Skip to main content

Biologically Inspired Approaches to Networks: The Bio-Networking Architecture and the Molecular Communication

  • Conference paper
Book cover Bio-Inspired Computing and Communication (BIOWIRE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5151))

Included in the following conference series:

Abstract

This article describes two branches of biologically inspired approaches to networks; biologically inspired computer networks and biologically inspired nanoscale biological networks. The first branch, biologically inspired computer networks, applies techniques and algorithms from biological systems to design computer networks. The second branch, biologically inspired nanoscale biological networks, applies techniques and algorithms from biological systems to design nanoscale biological networks. This paper describes these two branches of approaches proposed by the authors of this paper; biologically inspired computer networks (i.e., the Bio-Networking Architecture) and biologically inspired nanoscale biological networks (i.e., the Molecular Communication).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aickelin, U., Greensmith, J., Twycross, J.: Immune System Approaches to Intrusion Detection - A Review. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 316–329. Springer, Heidelberg (2004)

    Google Scholar 

  2. Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research (JAIR) 9, 317–365 (1998)

    Google Scholar 

  3. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5(3), 137–172 (1999)

    Google Scholar 

  4. Forrest, S., Hofmeyr, S., Somayaji, A.: Computer Immunology. Communications of the ACM 40(10), 88–96 (1997)

    Google Scholar 

  5. George, S., Evans, D., Marchette, S.: A Biological Programming Model for Self-Healing. In: Proceedings of the 2003 ACM workshop on Survivable and self-regenerative systems, pp. 72–81 (2002)

    Google Scholar 

  6. Hariri, S., Khargharia, B., Chen, H., Yang, J., Zhang, Y., Parashar, M., Liu, H.: The Autonomic Computing Paradigm. Cluster Computing: The Journal of Networks, Software Tools, and Applications 9(1), 5–17 (2006)

    Google Scholar 

  7. Hofmeyr, S.A., Forrest, S.: Architecture for an Artificial Immune System. Evolutionary Computation, vol. 8(4), pp. 443–473. MIT Press, Cambridge (2000)

    Google Scholar 

  8. Kephart, J.O.: A Biologically Inspired Immune System for Computers. In: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pp. 130–139 (1994)

    Google Scholar 

  9. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE computer 36(1), 41–50 (2003)

    Google Scholar 

  10. Montresor, A.: Anthill: a Framework for the Design and Analysis of Peer-to-Peer Systems. In: Proceedings of the 4th European Research Seminar on Advances in Distributed Systems (2001)

    Google Scholar 

  11. Wang, M., Suda, T.: The Bio-Networking Architecture: A Biologically Inspired Approach to the Design of Scalable, Adaptive, and Survivable/Available Network Applications. In: Proceedings of the 1st IEEE Symposium on Applications and the Internet (2001)

    Google Scholar 

  12. Suda, T., Itao, T., Matsuo, M.: The Bio-Networking Architecture: The Biologically Inspired Approach to the Design of Scalable, Adaptive, and Survivable/Available Network Applications. In: Park, K. (ed.) The Internet as a Large-Scale Complex System, the Santafe Institute Book Series. Oxford University Press, Oxford (2005)

    Google Scholar 

  13. Itao, T., Tanaka, S., Suda, T., Aoyama, T.: A framework for adaptive UbiComp applications based on the Jack-in-the-Net architecture. Kluwer/ACM Wireless Network Journal 10(3), 287–299 (2004)

    Google Scholar 

  14. Suzuki, J., Suda, T.: A Middleware Platform for a Biologically-inspired Network Architecture Supporting Autonomous and Adaptive Applications. IEEE Journal on Selected Areas in Communications (JSAC), Special Issue on Intelligent Services and Applications in Next Generation Networks 23(2), 249–260 (2005)

    Google Scholar 

  15. Nakano, T., Suda, T.: Self-Organizing Network Services with Evolutionary Adaptation. IEEE Transactions on Neural Networks 16(5), 1269–1278 (2005)

