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Abstract. We investigate the problem of autonomous agents processing
pieces of information that may be corrupted (tainted). Agents have the
option of contacting a central database for a reliable check of the status
of the message, but this procedure is costly and therefore should be used
with parsimony. Agents have to evaluate the risk of being infected, and
decide if and when communicating partners are affordable. Trustability
is implemented as a personal (one-to-one) record of past contacts among
agents, and as a mean-field monitoring of the level of message corrup-
tion. Moreover, this information is slowly forgotten in time, so that at
the end everybody is checked against the database. We explore the be-
havior of a homogeneous system in the case of a fixed pool of spreaders
of corrupted messages, and in the case of spontaneous appearance of
corrupted messages.

1 Introduction

One of the most promising area in computer science is the design of algorithms
and computer architectures closely based on our reasoning process and on how
the brain works. Human neural circuits receive, encode and analyze the “avail-
able information” from the environment in a fast, reliable and economical way.
The evolution of human cognition could be viewed as the result of a continuous
improvement of neural structures which drive the decision making processes from
the inputs to the final behaviors, cognitions and emotions. Heuristics are simple,
efficient rules, hard-coded by evolutionary processes or learned, which have been
proposed to explain how people make decisions, come to judgments, and solve
problems, typically when facing complex problems or incomplete information. It
is common experience that that much of human reasoning and decision making
can be modeled by fast and frugal heuristics that make inferences with limited
time and knowledge. For example, Darwin’s deliberation over whether to marry
provides an interesting example of such heuristic process [1,2].
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2 Heuristics

Let us quickly review some widely accepted hypothesis about heuristics. In
the early 1970s, Daniel Kahneman and Amos Tversky (K&T) produced a se-
ries of important papers about decisions under uncertainty [3,4,5,6,7]. Their
basic claim was that in assessing probabilities, “people rely on a limited number

of heuristic principles which reduce the complex tasks of assessing probabilities

and predicting values to simpler judgmental operations”. Although K&T claimed
that, as a general rule, heuristics are quite valuable, in some cases, their use leads
“to severe and systematic errors”. One of the most striking features of their ar-
gument was that the errors follow certain statistics and, therefore, they could
be described and even predicted. The resulting arguments have proved highly
influential in many fields, including computer science (and particularly in human-
machine interaction area) where the influence has stemmed from the effort to
connect algorithmic accuracy to speed of elaboration and, equally important, to
the algorithmic understanding of the human logic [7]. If human beings use iden-
tifiable heuristics, and if they are prone to systematic errors, we might be able
to design computer architectures and algorithms to improve human-computer
interaction (and also to study human behavior).

K&T described three general-purpose heuristics: representativeness, avail-
ability and anchoring. People use the availability heuristic when they answer
a question of probability by relying upon knowledge that is readily available
rather than examine other alternatives or procedures. There are situations in
which people assess the frequency of a class or the probability of an event by the
ease with which instances or occurrences can be brought to mind. For example,
one may assess the risk of heart attack among middle-aged people by recalling
such occurrences among one’s acquaintances. Availability is a useful clue for as-
sessing frequency or probability, because instances of large classes are usually
reached better and faster than instances of less frequent classes. However, avail-
ability is affected by factors other than frequency and probability. This is a point
about how familiarity can affect the availability of instances. For people without
statistical knowledge, it is far from irrational to use the availability heuristic;
the problem is that this heuristic can lead to serious errors of fact, in the form
of excessive fear of small risks and neglect of large ones.

The representativeness heuristic is involved when people make an assessment
of the degree of correspondence between a sample and a population, an instance
and a category, an act and an actor or, more generally, between an outcome
and a model. This heuristic can be thought of as the reflexive tendency to as-
sess the similarity of characteristics on relatively salient and even superficial
features, and then to use these assessments of similarity as a basis of judgment.
Representativeness is composed by categorization and generalization: in order
to forecast the behavior of an (unknown) subject, we first identify the group to
which it belongs (categorization) and them we associate the “typical” behavior
of the group to the item. Suppose, for example, that the question is whether
some person, Paul, is a computer scientists or a clerk employed in the public ad-
ministration. If Paul is described as shy and withdrawn, and as having a passion
for detail, most people will think that he is likely to be a computer scientist and
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ignore the “base-rate”, that is, the fact that there far more clerk employed in
public admin than computer scientists. It should be readily apparent that the
representativeness heuristic will produce problems whenever people are ignoring
base-rates, as they are prone to do.

K&T also suggested that estimates are often made from an initial value, or
anchoring, which is then adjusted to produce a final answer. The initial value
seems to have undue influence. In one study, K&T asked subjects to say whether
the number that emerged from the wheel was higher or lower than the relevant
percentage. It turned out that the starting point, though clearly random, greatly
affected people’s answers. If the starting point was 65, the median estimate was
45%; if the starting point was 10, the median estimate was 25%.

Several of recent contributions on heuristic have put the attention on the
“dual-process” to human thinking [8,9,10,11,12]. According to these hypothesis,
people have two systems for making decisions. One of them is rapid, intuitive,
but sometimes error-prone; the other is slower, reflective, and more statistical.
One of the pervasive themes in this collection is that heuristics and biases can be
connected with the intuitive system and that the slower, more reflective system
might be able to make corrections. The dual-process idea has some links with
the experimental evidences of the presence of areas for emotions in the brain,
for instance of fear-type. These “emotional” areas may be triggered before than
the cognitive areas become involved.

We shall try to consider some of these concepts to model autonomous agents
that have the task of processing messages from sources that are not always
trustable. The agent is a direct abstraction of an human being, easily understand-
able by psychologists and biologist with the advantage of following a stochastic
dynamics that can be combined with other approaches like ODE [14,15,16,13,17].
Here we make the analogy between the diffusion of hoaxes, gossips, etc., and that
of computer viruses or worms.

The incoming information may be corrupted for many reasons: some agents
may be infected by malware and particularly viruses, some of them may be
programmed to provide false information or they may just be malfunctioning.
Let us suppose that the processing of a corrupted information will infect the
elaborated message, so that the corruption “percolates and propagates” into the
connection network, unless stopped. We assume that an agent may contact a
central database for inquiring about the reliability of a message, but this checkout
is costly, at least in terms of the time required for processing the information.
Therefore, an agent is confronted with two opportunities: either trust the sender,
accept the message and the risk or passing false information and process it in
a short time, or contact the central database, be sure of the correctness of the
message but also waste more time (or other resources such as bandwidth) in
elaborating it. This is analogous to the passport check when crossing a boundary:
customers may either trust the identity card and let people pass quickly, or check
them against a database, slowing down the queue.

This paper, which is motivated by the fact that human heuristics may be
used to improve the efficiency of artificial systems of autonomous decision-makers
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agents, is structured as follows. In Section 2, we introduce a model where the
above mentioned heuristics are implemented. Section 3 focuses on equilibrium
and asymptotic conditions in the absence of infection. In Section 4, we describe
the different scenarios which are considered (no infection, quenched infection and
annealed infection); numerical results for different value of control parameters
under infection are reported in Section 5. A discussion about the psychological
implications of the model and conclusions are drawn in Section 6.

2 Model

Let us consider a scenario with N agents, identified by the index i = 1, . . . , N .
Each agent interacts with other K randomly chosen agents. The connections
indicate messages transferred. In principle, one can have input connections with
himself (meaning further processing of a given piece of information) and multi-
ple connections with a given partner (more information transferred). An agent
receives information from its connecting inputs, elaborates it and send the result
to its output links. Let us assume for simplicity that this occurs in a synchronous
way and at discrete time steps t. The information however can be tainted (cor-
rupted), either maliciously (virus, sabotage, attack) or because it is based on
incorrect data.

If an information is tainted, and it is accepted for processing, it contaminates
the output. All agents have the possibility of checking the correctness of the
incoming messages against a central database, but this operation is costly (say,
in terms of time), and therefore heuristics are used to balance between cost and
the risk of being infected.

An agent i has a dynamical memory for the reliability of its partners j,
−1 ≤ αij ≤ 1; this memory is used to decide if a message is acceptable or not.
The greater αij > 0, the more the partner is considered reliable, the reverse for
αij < 0. However, the trusting on an individual is not an absolute value, it has
to be compared with the perception of the level of the infection. Let us denote by
0 ≤ Ai ≤ 1 the perception of the risk i.e., the perceived probability of message
contamination, of individual i. A simple yet meaningful way of combining risk
perception with uncertainty is to assume that each individual i decides according
with its previous knowledge (αij) if |αij | > Ai and checks against the database
(i.e., get to know the truth) otherwise. If Ai is large, the agent i will be suspicious
and check many messages against the database, the reverse for small values of
Ai.

After checking the database, one knows the truth about his/her partner.
This information can be used to increase or decrease αij and also to compute
Ai. In particular, if the check is positive (negative), αij increases (decreases)
of a given amount vα. Finally Ai in increased by a quantity vAni/ci, where ci
is the cost (total number of checks for a given time step) and ni the number
of infected discovered. The idea is that Ai represents the perceived “average”
level of infection, corresponding to the “risk perception” of being infected. We
shall limit here to fixed and homogeneous responses, in an more realistic case,
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different classes of agents or individuals will react differently, according to their
“programming” and their past experiences, to a given perception of the infection
level.

Some of these quantities change smoothly in time. There is an oblivion mech-
anism on αij and Ai, implemented with the parameters rα and rA, respectively,
such that the information stored τ time steps before the present time has weight
(1 − r)τ . New information is stored with weight r. This mechanism emulates a
finite memory of the agent, without the need of managing a list.

The observable quantities are the total number of infected individuals, I, the
cost of querying the database, C and the number of errors E, which are given
by the number of tainted accepted messages and not-tainted refused messages.

In this model, we are only interested in the correctness of the message, not
in its content. Actually, a real message should be considered as a set of ’atomic’
parts, each of which can be analyzed, eventually with their relations, in order
to judge the reliability of the message itself. For instance, the spam detection
mechanism is often based on a score assigned to patterns (e.g., MONEY, SEX,
LOTTERY) appearing in the message. Therefore, a more accurate model should
represent messages as vectors or lists of items. We deal here with a simple scalar
approximation.

We try to include the human heuristics in this simple model by means of A
(representativeness) and αij (availability). The oblivion mechanism can more-
over be considered the parameter corresponding to the “anchoring” experiences.
In our present model, there is only one variable connected to affordability (from
completely trustable to completely not trustable), and the categorization pro-
cedure consists essentially in trying to assess the placement of an individual on
this axis. The trustability of an individual (αij) depends on the past interac-
tions. Since A represents the average level of infectivity, the trustability of an
individual is evaluated against it, in order to save the cost (or the time) of the
check against the central database.

3 Relaxation to equilibrium and asymptotic state

without infection
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Fig. 1. The asymptotic distribution P (α) for a < 2r (a = 0.006 and r = 0.01)
(a); a = 2r (a = 0.01 and r = 0.005) (b); a > 2r (a = 0.02 and r = 0.005) (c).
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In order to put into evidence the emerging features of our model, let us first
study the case without infection. Without “stimulation”, the threshold Ai is
fixed, and takes the value vA for all individuals. The only dynamical variables
are the αij .

Starting from a peaked (single-valued) distribution of αij , the model ex-
hibits oscillatory patterns and long transients towards an equilibrium distribu-
tion (Fig. 1). We found that by increasing the connectivity K, the peaks be-
come thinner and higher, following a linear relationship. The affinities αij in the
asymptotic state have a non trivial distribution, ranging from 0 to 2v. Let us call
P (α) the probability distribution of α. From numerical simulation (see Fig. 1),
one can see that P (α) can be divided into two branches, P1(α) for 0 ≤ α ≤ v
and P2(α) for v ≤ α ≤ 2v. The evolution of P (α) is given by the combination of
two phases: control against the database, that in the mean field approach occurs
with probability a = K/N for all α ≤ v (and therefore for P1), and the oblivion
mechanism, that multiplies all α by (1 − rα). Combining the two effects, one
finds for the asymptotic state

P1(α) =
1− a

1− rα
P1

(

α

1− rα

)

, (1)

P2(α) =
a

1− rα
P1

(

α

1− rα
− v

)

+
1

1− rα
P2

(

α

1− rα

)

. (2)

From Eq. (1), one gets easily that P1(α) ∝ αx, with

x =
ln(1− a)

ln(1 − rα)
− 1 ≃

a

rα
− 1.

In particular, the value x = 1 (Fig. 1-b) corresponds to a = 2rα. We were not
able to express the asymptotic distribution P2(α) in terms of known functions.
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Fig. 2. Relaxation to equilibrium for the cost C for N = 500, rα = 0.005 and
K = 5 (a = 0.01) (left); K = 50 (a = 0.1) (right).

The process of relaxation to the equilibrium is in general given by oscillations,
whose period is related to rα. A rough estimation can be obtained by considering
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that a pulse of agents with the same value of α = 2v will experience the oblivion
at an exponential rate (1−rα)

T , until α = v, after which a fraction a of the pulse
is re-injected again to the value α = 2v. The condition for the pseudo-periodicity
(for the fraction a of agents) is

2v(1− rα)
T = v,

from which the period T can be estimated

T ≃ −
ln(2)

ln(1− rα)
≃

ln(2)

rα

in the limit of small rα.
Since the re-injected fraction is given by a, the larger is its value, the larger

the oscillations and the slower is the relaxation to the asymptotic distribution,
as is shown in Fig. 2. One can notice that the period is roughly the same (same
value of rα), but the amplitude of oscillations is much larger in the plot to the
right (larger a).

Since a = K/N , these large oscillations make difficult to perform measure-
ments on the asymptotic state on small populations, but large values ofN require
longer simulations. One may say that the model is intrinsically complex.

The asymptotic cost is given by C∞ = a
∫ vα
0

P1(α) ∝ av
a/rα
α . As one can see

from Fig. 1, there is a cost even in the absence of infection, since the agents have
to monitor the level of infection against the database. The lower values of the
cost are associated to values of rα smaller than a.
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Fig. 3. Temporal behavior of the cost C, infection I and error level E for K = 5,
n = 500 (a = 0.01), r = 0.005. The pulse is at the time 500

4 Infectivity scenarios

The source of infection may be quenched, i.e., a fraction p of the population
always emits tainted messages, or annealed, in which case the fraction p of the
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spreaders is changed at each time step. Let us first study the case of a pulse of
infection (with p = 1) in the asymptotic state and a duration ∆t = 20. For large
values of the asymptotic cost, The infection is removed in just a few time steps,
as shown in Fig. 3.
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Fig. 4. Temporal behavior of the cost C, infection i and error level E for K = 2,
n = 500 (a = 0.004), r = 0.001. Left: vA = 10−3 (eradication). Right: vA = 10−4

(endemic infection). The pulse occurs at time 5000

For smaller values of the cost, the fate of the infection is related to the
scenario (quenched or annealed infectors). If the infection level is small, and the
infectors are quenched, the rising of the corresponding αij efficiently isolate the
contagion. In the case of a “pulse” of infection, or for annealed infectors, the
fate of the contagion is mainly ruled by the quantity Ai. If Ai grows rapidly (vA
sufficiently large), a temporary increase of the cost is enough to eradicate the
epidemics, see Fig. 4. In the opposite case, the infection becomes endemic even
for non-persistent infectors: it is maintained by the spreading mechanism. The
increment used in the following investigations is small enough so that we can
observe the persistence of the infection.

If the infectors are persistently renewed, the contagion cannot get eradicated
but only kept under control. The role of the two heuristics is different in the two
cases.

The representativeness heuristic (αij) is the optimal strategy to detect agents
which are constantly less reliable than the others (quenched case), but it is com-
pletely useless in the annealed case. The availability heuristic (Ai), considering
at each time step the average infection of the system, is able to control the spread
of infection in the annealed case.

The oblivion mechanism, related to the anchoring heuristic, is a the key
parameter governing the speed of adaptation to variable external conditions. It
controls the oscillations of the cost (Fig. 2) and it is fundamental to minimize the
computational load of the control process. The oblivion of αij (representativeness
parameter) controls the computational cost at the equilibrium in both cases.
High values of rα correspond to a conservative behavior of the system, in this
case a large computational cost and a corresponding low number of infected



Human Heuristics for Autonomous Agents 9

and errors characterized the equilibrium. Low values of rα correspond to the
dissipative behavior for which the system minimizes the computational cost but
allows large fluctuations of infected and high values of errors.

5 Dynamical behavior

We run extensive numerical simulations and recorded the asymptotic cost C,
number of infected people I, and errors E as function of the oblivion parameters
(rα and rA), the probability and the pulse of infection (p), and the density of
contacts (K). In these simulation we kept vA = 10−6 in order to stay in the
endemic phase, and therefore rA did not play any role.

Fig. 5 shows the effect of infection with different values of rα and contact
density for for K = 5 and N = 500. Plots (a) and (b) show the oscillatory
patterns without infection (p = 0) for rα = 10−3 (a), rα = 10−4 (b). The
oblivion rα (in the presence of infection) changes both the oscillatory frequency
(as studies in the previous section) and the oscillatory delay before convergence
to a basic fluctuation pattern. Note that increasing rα the frequency of the
oscillations increases. When rα = 0.0001, (a), the period T is T = ln 2104 ≈
7000; for rα = 0.001, (b), T ≈ 700). By adding infection (annealed version),
we obtain a quicker convergence the basal fluctuation equilibrium (c). We found
that the time to reach the basic fluctuation equilibrium does not depend on the
infection probability and the level of the fluctuation remain unchanged even for
long runs (d). Plots (e) and (f) show that with the same value of the infection
probability, increasing the density of contacts produces larger fluctuations, a
quicker convergence of the cost (K = 30 for plot (e) with respect to K = 5 for
all others). The two scenarios have different oblivion (rα = 10−3 (e), rα = 10−4

(f)). Then, increasing p, the frequency of the oscillations remains the same but
the peaks broaden.

6 Discussion and Conclusions

In this paper we have been modeled the cognitive mechanisms known as avail-
ability and representativeness heuristics. The role of the first one in the human
decision making process seems to be to produce a probability estimation of an
event based on the relative observed (registered) frequency distribution. The
second heuristic, representativeness, acts inferring certain attributes from others
easier-to-detect. Both heuristics are liable or ”noise affected”, but surely they
represent a very fast way to analyze environmental data using little quantity of
memory and time. But the very interesting aspect, and not underlined enough
in literature, is the role of the cooperation between heuristics. The co-occurrence
of their activities could be coordinate also in the human cognition, but of course
it is very interesting from a computational point of view.

We supposed that the availability heuristic corresponds to a mean field es-
timation of the “risk”, while representativeness partially maintains the memory
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Fig. 5. Cost C, Infection level I and Errors E vs. time t for two different values
of the parameter rα, rα = 10−3 (a,c,d,e); rα = 10−4 (b,f), different values of
p, p = 0, (a,b); p = 10−2 (d,e,f); p = 10−6, (c) and for some value of the
connectivity (K = 5 for plots (a,b,c,d,f), K = 30 for plot (e)) and population
N = 500.
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of the previous interactions with the others. In the quenched and annealed sce-
narios we can capture the effect of the heuristics coordination. The quenched
scenario considers the case of “systematic spreaders” where same agents emits
at each time step a tainted message. In this case the availability heuristic would
fails to minimize cost and infection if representativeness was absent.

On the contrary in the annealed scenario the spreaders are completely cho-
sen at random at each time step. In this extreme case there is no information
contained in the previous history of the system, and representativeness heuristic
became completely useless. In this situation the only available information is the
rate of infection, and availability heuristic is the most efficient way to minimize
both cost and risk of infection.

The oblivion mechanism associated to the two heuristics determines both
the cost of the control process and a sort of its reactivity. In average the cost,
which represents the number of operations/computation to cope the task, is pro-
portional to the oblivion value, the number of infected and errors are inversely
proportional to the oblivion. If the cost as so as it happens in the biological do-
main, is considered as a quantity which the system has to minimized, it means
that will exist an optimal value of both oblivion parameters for each possible
condition. The reactivity of the control process could be defined as the time
needed from the system to reduce to zero a new infection. In our model the
oblivion of both the two heuristics appears to control also the size of “cost oscil-
lations”. We found that the larger the oblivion level, the lower the oscillations
and the time needed to reach the asymptotic equilibrium.

Our simulations show that under the infection, the cost reaches its asymptotic
value much earlier than without infection. This suggests that a low value of
infection level may even provide some advantages for the quick dumping of the
oscillatory behavior resulting in an improved cost predictability.

The investigation of heuristics exploits a major overlap between artificial in-
telligence (AI), cognitive science and psychology. The interest in heuristics is
based on the assumption that humans process information in ways that comput-
ers can emulate and heuristics may provide the basic bricks for bridging from
brains to computers . Our model framework approach is quite general and offers
some points of reflections on how the study of complex systems may become help
developing new areas of AI. In the past years the AI community has debated as
to whether the mind is best viewed as a network of neurons (connectionism), or
as a collection of higher-level structures such as symbols, schemata, heuristics,
and rules, i.e., emphasizing the role of symbolic computation. Nowadays the
symbolic representations to produce general intelligence is in slightly decline but
the “neuron ensemble” paradigm has also shifted towards more complex models
particularly taking into account and combining findings from both fNMR and
cognitive psychology fields ( [19,20]).

Here we show that the incorporation of simple heuristics in a small network
of agents leads to a rich and complex dynamics.Our model does not take into
account mutation and natural selection which is of key importance for the emer-
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gence of complex behavior in animal societies and in the brain development (see
for example Pinker and the follow up debate [21]).

A multi-agent model, where each agent represent a message/modifying per-
son/neuron, can serve as a very natural abstraction of communication networks,
and hence be easily used by psychologists as well as computer scientists. Such
a model also allows the tracking of single agent fates so that communities with
low member numbers are easily dealt with and these models also provide for
much more detailed analysis compared to average population approaches like
continuous differential equations.

Heuristics may have even greater value in case of environmental challenges,
i.e. organisms need to adapt quickly to environmental fluctuations, for example
starvation and high competition, they must be able to make inferences that are
fast, frugal, and accurate. These real-world requirements lead to a new concep-
tion of what proper reasoning is: ecological rationality. Fast and frugal heuristics
that are matched to particular environmental structures allow organisms to be
ecologically rational. The study of ecological rationality thus involves analyzing
the structure of environments, the structure of heuristics, and the match between
them.
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