
Cardiovascular Response Identification Based on 
Nonlinear Support Vector Regression 

Lu Wang1, Steven W. Su1,2, Gregory S. H. Chan1, Branko G. Celler1*, Teddy M. 
Cheng1, and Andrey V. Savkin1 

 
1 Biomedical System Lab, School of Electrical Engineering & Telecommunications,Faculty 
of Engineering, University of New South Wales, UNSW Sydney, N.S.W. 2052, Australia 

2 Key University Research Centre for Health Technologies, Faculty of Engineering, 
University of Technology, Sydney, Broadway, NSW 2007, Australia 

* Corresponding author (Email: b.celler@unsw.edu.au) 
{LuWang, Steven.Su, Gregory.Chan, B.Celler, T.Cheng,  A.Savkin}@unsw.edu.au  

Abstract. This study experimentally investigates the relationships between 
central cardiovascular variables and oxygen uptake based on nonlinear analysis 
and modeling. Ten healthy subjects were studied using cycle-ergometry 
exercise tests with constant workloads ranging from 25 Watt to 125 Watt. 
Breath by breath gas exchange, heart rate, cardiac output, stroke volume and 
blood pressure were measured at each stage.  The modeling results proved that 
the nonlinear modeling method (Support Vector Regression) outperforms 
traditional regression method (reducing Estimation Error between 59% and 
80%, reducing Testing Error between 53% and 72%) and is the ideal approach 
in the modeling of physiological data, especially with small training data set.  

Keywords: Cardiovascular system, Nonlinear modeling, Cardiovascular 
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1   Introduction 

The relationships between central cardiovascular variables and oxygen uptake during 
steady state of graded exercise have been widely examined by numerous investigators 
[1] [2] [3] [4] [5] [6] [7] [8] [9]. Most of them investigated the relationship between 
cardiac output (CO) and oxygen uptake ( 2OV ) using linear regression methods and 

found the slope between the two variables to be approximately 5 – 6 in normal and 
athletic subjects [10]. Beck et al [11] in contrast, investigated this relationship in 
healthy humans using polynomial regression. Turley [9] described both the 
relationship of stroke volume (SV) and the total peripheral resistance (TPR) to 
oxygen uptake during steady state of sub-maximal exercise using linear regression. 
However, from the point view of modeling, the regression methods used by the 
previous researchers have several limitations. First the empirical risk minimization 
(ERM) principle used by traditional regression models does not guarantee good 
generalization performance and may produce models that over-fit the data [12]. 
Secondly, most of the regression models developed from early research based on a 



small sample set with limited subjects during three or four exercise intensities. 
Traditional regression approaches are particularly not recommended for modeling 
small training sets. Determination of the size of the training set is a main issue to be 
solved in the modeling performance because the sufficiency and efficiency of the 
training set is one of the most important factors to be considered.  

This study presents a novel machine learning approach, Support Vector Regression 
(SVR) [13] to model the central cardiovascular response to exercise. SVR, developed 
by Vapnik and his co-workers in 1995, has been widely applied in forecasting and 
regression [14] [15] [16] [17].  The following characteristics of SVR make it an ideal 
approach in modeling of cardiovascular system. Firstly, SVR avoids the over-fitting 
problem which exists in the traditional modeling approaches. Second, SVR condenses 
information in the training data and provide a sparse representation by using a small 
number of data points [18]. Thirdly, SVR is insensitive to modeling assumption due 
to its being a non-parametric model structure. Finally, the SVR model is unique and 
globally optimal, unlike traditional training which can risk converging to local 
minima.   

The rest of this paper is organized as follows: Section 2 describes the experimental 
design for the data collection. Section 3 applies SVR for modeling the relationships 
between central cardiovascular variables and oxygen uptake. Finally, some 
conclusions are drawn in Section 4. 

2   Experimental Design 

2.1   Subjects  

We studied 12 normal male subjects. They are all active, but do not participate in 
formal training or organized sports. However, since two of them could not complete 6 
minutes of higher level exercise, only the data recorded from 10 subjects (aged 25 ± 
4yr, height 177 ± 5cm, body weight 73 ± 11kg) are used for this study. All the 
subjects knew the protocol and the potential risks, and had given their informed 
consent.  

2.2   Experimental Procedure  

All tests were conducted in the afternoon in an air-conditioned laboratory with 
temperature maintained between 23-24 oC. The subjects were studied during rest and 
a series of exercise in an upright position on an electronically braked cycle ergometer. 
Exercise was maintained at a constant workload for 6 minutes, followed by a period 
of rest. The initial exercise level was 25W and each successive stint of exercise was 
increased in 25W steps until a workload of 125W was reached. The rest periods were 
increased progressively from 10 to 30 minutes after each stint of exercise. Six minutes 
of exercise was long enough to approach a steady state since the values of oxygen 



uptake and the A-V oxygen difference had become stable by the 5th and 6th minutes 
even for near maximum exertion [19]. 

2.3   Measurement and Data Processing  

Heart rate was monitored beat by beat using a single lead ECG instrument, while 
ventilation and pulmonary exchange were measured on a breath by breath basis. 
Minute ventilation was measured during inspiration using a Turbine Flow Transducer 
model K520-C521 (Applied Electrochemistry, USA). Pulmonary gas exchange was 
measured using S-3A and CD-3A gas analyzers (Applied Electrochemistry, USA). 
Before each individual exercise test, the turbine flow meter was calibrated using a 3.0 
liters calibration syringe. Before and after each test, the gas analyzers were calibrated 
using reference gases with known O2 and CO2 concentrations. The outputs of the 
ECG, the flow transducer and the gas analyzers were interfaced to a laptop through an 
A/D converter (NI DAQ 6062E) with a sampling rate of 500 Hz. Programs were 
developed in Labview 7.0 for breath by breath determination of pulmonary gas 
exchange variables but with particular reference to 

2OV  (
2OV  STPD). Beat by beat 

stroke volume and cardiac outputs were measured noninvasively using the ultrasound 
based device (USCOM, Sydney, Australia) at the ascending aorta. This device has 
previously been reported to be both accurate and reproducible [20]. In order to keep 
consistent measurements, all CO/SV measurements were conducted by the same 
person. An oscillometric blood pressure measurement device (CBM-700, Colin, 
France) was used to measure blood pressure.  

The measurement of 
2OV  and HR were conducted during the whole exercise and 

recovery stage. The static values (
2OV  and HR) were calculated for each workload 

from data collected in the last minute of the six minute exercise protocol. The 
measurements of SV, CO and BP (blood pressure) were similarly conducted during 
the last minute of  the six minute exercise for each workload with the additional 
requirement that subjects keep their upper body as still as possible to minimize 
artifacts caused by the movement of the chest during exercise. We then, calculated 
their static values (CO, SV and BP) based on the measurement in the last minute for 
each workload.  

2.4  Results  

We found that the percentage changes of cardiovascular variables relative to their rest 
values more uniform than when absolute values are used. This may be because using 
relative values diminish the variability between subjects.  

Based on the above finding, we model CO, SV and TPR to 
2OV  by modeling the 

percentage changes in CO, SV and TPR with respect to their corresponding rest 
values to percentage change in 

2OV  with respect to its rest value. We use CO%, 

SV%, TPR% and 
2OV % to represent their relative values (expressed as percentage), 

respectively. 



3   Application of SVR for Modeling 

We selected radial basic function (RBF) kernels for this study, that is  
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value and x is the input value. 
Detailed discussion about SVR, such as the selection of regularization constant C , 

radius   of the tube and kernel function, can be found in  [12] [21]. In order to show 
the effectiveness of SVR, we applied both SVR and traditional linear regression 
(Least-Square linear regression (LS)) to investigate the relationships between 
percentage change of cardiovascular variables (CO%, SV% and TPR%) and 

2OV %. 

 

3.1 The Relationship Between CO% and 
2OV % 

3.1.1 Model identification. A SVR model was developed to estimate CO% from 

2OV % (Table 1 and Fig. 1). Although it is widely accepted that there is a linear 

relationship between cardiac output and oxygen consumption [1] [2] [4], their 
relationship can be better described by the nonlinear SVR model in terms of reducing 
the errors (MSE) from 418 to 171 (Table 2), an improvement of 59% comparing with 
that of LS method. The results in Table 1 also show the efficiency of SVR. Unlike 
traditional regression method where the solution of the model depends on the whole 
training data points, in SVR, the solution to the problem is only dependent on a subset 
of training data points which are referred to as support vectors. Using only support 
vectors, the same solution can be obtained as using all the training data points. SVR 
uses just 13% of the total points available to model their nonlinear behavior 
efficiently.  

 



 

(a) Estimation of percentage change in CO from percentage change in 
2OV  using SVR. 

 
(b) Estimation of percentage change in CO from percentage change in 

2OV  using LS. 

 

Fig. 1. Comparison of estimation results of CO% between using SVR and using LS.  

 



 

(a) Testing of SVR model 

 

(b) Testing of  LS model 

Fig. 2. Comparison of models of CO% against % change in oxygen uptake using SVR and 
using LS methods. 

 



3.1.2 Model validation. To further evaluate the feasibility of this proposed SVR 
model, the whole data set is divided into two parts: the first part (70% of the data) is 
used to design the model and the second part (30% of the data) is used to test its 
performance. Because we do not have large sample of data, we separated the data set 
into two parts randomly five times. Each time we use 70% of the data for training and 
the rest for testing. We established the SVR model with the three design parameters 
(kernel function, capacity ( C ) and the radius of insensitivity (  ) based on the 
training set, and test its goodness on the testing set. In Fig. 2, we present the results 
for one of the 5 tests. As shown in Table 3, the averaged results (MSE) for the 5 times 
testing for SVR is 245±15. However, the averaged error for traditional linear 
regression is as high as 521±19. It indicates that SVR can build more robust models to 
predict CO% from 

2OV % using only a small training set. It also demonstrates that 

SVR can overcome the over-fitting problem, even though SVR has more model 
parameters than the traditional linear regression method. 

3.2 The Relationship Between SV% and 
2OV % 

Fig. 3 shows the models for estimating SV%. The SVR model gives more precisely 
estimation than the LS does and decreases estimation errors (MSE) by 67% (Table 2).   

The testing models are given in Fig. 4 and the testing errors are in Table 3. As 
indicated, the SVR model decreases the testing error by 64%. 

3.3 The Relationship Between TPR% and 
2OV % 

As shown in Fig. 5, the SVR model describes a rapid fall in TPR% at low workloads 
which remains relatively constant even with increasing 

2OV %. SVR uses just 13% 

(Table 1) of the total points to get an efficient nonlinear model. Compared with linear 
regression, the SVR model decreases MSE from 151 to 30, an improvement of 80%.  

The testing results for this SVR model and the equivalent LS model are given in 
Fig. 6 and Table 3, respectively. Both of these (Fig. 6 and Table 3) demonstrate that 
SVR outperforms the traditional linear regression method by reducing testing errors 
significantly, from 130 to 36. 

 



 

(a) Estimation of percentage change in SV from percentage change in 
2OV  using SVR. 

 

(b) Estimation of percentage change in SV with percentage change in 
2OV  using linear 

regression. 

Fig. 3. Comparison of estimation results for SV% between using SVR and using LS. 

 
 



 

(a) Testing of SVR model.    

 

  (b) Testing of LS model.                                                                             

Fig. 4. Comparison of the testing results for Stroke Volume using SVR and using traditional 
linear regression.  

 



 

(a) Estimation of percentage change in TPR from percentage change in 
2OV  using SVR.        

 

(b) Estimation of percentage change in TPR with percentage change in 
2OV  using linear 

regression. 

Fig. 5. Comparison of the estimation results of TPR% between using SVR and LS.    

 



 
 
 

(a) Testing of SVR model. 

 
 

(b) Testing of LS model. 

Fig 6. Comparison of the test results of TPR% against % change on Oxygen uptake using SVR 
and using LS. 

 



Table 1. Fitting data for the model of cardiovascular variables and oxygen uptake rate using 
SVR. 

Relation CO% vs 

2OV % 

SV% vs 

2OV % 
TPR% vs 

2OV % 

Kernel RBF RBF RBF 
Parameter  = 200  =500  =500 
Regularization 
Constant C 

5000 5000 5000 

ε-insensitivity 19 3 8 
Support vector number 8 (13.3%) 8 (13.3%) 8 (13.3%) 
Estimation error 171 5 30 

 
 

Table 2.  Comparison of the estimation errors (MSE) between using SVR and using linear 
regression method. 

 

Relation CO% vs 2OV % SV% vs 2OV % TPR% vs 2OV % 

SVR 171 5 30 
LS 418 15 151 

 
 

Table 3. Comparison of the model fitting errors (MSE) using SVR and linear regression 
methods (N=5). 

 

Relation CO% vs 2OV % SV% vs 2OV % 
TPR%  

vs 2OV % 

SVR testing error 245 ± 15 8 ± 2 36 ± 5 

LS Testing error 521 ± 19 22 ± 7 130 ± 12 

 

4   Conclusions  

This is the first time that SVR has been applied to experimentally investigate the 
steady state relationships between key central cardiovascular variables and oxygen 
consumption during incremental exercise. The impressive results obtained prove that 
SVR is an effective approach that can be recommended for the modeling of 
physiological data.  
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