    Google Scholar 

  16. Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., Nakano, T.: Molecular Communication. In: Proc. of the 2005 NSTI Nanotechnology Conference (2005)

    Google Scholar 

  17. Moore, M., Enomoto, A., Nakano, T., Egashira, R., Suda, T., Kayasuga, A., Kojima, H., Sakakibara, H., Oiwa, K.: A Design of a Molecular Communication System for Nanomachines Using Molecular Motors. In: Fourth Annual IEEE Conference on Pervasive Computing and Communications and Workshops (March 2006)

    Google Scholar 

  18. Freitas Jr., R.A.: Nanomedicine. Basic Capabilities, vol. I. Landes Bioscience (1999)

    Google Scholar 

  19. Mao, C., Labean, T.H., Reif, J.H., Seeman, N.C.: Logical Computation Using Algorithmic Self-assembly of DNA Triple-crossover Molecules. Nature 407, 493–496 (2000)

    Google Scholar 

  20. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular Computation by DNA Hairpin Formation. Science 288(2469), 1223–1226 (2000)

    Google Scholar 

  21. Weiss, R., Basu, S., Hooshangi, S., Kalmbach, A., Karig, D., Mehreja, R., Netravali, I.: Genetic Circuit Building Blocks for Cellular Computation, Communications, and Signal Processing. Natural Computing 2, 47–84 (2003)

    Google Scholar 

  22. Head, T., Yamamura, M., Gal, S.: Aqueous Computing - Writing on Molecules. In: The Proc. CEC 1999, pp. 1006–1010 (1999)

    Google Scholar 

  23. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Google Scholar 

  24. Mao, C., LaBean, T.H., Relf, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)

    Google Scholar 

  25. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, Garland Science, 4th Bk&Cdr edn (2002)

    Google Scholar 

  26. Enomoto, A., Moore, M., Nakano, T., Egashira, R., Suda, T., Kayasuga, A., Kojima, H., Sakibara, H., Oiwa, K.: A molecular communication system using a network of cytoskeletal filaments Communication. In: 2006 NSTI Nanotechnology Conference (May 2006)

    Google Scholar 

  27. Moore, M., Enomoto, A., Nakano, T., Egashira, R., Suda, T., Kayasuga, A., Kojima, H., Sakakibara, H., Oiwa, K.: A Design of a Molecular Communication System for Nanomachines Using Molecular Motors. In: Fourth Annual IEEE Conference on Pervasive Computing and Communications and Workshops (March 2006)

    Google Scholar 

  28. Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., Arima, K.: Molecular Communication for Nanomachines Using Intercellular Calcium Signaling. In: IEEE NANO 2005 (June 2005)

    Google Scholar 

  29. Moritani, Y., Hiyama, S., Suda, T.: Molecular Communication among Nanomachines Using Vesicles. In: 2006 NSTI Nanotechnology Conference (May 2006)

    Google Scholar 

  30. Hiyama, S., Isogawa, Y., Suda, T., Moritani, Y., Suto, K.: A Design of an Autonomous Molecule Loading/Transporting/Unloading System Using DNA Hybridization and Biomolecular Linear Motors in Molecular Communication. In: European Nano Systems (December 2005)

    Google Scholar 

  31. Sasaki, Y., Hashizume, M., Maruo, K., Yamasaki, N., Kikuchi, J., Moritani, Y., Hiyama, S., Suda, T.: Controlled Propagation in Molecular Communication Using Tagged Liposome Containers. In: BIONETICS (Bio-Inspired mOdels of NEtwork, Information and Computing Systems) (December 2006)

    Google Scholar 

  32. NSF Workshop on Molecular Communication: Biological Communications Technology, http://netresearch.ics.uci.edu/mc/nsfwf08

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suda, T., Nakano, T., Moore, M., Enomoto, A., Fujii, K. (2008). Biologically Inspired Approaches to Networks: The Bio-Networking Architecture and the Molecular Communication. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds) Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol 5151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92191-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92191-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92190-5

  • Online ISBN: 978-3-540-92191-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics