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Abstract. The majority of speech signal analysis procedures for automatic de-
tection of laryngeal pathologies on speech mostly rely on parameters extracted
from time-domain processing. Moreover, calculation of these parameters often
requires prior pitch period estimation; therefore, their validity heavily depends
on the robustness of pitch detection. Within this paper, an alternative approach
based on cepstral-domain processing is presented which has the advantage of not
requiring pitch estimation, thus providing a gain in both simplicity and robust-
ness. While the proposed scheme is similar to solutions based on Mel-frequency
cepstral parameters, already present in literature, it has an easier physical inter-
pretation while achieving similar performance standards.

1 Introduction

Analysis of recorded speech is an attractive method for pathology detection since it is
a low-cost non-invasive diagnostic procedure [1]. Although there is a wide range of
causes for pathological voice (functional, neural, laryngeal, etc.) and a correspondingly
wide range of acoustic parameters has been proposed for its detection (see [2] for sum-
marising tables and typical values), these intend to detect speech signal features that
may be roughly classified in only three classes [3]:

— Short-term frequency perturbations: both in fundamental frequency and in for-
mants.

— Short-term amplitude perturbations.

— Noise or, more specifically, speech-to-noise ratio.



Calculation of above-mentioned acoustic parameters requires previous and reliable
detection of speech fundamental frequency (pitch) [4] [1]. Nevertheless, pitch detection
is not an easy task due to its sensitiveness to noise, signal distorsion, speech formants,
etc. [5].

An alternative approach to speech signal analysis is doing it in cepstral domain,
more specifically in Mel-frequency cepstral domain. Such approach, consisting in clas-
sifying patterns of so-called Mel-frequency cepstral coefficients (MFCC), does not re-
quire prior pitch estimation and has proven to be fairly robust against different kinds
of speech distortion [6], including that of the telephone channel [7], and reasonably
independent of the particular way in which computations may be implemented [8].
For these reasons, their application to automatic voice pathology detection has been
proposed during the last years [9]. Yet, to authors’ knowledge, up to now no physical
explanation exists on the meaning of MFCC and their relevance on pathology detection.

Within this paper, a new scheme for automatic voice pathology detection is pro-
posed. This lies half-way between usual cepstral domain and Mel-frequency cepstral
domain. Namely, it takes profit from the conceptual interpretation of cepstral process-
ing of speech signals [10], the pattern separation capability of cepstral distances [11]
and the smoother spectrum estimation provided by the filter banks in MFCC calcula-
tion [11]. The mathematical formulation of both cepstrum and MFCC parameters is
revised in Sect. 2, while the newly proposed set of parameters is introduced in Sect.
3. The results from the application of these features to the detection of pathologies on
voices belonging to a commercial database are reported in Sect. 4. Last, the conclusions
are presented in Sect. 5.

2 Mathematical Formulation

2.1 Short-Time Fourier Transform

As stated in previous section, the variability of speech signal is a key feature for pathol-
ogy detection. The need for detecting such variability leads to the convenience of em-
ploying short-time techniques for speech processing. For this reason, in the following
lines the mathematical framework for short-time processing of speech provided in [10]
is revised.

Let x[n] be a speech signal composed by N samples (n =0---N — 1) obtained at a
sampling frequency equal to f;; then it can be segmented in frames defined by:

flnml=x[n]-wm—n] , (1)
where w [n] is the framing window:
wn]=0 ifn<Oorn>L )

and L is the frame length. Consequently, f [n;m] has non-zero values only for n € [m —
L+ 1,m]. If consecutive speech frames are overlapped a number of [y samples, then m
may have the following values:

m=L+p-(L—1lp)—1, 3



where p is the frame index and it is an integer such that:

“

Considering the relation between the frame shift 7 and the frame index p, frames
without time shift reference may be renamed as:

gplnl = fln+m—L+Lim]=fln+p-(L—lo):m] = 5)
=x[n+p-(L—1)]-wl(L—1)—n] ,

where n = 0---L— 1. From these speech frames, the short-term Discrete Fourier Trans-
form (stDFT) is computed as:

Nprr—1 .
Sp (k) = 2 gpln]-e “MoFT T (6)
n=0

where Nprr is the number of points of the stDFT, k = 0--- Nppr — 1 and:

~ o1 Jepnl if 0<n<L
gy = {O otherwise )
Thus, if Nppr > L then (6) is equal to:
! —j 2 kn
Sp(k) = gpln]-e” " orr ®)
n=0
and the frequency values that correspond to each stDFT coefficient are:
k . N
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2.2 Short-Time Cepstrum

In [10], an algorithm for computing the short-time cepstrum from the stDFT is given,
under the assumption that Nppr >> L:

1 Mol ok
> log|S, (k)| Forr (10)

cplal = Norr P

A physical interpretation of cepstrum can be derived from the discrete-time model
for speech production that can also be found in [10]. This model may be written in
frequency domain as:

s (ng) —E <e1'9) G (ejg) ‘H (ejg) , (11)
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Fig. 1. Average modulus of the short-term DFT for one voice record.

where § (ejg) is the speech, E (ejg) is the impulse train corresponding to the pitch
and its harmonics, G (ejg) is the glottal pulse waveform that modulates the impulse
train and H (ej Q) is, herein, the combined effect of vocal tract and lip radiation. These
components can be appreciated in Fig. 1, which corresponds to the average modulus of
the short-term DFT calculated from one of the voice records belonging to the database
referred in Sect. 4.1.

The quick impulse-like variations in Fig. 1 correspond to the fundamental frequency
and its harmonics E (ej Q) and the evolution of the impulse amplitude envelope is related
both to the glottal waveform G (ejg) and to the formants induced by the vocal tract
H (ej Q). These formants correspond to the three envelope peaks with a decreasing level
of energy that are centered at 750 Hz, 1375 Hz and 3000 Hz. In fact, these center
frequencies are coherent with the range of typical values given in [2].

The logarithm operation in (10) converts the products in (11) into sums. Conse-
quently, it allows the cepstrum to separate fast from slow signal variations in frequency
domain. This widely known fact is illustrated in Fig. 2, where the peak around 5.7 ms
clearly identifies the fundamental frequency (175 Hz) and the values below 2 ms corre-
spond to the spectrum envelope.

2.3 Short-Time MFCC

Once the stDFT of a speech signal is available, another option for further processing, as
mentioned in Sect. 1, is the calculation of short-time MFCC (stMFCC) parameters. For
stMFCC computation, only the positive part of the frequency axis is considered [11],
that is, fx > 0 and, therefore, k¥ < Nppr/2. In order to calculate stMFCC coefficients,
a transformation is applied to the frequencies so as to convert them to Mel-frequencies
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Fig. 2. Short term cepstrum averaged for all frames of the same voice record as used for figure 1.
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and the stDFT is further processed through band-pass integration along M equally long
Mel-frequency intervals, being M = |3 -logo fs| ( |-] means rounding to the previous
integer). Namely, the i/” interval (i = 1--- M) in Mel-domain is defined by:

g":[pm =1 pm ’+1} : (13)

TM+17 M+1

where F™ is the maximum Mel-frecuency:

fs/2
ml?xfk 9 0g10< + m (14)

and the interval length in Mel-domain is given by:

2
L(I"=—— F" . 15
According to the previous equations, the Nppr stDFT coefficients are transformed
to M frequency components as follows:

50=3 (1—%> 1501 16

Jk€li

Last, the ¢ (¢ = 1---Q) StMFCC of the p™ speech frame, where Q is the de-
sired length of the Mel-cepstrum, is given by cosine transform of the logarithm of the



smoothed “Mel-spectrum” [11]:

M ~
)= 3o S, (i)

- COS {q(t—%)%} . (17)

3 Cepstral Coefficients Based on Smoothed Spectrum

3.1 Justification

As stated in Sect. 1, while MFCC parameters exhibit both good performance and ro-
bustness in feature extraction from speech, they lack a clear physical interpretation. On
the opposite, cepstrum has a physical meaning (recall Sect. 2.2), yet raw cepstrum coef-
ficients are not as useful for speech parametrisation. In the next paragraphs, the reasons
for these facts are exposed.

Cepstrum calculation, as formulated in (10), is based on the spectrum estimate pro-
vided by the absolute value of the stDFT. Due to the logarithm, this gives a result that is
proportional to the case of periodogram-based spectrum estimation. However, such es-
timation is very dependent on the specific values of the original speech frame. A more
robust spectrum estimate can be obtained by smoothing of the periodogram (Black-
man and Tukey method, [12]). In fact, this is what (16) expresses in the calculation of
MEFCC. Therefore, filtering of the stDFT may be assumed to be one of the sources of
MEFCC robustness.

In contrast, an explanation for the lack of clear interpretation of MFCC also lies in
the meaning of (16). According to that equation, stDFT smoothing for MFCC compu-
tation is carried out with a variable-length filter, that is, a Bartlett window whose length
decreases for lower frequency bands. Moreover, the smoothed stDFT is downsampled
to obtain only M samples in the interval [0, f;/2] that are not uniformly spaced [11].
While the downsampling is positive in the sense that it reduces the dimensionality of
the problem, its non-uniformness, together with the previous variable-length filtering,
obscures the interpretation of the output of the cosine transform in (17).

From the previous reasoning, if stDFT is smoothed with a fixed-length filter and
its output is uniformly decimated prior to the logarithm computation, the cepstral co-
efficients in (10) can be transformed to a more robust parameter set. Moreover, this is
achieved while keeping the physical meaning of cepstrum, since the output of the first
operation gives an improved spectrum estimate and the second only limits the length of
cepstrum in quefrency domain.

3.2 Formulation

Starting from (8), if the stDFT modulus is smoothed with a Bartlett window of constant
length equal to Af then the following output is obtained:

o Clg-iarel\
Sp<z>—szgi<1 ] s as)



where I; = [Af-(i—1)/2,Af - (i+1) /2] and the Bartlett window has been chosen for
similarity with (16). Herein, only the positive part of the frequency axis has been con-
sidered, as in Sect. 2.3.

If the filtered stDFT is decimated so as to keep only the outputs of consecutive
windows with a 50% overlap, this is equivalent to decimation by a factor:

D= |Af-Norr/(2-f5)] - (19)

The modified cepstrum then becomes:

D N%T 2nD

2 TC
clq] = . log|S" (k-D -cos(k—l- . ) , (20)
vl Norr A g| »( )| ( ) Norr q

where only the positive frequencies have been considered, hence computing the inverse
DFT as a cosine transform as in (17). ¢, [g] has the twofold advantage over ¢, [q] of
being based on a smoother spectrum estimate S;, (i) and having a period length that has
been reduced by a factor D, thus providing some dimensionality reduction.

3.3 Cepstral Distances

Differences in cepstrum can be used for speech signal classification. An example of
such usage is the definition of the cepstral distance in [11] as the norm of the vector
resulting form substraction of the two cepstra to be compared. This, if directly applied
to pathology detection, would result in comparing the cepstrum of consecutive speech
frames so as to assess the variability of the signal. Mathematically:

NDDFT 1
2 / / 2
dy= X |cpulal=cylal” - @
q=0
However, bearing in mind the physical interpretation of cepstrum, this definition
has the drawback of mixing pitch variations with formant and glottal pulse variations.
To overcome this problem an individual frame-to-frame cepstral parameter variation

analysis is proposed:

dplgl = |11 [q) — ¢ la]] - (22)

This way, analysis of the distribution of d,, [g] related to speech formant and glottal
pulse variability (low values of g) can be isolated from pitch changes associated to
values of g around the pitch period.

4 Application and Results

For the purpose of performance analysis, the modified cepstral parameters presented in
previous section have been applied to the problem of automatic pathology detection on
recorded voice. The results have been compared to those produced by MFCC. Within
this section, first the voice database is presented, second the used parameter set is spec-
ified, third the classifier is described and, last, the results are shown and commented.



4.1 Database

The voice records used in this investigation are the same as in [13]. They belong to a
database distributed by the company Kay Elemetrics [14]. The recorded sounds corre-
spond to sustained phonations (1-3 s long) of the vowel /ah/ from patients with either
normal or disordered voice. Such voice disorders belong to a wide variety of organic,
neurological, traumatic and psychogenic classes. Sampling rate of speech records has
been made uniform for all of them and equal to 25 KHz, while the coding has a res-
olution of 16 bits. The subset taken from the database contains 53 normal and 173
pathological speakers which are uniformly distributed in age and gender [13].

4.2 Classifier Description

For both classification schemes, a Multilayer Perceptron (MLP) with two hidden layers,
each consisting of 4 neurons, and a two-neuron output layer has been used as a classi-
fier. All neurons have logistic activation functions. An MLP with a single hidden layer
having 50 neurons was utilised in [9]. The structure herein proposed, in contrast, has
less free parameters, thus allowing a faster learning, and the reduced number of neurons
is compensanted by the introduction of an additional hidden layer that permits learning
of more complex relations [15].

The MLP classifier has been trained with 60% of available speech records in such
a way that its output is expected to be “1” for pathological voices and “0” for normal
voices. 10% of the records have been used for cross-validation during the training phase
as a criterion to stop training. The remaining 30% of records have been used for testing.
The experiment has been repeated 200 times, each of them with different, randomly
chosen, training and cross-validation sets.

4.3 Results for short-time parameters

Within the previous classification scheme, each feature vector, corresponding to one
speech frame, is assigned a pair of likelihoods, one coming from each output neuron:

— likelihood of belonging to the phonation of a healthy person (I5,,) and
— likelihood of that person having pathology (lf,’at);

being p the frame index. From the pair (lffor,lgat), the classification decision at frame

level is taken based on the value of the log-likelihood ratio (LLR") and comparing it to

a threshold O: »
l
LLRP = log% >0 . (23)
pat
For a record consisting of P frames, decision at record level is taken based on the mean
log-likelihood:

1 &
LLR:F-Zlongze. (24)
p=1 pat

In this first experiment, for each speech record short-term cepstrum-based coeffi-
cients, as defined in (20), have been calculated. Namely, a filter length Af = 200 Hz
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Fig. 3. Short-time cepstrum of a speech frame taken from the database, without spectrum filtering
(left) and after spectrum filtering (right). It can be noticed that the limitation on the length of
cepstrum has produced a loss of information about pitch (peak on the right part of the left graph).

has been chosen for sfDFT smoothing. Consequently, this results in a cepstrum length
equal to (fy —Af/2)/(Af/2) = 124 samples. The choice of Af is consistent to the
approximate length of the low-band filters used for MFCC calculation (recall (16)).
At first sight, however, it has the drawback of loosing pitch information of the signal
spectrum. This is illustrated in Fig. 1 where the filtered DFT has been plotted with a
dashed line and also in Fig. 3 where the cepstrum obtained with and without spectral
smoothing is represented. Nevertheless, such filtered spectrum contains information on
both harmonic-to-noise ratio (HNR) and glottal pulse waveform [16] and HNR is a
useful parameter for pathology detection that is closely related to both frequency and
amplitude perturbations of pitch [2].

For the sake of comparison, another classifier based on a parameter vector con-
sisting of 20 stMFCC calculated using 31 Mel-band filters (M = |3 -log f;| = 31) has
also been tested. Figure 4 shows the detection-error-tradeoff (DET) plots [17] for both
parametrisation schemes at frame level and at record level. It can be noticed that while
the stMFCC-based system provides better performance (14.96 % equal error rate -
EER), possibly due to the higher dimensionality reduction, the herein presented scheme
has a performance within the same range (17.79 % EER) with a clearer physical inter-
pretation. Another observation that can be drawn from the plot is that results at record
level (respectively, 13.36% and 15.40% EER) are better that at frame level. Such fact
indicates the presence of a certain degree of variability among speech frames belong-
ing to the same record. This is intended to be confirmed in the second experiment, as
reported next.
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Fig. 4. DET plot for the stMFCC (black) and the short-time modified cepstrum (gray) parametri-
sation schemes.

4.4 Results for averaged parameters

In order to assess the relevance of cepstral variability, a second experiment has been
carried out. In this case, the input vectors for the pathology detector are calculated for
each record, instead of working at the frame level as before. The first 124 elements
correspond to the average values of the short-time cepstrum, as calculated before. The
rest of the input vector contains information about the variability of cepstrum around
those average values. More specifically, the mean and variance of d,, [g] for each value
of g are used as descriptors of the cepstrum variability. Therefore, on the whole, a
parameter vector of 124 x 3 elements is produced.

Figure 5 shows the results of using the above-mentioned scheme for speech record
parametrisation compared to thise obtained only with the first 124 components of the
feature vectors, that is, without including information on cepstral variability. It should
be noted that the structure of the MLP classifier for this experiment has been simplified
by removing one of the hidden layers. The reason for this is that when passing from
the frame level to the record level a great reduction on the number of feature vectors is
obtained. Still, a similar performance at record-level classification is achieved for the
case of the feature vectors including information on cepstral variability (14.70 % EER).
However, if this information is removed from the classifier inputs, the performace is de-
graded (19.17 % EER). This confirms the relevance of cepstral variability for pathology
detection.

In order to acquire a deeper understanding of the reasons for these results, an anal-
ysis of the relevance of cepstrum-based parameters for speech classification as either
pathological or not has been realised. Such analysis is based on the evaluation of the
Fisher criterion [18] for each individual parameter of the above-described 372-element
feature vectors. The results, differentiated for the three subsets of parameters (modified
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Fig. 5. DET plot for short-time cepstral parameters including information on cepstral variability
(black) and lacking that information (gray).

cepstrum, variance of differences and average of absolute differences) are plotted in
Fig. 6.

According to this plot, the most relevant cepstral parameters for pathology detection
maybe roughly classified into two groups:

— The modified cepstrum values with lowest indices (plot at the bottom of Fig. 6):
these are related to the slowest components of the spectrum envelope in Fig. 1,
which, on their side, are associated to spectral noise levels and HNR [16].

— The frame-to-frame variations in cepstrum-based coefficients whose quefrecies are
within the interval [0.5, 1.5] miliseconds approximately: coefficients within that in-
terval correspond to the short frequency range components of the spectrum enve-
lope. These components, as justified in Sect. 2.2, are related to glottal waveform
and speech formants. However, this information itself does not help to discriminate
the presence of pathology, as indicated by the low values of the Fisher criterion
in the bottom plot of Fig. 6. Instead, frame-to-frame variations of these factors are
much more relevant, as depicted in the other two plots of the same Fig..

To be more specific, since the voice records of the database used for this experiment
correspond to sustained vowel phonations, it can be assumed that the vocal tract has
very little variations, hence formants do not change and the second group of parameters
should be more closely related to changes in the glottal waveform. As for the limits of
the quefrency interval in which parameters from the second group are relevant, the lower
limit of 0.5 ms corresponds to the quefrency band that separates slow components of
the spectrum envelope (first group of parameters) from faster components (associated to
the second set); on the other hand, the upper limit of 1.5 ms corresponds to the highest
quefrency range at which the modified cepstrum c;, [¢] has significant values. This is



Variance of d P[q]

N

Fisher criterion
-

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
Quefrency (ms)
Average of d p[q]

Fisher criterion

Quefreﬁcy (ms)
Average modified cepstrum c’p[q]

N

T T T T T T T T

Fisher criterion
-

11| T vy S S . b o
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Quefrency (ms)

(=)

o

Fig. 6. Value of Fisher criterion for each cepstral parameter.

shown in Fig. 7, where a plot of the frame-averaged modified cepstrum of one voice
record is depicted.

5 Conclusions

Speech parametrisation in cepstral domain is a useful technique for automatic pathology
detection. Specifically, MFCC have been successfully used for this purpose. While the
computation of these parameters has an intrinsic robustness due to its independency
from pitch extraction and the spectrum filtering, their physical interpretation is obscure
because of the non-linear Mel-frequency transformation.

Within this paper an alternative set of cepstrum-based parameters has been pro-
posed. Such parameters share the robustness of MFCC since they do not require pitch
estimation and filtering of the estimated speech spectrum is also performed. In contrast
to MFCC, the calculation of these newly proposed parameters does not involve any
non-linear frequency transformation and, consequently, their physical interpretation re-
mains clear. Namely, their values have been shown to be related to the amount of noise
energy present in speech and the glottal waveform variability. Both factors are directly
associated to laringeal pathologies.

Finally, the performance of the proposed cepstral parameters for pathology detec-
tion has been tested using a MLP classifier and results have been compared to those of
MFCC. The obtained misclassification rates indicate that the performances of both sets
of parameters are similar. Moreover, a deeper analysis on the individual impact of each
parameter on the classification task has revealed that the most relevant parameters are
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Fig.7. 124 modified cepstral parameters from one of the database’s voice records.

those more closely linked to the above-mentioned two factors: noise energy and glottal
wave variations.
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