0. Bottom: for
δ = π. The color of the node stands for the phases (white for ϕ = 0 to black for
ϕ = 2π), but only the phase difference between neighboring nodes is important. The
label at the center of each graph stands for the phase difference between neighboring
nodes.

A stationary solution ϕi+1 − ϕi = ∆, ∀i exists provided that ∆ = 2πm/N ,
being m ∈ N.5 In this case we should have for all the oscillators

ϕ̇i = 2 sin δ cos∆ (4)

i.e. the oscillators keep running at this effective frequency, all with the same
value but a fixed phase difference between neighbors. In Fig. 1 we plot a ring
of 10 oscillators for a stationary phase difference corresponding to the cases
m = 0, 1, 2, 3, 4, 5 (the remaining cases correspond to the complementary ones
to these, because all results have to be understood as mod 2π).

5 Linear stability of the attractors

Let us assume a small perturbation to one of the nodes: ϕi → ϕi + ε. Then the
equation of motion for this oscillator becomes

ϕ̇i = sin(−∆ + δ − ε) + sin(∆ + δ − ε). (5)

5 Notice that the cases m and N −m are equivalent since it is a positive or a negative
phase difference and all phase differences are to be understood mod 2π.



Expanding the sinus functions we get up to linear order in ε

ϕ̇i = 2 sin δ cos∆ − 2ε cos δ cos∆. (6)

The derivative of the frequency with respect to the perturbation is dϕ̇i/dǫ =
−2 cos δ cos∆, providing the stability of the stationary solutions of the system.
Let us now look in detail to the different combinations of these terms, keeping
in mind that δ is a prescribed phase that breaks the symmetry of the problem.
We will consider only two cases (δ = 0 and δ = π), any case in between these
values only affects the effective frequency. Notice, however, that δ = π/2 is a
very particular case and the stability analysis requires a specific study that is
beyond the scope of the current work.

For the case δ = 0 all states with cos(∆) > 0 are stable, i.e. dϕ̇i/dǫ < 0, in
particular the synchronized state ∆ = 0. But there are also other possibilities
0 < m < N/4 for which the oscillators can end in a stable stationary state. Notice
that the case m = 1, which is a stable solution whenever N ≤ 4, corresponds to
the minimum phase difference between oscillators, that is the case of the round-
robin schedule mentioned in the Introduction. In Fig. 1 (top) we show the three
stable configurations for a ring of 10 oscillators with δ = 0.

For the case δ = π, new stable states appear, all those with N/4 < m < N/2,
and the synchronized state becomes unstable.

In general, we obtain a set of stable configurations where there can be sub-
sets of nodes which are partially synchronized. For instance, if N is even, there
always exists a configuration, stable for δ = π, for which the phase difference
between any two neighboring nodes is π and hence we have some sort of local an-

tisynchronization, which is the maximum phase difference between neighboring
oscillators. Another interesting case is that of N being a prime number; in this
case all stable configurations are equivalent in the sense that there are no two
synchronized oscillators, and the round-robin schedule is maintained, although
not for neighboring nodes. Some of these configurations are plotted in Fig. 1.

The persistence of stable configurations where a round-robin scheduled is
satisfied, opens the door for a self-organized solution to the problem of TDMA
in wireless networks. However, there is still a problem concerning the inclusion
of new agents (oscillators) to the system. In the next section, we investigate the
effect of such new incorporations to the existing system.

6 Variation on the number of nodes in the network

Firs of all we are going to consider how the round-robin stationary state responds
to the addition of a new oscillator. Then we have a set of N − 1 nodes such that

ϕi = i ∗ (2π)/(N − 1) ∀i = 1, . . . , (N − 1) (7)

and now we add an incoming oscillator, that we label N . The phase of the
incoming oscillator is unknown, for this reason, as a first approximation, we
sweep a discretization of the possible values of the incoming phase ϕN . In Fig. 2
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Fig. 2. Fraction of values of the initial phase of the incoming oscillator that leads to a
round-robin configuration (top) and to a synchronized state (bottom), as a function of
the number of final nodes. In the inset we plot the fraction of configurations that give
rise to the synchronized state in log-log scale, to visualize how fast it decreases with
the system size.

we plot the stationary state resulting from this addition in terms of the fraction
of values of the initial phase ϕn that give rise either to the round-robin state, with
N oscillators, or to the synchronized state. We have not observed the emergence
of other states, although at this point we can not discard their existence as
spurious states.

We notice that the round-robin state is very robust in the sense that it
emerges from the new configuration almost surely, although the time response
is large and it increases with the number of oscillators.

On the other hand, the fact of removing one node from a stable configuration
is also quite robust. The round-robin state is broken for very small number of
oscillators. This is a deterministic case in which we fix all initial phases such



that ∆ = 1/(N + 1) and the system evolves deterministically towards ∆ = 1/N
for N larger than 6.

7 Discussion

We have presented a bio-inspired approach to the round-robin schedule of wire-
less networks, based on the synchronization of phase oscillators, particularly,
Kuramoto oscillators in a ring with nearest neighbors coupling. The study of
patterns of phase locking attractors shows that this continuous interaction model
could be also used as an alternative protocol for TDMA, comparable to the ap-
proach of pulse coupled oscillators presented in [2], although still to be developed
in deep. Upcoming experiments in complex topologies of phase oscillators show
that the number of possible phase locking patterns is hugely rich. We will present
a systematic study of the different stationary states, as well as their relative basis
of attraction in different topologies in a future work.
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4. Dı́az-Guilera, A., Pérez, C.J., Arenas, A.: Mechanisms of synchronization and
pattern formation in a lattice of pulse-coupled oscillators. Phys. Rev. E 57 (1998)
3820–3828

5. Guardiola, X., Dı́az-Guilera, A.: Pattern selection in a lattice of pulse-coupled
oscillators. Phys. Rev. E 60 (1999) 3626–3632

6. Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Springer-Verlag, New
York (1984)
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