
Human-like Rule Optimization for Continuous
Domains

Fedja Hadzic and Tharam S. Dillon

DEBII, Curtin University ofTechnology, Perth, Australia
{f.hadzic, t.dillon}@curtin.edu.au

Abstract. When using machine learning techniques for data mining purposes
one of the main requirements is that the learned rule set is represented in a
comprehensible form. Simpler rules are preferred as they are expected to
perform better on unseen data. At the same time the rules should be specific
enough so that the misclassification rate is kept to a minimum. In this paper we
present a rule optimizing technique motivated by the psychological studies of
human concept learning. The technique allows for reasoning to happen at both
higher levels of abstraction and lower level of detail in order to optimize the
rule set. Information stored at the higher level allows for optimizing processes
such as rule splitting, merging and deleting, while the information stored at the
lower level allows for determining the attribute relevance for a particular rule.
The attributes detected as irrelevant can be removed and the ones previously
detected as irrelevant can be reintroduced if necessary. The method is evaluated
on the rules extracted from publicly available real world datasets using different
classifiers, and the results demonstrate the effectiveness of the presented rule
optimizing technique.

Keywords: Data Mining, Rule Optimization, Feature Selection

1 Introduction

Large amounts of data are being collected for different industrial, commercial or
scientific purposes, where the aim is to discover new and useful patterns from data
that gives rise to discovery of valuable domain knowledge. This process is termed
knowledge discovery and the step concerned with applying programs that are capable
of learning and generalizing from presented information is called data mining. The
end result is a knowledge model that should be easy for human comprehension. This
knowledge model is then used by the people involved in that domain for particular
domain specific tasks. For example in many businesses it is used as a decision support
tool, in medical domains it aids in diagnostic tasks and in more general terms it
provides an organization with the basic knowledge ofthe concepts and their roles and
relationships which occur in that particular domain.

The process of using the underlying rules of a knowledge model for classifying
future unseen instances is in the data mining field known as the prediction task. The
knowledge model can be evaluated based on its predictive accuracy which

corresponds to the percentage of correctly classified instances from an unseen data
set. In addition to predictive accuracy, simple rules are preferred since they are more
comprehensible and are expected to perform better on unseen data since they are more
general. Taking these observations into account, a rule optimizing process needs to
make a between the misclassification rate (MR), coverage rate (CR) and
generalization power (GP) [1]. MR is measured as the number of incorrectly
classified instances while CR is the number of instances that are captured by the rule
set. MR should be minimized while the CR should be maximized. Good GP is
achieved by simplifying the rules. The trade-off is especially evident when optimizing
the rule set from a domain characterized by continuous attributes. An optimal
constraint on the attribute range needs to be determined as in many cases increasing
the attribute range usually leads to the increase in CR but at the cost of an increase in
MR. In regards to obtaining good GP by simplifying the rule, there is a trade-off since
if the rules are too general, the MR may increase, since the simple rules may be
incapable of distinguishing some more specific cases of the domain. Rule
optimization is a type of uncertain reasoning technique and a number of different
techniques have been adopted in the literature [1,2, 3,4].

The aim of this work is to present a stand-alone rule optimizing technique that is
capable of reasoning at the higher level of abstraction as well as lower level of detail.
It is an extension of the rule optimizing technique discussed in [5, 6], which was an
integral part of the neural network learning method for continuous domains. The
reasoning only occurred at the higher level where similar rules were merged and the
ones with high MR were split into more specific rules. The lower level instance
information was not used and any poor choices made during the network pruning [5]
stage could not be corrected. In the proposed extension the lower level information
corresponds to the relationships between the values of the defining attributes and the
implying class of a rule. This information allows one to determine the relevance of
rule attributes at any stage of the rule optimizing (RO) process. Attributes previously
found as irrelevant can be re-introduced if they become relevant at a later stage in the
process, and at the same time attributes that have lost their predictive capability can
be deleted. This corresponds to being able to measure an attributes sequential
variation in its predictive capability. This characteristic is very useful for RO since it
can often be the case that other attributes may become relevant for more specific
distinguishing of a new rule which resulted from splitting of an original rule. On the
other hand, some attributes can loose their relevance for predicting the class value
implied by a rule, when that rule is obtained through merging of two or more specific
rules. Furthermore the method from [5, 6] is only applicable for optimizing of the
rules learned by the neural network. The proposed RO technique is applicable to any
sets of rules, not only those extracted from a specifically developed system. As such it
is capable of incorporating domain expert knowledge which can be represented as a
set of rules and which can then be refined and adapted to the future cases. The
effectiveness of the proposed method is demonstrated by evaluating it on the rules
learned from publicly available real world datasets.

The rest of the paper is organized as follows. In Section 2 we discuss the
theoretical motivations of the proposed rule optimizing technique. It also provides an
overview of how the theory of concept formation will be mimicked in the proposed
method which is described in detail in Section 3. Section 4 provides an experimental

evaluation of the method and some general remarks. The paper is concluded in
Section 5.

2 Theoretical Motivation for the Proposed RO Method

From the biological perspective of AI which studies the way humans perform
intelligent tasks, a machine learning technique should resemble the way that humans
learn. While neural networks resemble this greatly at the brain level of neural
interaction, there is also a higher level of reasoning that occurs when a human reasons
about the formed knowledge or beliefs. Hence, from the same perspective it would be
useful for a rule optimizing technique to resemble the way concept formation and
refinement occurs in humans.

The way that humans engage in concept or category formation has been studied
extensively in the psychology area. In general terms it corresponds to the process by
which a person learns to sort specific observations into general rules or classes, and
thereby allows one to respond to events in terms of their class membership rather than
uniqueness [7]. It is the elementary form by which humans adjust to their
environment. One needs to identifY the attributes of relevance for learning or applying
a particular rule for formulating a concept [8]. Humans consistently seek confirming
information by actively searching they environment for appropriate examples which
can confirm or modifY the newly discovered concepts [8, 9, 10] Hence, there exists
one level at which the concepts or categories have been formed and there is another
level where the observations are used for confirming or adjusting the learned concepts
and their relationships [11]. When an observation appears to be contradictory to a
formed belief, one may engage in thinking at the lower level of detail where the
constituents of a belief and the examples that formed it are investigated. Some pre­
conditions can be added or removed from the constituents of that particular belief so
that the updated belief will not contradict the current observations. In this process of
aiming for a reliable belief. it is often the case that features previously found as
irrelevant are re-introduced or the ones previously thought to be important are
removed from the constituents of a belief. In the context of this work, the term 'belief
corresponds to the rule a human uses to classifY the examples or observations into
classes or categories.

Performing this type of task is highly desirable for machine learning and our main
focus is to allow for such a mechanism in the rule optimizing process. The proposed
RO technique is mainly motivated by the psychological studies of human concept
formation performed in [7]. In one of the experiments, the human subjects were
presented with a number of instances which were classified according to a rule and
their task was to discover the rule. In this process, the human subjects formed initial
rules from a few observations and then would refine or update these rules when
instances contradicting their currently formed rule were observed [7]. This process is
simulated in our RO technique since it starts with the initial set of rules and then uses
a set of class labelled instances to refine or update the rules according to the instances.
The aim is to optimize the rules in such a way that there is an optimal trade-off
between misclassification rate, coverage rate and the generalization power. This is

particularly important when continuous attributes are in question since a slight
increase in the allowed range leads to a higher coverage rate, but at the same time
may increase the misclassification rate. Further, the rules are presented in a structure
that is capable of adapting itself according to the future instances. Furthermore we
are interested in a structure which can adapt itself to the changes in a domain. The
higher level of abstraction would correspond to the rule structure while the low level
of detail would correspond to the instance information stored in the structure at the
attribute level rather than rule level. So at the higher level we have the rules with the
attribute constraints and the predicting class values while at the lower level we have
the relationships between attribute values and the occurring class values as detected
from the input instances. This information provides the necessary means for
determining the relevance of attributes with respect to a particular rule. In other
words, we measure the importance of an attribute in predicting the class value implied
by a rule. The irrelevant attributes can then be deleted (or re-introduced) at the higher
level which will affect the rule coverage rate and generalization power. It is
advantageous to integrate a feature selection mechanism since initial bad choices
made about the attribute relevance could be corrected as learning progresses.

3 Description of the Proposed RO Technique

This section starts by providing a brief overview of the developed RO technique, and
then proceeds to explain each step in more detail in each of the subsequent sections.
The general steps of the proposed rule optimization method are presented in the flow
chart of Fig. I. The method takes as input a file describing the rules detected by a
particular classifier and the domain dataset from which the rules were learned. As the
first step, the rules need to be appropriately represented so as to enable optimization
reasoning to occur. The rules are represented in a graph structure (GS) where each
rule has a set of attribute constraints and a target vector that stores a set of weighted
links pointing to one or more target values. Reading the rule set determines the set of
attribute constraints for each rule. In order to set the target vector of each rule, the
domain dataset is read in on top of the GS triggering those rules whose attribute
constraints best match the attribute values in the presented instance from the dataset.
Whenever a rule is triggered, its target vector is updated. The target vector of a rule is
updated by updating the weight on the link to the target value that occurred in the
instance that triggered that particular rule. At this stage, the GS contains the high level
information about the domain at hand in the form of rules, their attribute constraints
and their target vectors. This information is used for reasoning at the higher level of
abstraction. During this process, the rules can undergo a process of splitting, merging
and deleting as will be described later in the paper.

~
Represent .a

...
Graph Structure

(GS)

: If necessary delete irrelevant

Il'...a....II.ributes and re-introd...00 relevsnt......u
attributes for all rule." In GS 1

i

Fig. 1. General steps of the proposed rule optimization method

When two or more rules are merged, it is possible that some attributes have lost
their relevance. On the other hand, when a simplified rule is split into two more
specific rules, some attributes may become relevant for distinguishing more specific
data object characteristics and need to be reintroduced. This is the reason for the
reasoning at a lower level that determines the attribute relevance of the rules to occur
after the higher level reasoning has been completed. Hence, after the reasoning at the
higher level, the target vectors of all the rules in the GS are reset and the domain
dataset is read in again, this time storing the low level information. The collected
information corresponds to the relationships between attribute and target values as
detected in the instances from the dataset. This kind of information allows for the
calculation of the Symmetrical Tau [12] criterion for determining the relevance of the
attributes for a particular rule. Hence, irrelevant attributes can be removed from the
rule and attributes previously detected as irrelevant can be re-introduced if the
relevance turns out to be sufficiently high throughout the RO process. Each of the
RO steps (except for initial rule representation in graph structure) explained in the
following subsections repeats for a number of chosen iterations. The following
section describes how the rules and related information can be described using a
graph structure.

3.1 Formation of the Graph Structure

In order for the GS to be fonned two files are read, one describing the rules detected
by a classifier and the other containing the total set of instances from which the rules
were learned. The rules are in fonn of attribute constraints while the implying class of
each rule is ignored. The reason is that during the whole process of RO, the implying
class values can change as some clusters will be merged or split. Rather the domain
dataset is read according to which the weighted links between the rules and class
values are set. The implying class value of a rule becomes the highest weighted link
to a particular class value node. This class value has most frequently occurred in the
instances which were captured by the rule. An example of the GS after a dataset is
read in is shown in Fig. 2. The implying class of Rule I and Rule 3 would be class
value I while for Rule2 it is class value 2. Even though it is not shown in the figure,
each rule has a set of attribute constraints associated with it, which we refer to as the
weight vector (WV) ofthat rule. The set of attribute values occurring in the instance
being processed are referred to as the input vector (IV). Hence, to classifY an instance
we match the IV against the WVs of the available rules. A constraint for a continuous
attribute is given in tenns of a lower range (lr) and an upper range (ur) indicating the
set of allowed attribute values.

Fig. 2. Example graph structure from high level

3.2 Representing Lower Level Information

Previous sub-section has explained the GS fonnation at the top level which is used
mainly for detennining the implying class values of the rules. In this section we
discuss how lower level instance infonnation is stored for each rule. This low level
infonnation is necessary for the reasoning at the lower level.

As previously mentioned each rule has a set ofattribute constraints associated with
it, which are stored in its WV. For each of the attributes in the WV we collect the
occurring attribute values in the instances that were captured by that particular rule.
Hence each attribute has a value list (VL) associated with it which stores all the
occurring attribute values. Furthennore, each of the value objects in the list has a set
of weighted links to the occurring class values in the instance where that particular
value occurred. This is necessary for the feature selection process which will be
explained later. For a continuous attributes there could be many occurring values and
values close to one another are merged into one value object when the difference
between the values is less than a chosen merge value threshold. Hence the numerical

values stored in a list of a continuous attribute will be ordered so that a new value is
always stored in an appropriate place and the merging can occur if necessary. Fig. 3
illustrates how this low level information is stored for a rule that consists of two
continuous attributes A and B. The attribute A has the lower range (lr) and the upper
range (ur) in between which the values vi, v2 and v3 occur. The 'Jr' of A is equal to
the value of v] or the 'Ir; of v] ifvl is a merged value object, while the 'ur' of A is
equal to the value ofv3 or the 'ur' ofv3 ifv3 is a merged value object.

If uf Ir ur

<Fj=:>
®

Fig. 3. Storing low level instance information

3.3 Higher Level Reasoning

Once the implying classes are set for each of the rules the dataset is read in again in
order to check for any misclassifications and update the rule set accordingly. When a
rule captures an instance that has a different class value than the implication of the
rule, a child rule will be created in order to isolate the characteristic of the rule
causing the misclassification. The attribute constraints of the parent and child rule are
updated so that they are exclusive from one another. The child attribute constraint
ranges from the attribute value of the instance to the range limit of the parent rule to
which the input attribute value was closest to. The parent rule adopts the remaining
range as the constraint for the attribute at hand.

To illustrate the process of making an attribute constraint exclusive from one
another in the parent and child rule, please consider Fig. 4. At the top of the figure we
show the lower (LR) and upper range (UR) of an attribute at occurring in the weight
vector of the parent rule (rs) at position k and an input value (IVk) that has occurred
within the range. In this example, the value IVk was closer to the upper limit of the
range. The newly created attribute constraint for the child rule (bottom right of Fig. 4)
will have its lower range (i.e. LR ') set to value of IVk and the upper range (Le. UR ') is
equal to UR. The constraint in the parent rule (bottom left of Fig. 4) is updated so that
the new upper range is set to be a small value (Le. smlVal) away from IVk . The
process for all the cases is more formally explained below.

LR IVI< UR

LR
I

UR = IVk· 3m/Val LR'=IVk

Fig. 4. Illustrating the update of range constraints for an attribute ak of parent and child rule

After the whole dataset is read in there could be many child rules created from a
parent rule. Some child rules may be merged together first but explanation of this is to
come later once we discuss the process of rule similarity comparison and merging. If
a child rule points to other target values with high confidence it become a new rule
and this corresponds to the process of rule splitting, since the parent rule has been
modified to exclude the child rule which is now a rule on its own. On the other hand if
the child rule still mainly points to the implying class value of the parent rule it is
merged back into the parent rule (if they are still similar enough), An example of a
rule which has been modified to contain a few children due to the misclassifications is
displayed in Fig, 5. The reasoning explained would merge 'Child3' back into the
parent rule since it points to the implying class of the parent rule with high weight.
This is assuming that they are still similar enough. On the other hand Child I and
Child2 would become new rules since they more frequently capture the instances
where the class value is different to the implying class of the parent rule. Furthermore
ifthey are similar enough they would be merged into one rule.

Fig. S. Example ofrule splitting

In order to measure the similarity among the rules we make use of a modified
Euclidean distance (ED) measure. This measure is also used to determine which rule
captures a presented instance. An instance is always assigned to the rule with the
smallest ED to the IV. Even though one would expect the ED to be equal to 0 when
classifYing instances this may not always be the case throughout the RO process. The
ED calculation is calculated according to the difference in the allowed range values of
a particular attribute. The way that ED is calculated is what determines the similarity
among rules, and therefore we first overview the ED calculation and then proceed
onto explaining the merging of rules that may occur in the whole RO process.

3.3.1 Euclidean Distance Calculation

For a continuous attribute a/ occurring at the position i of WV of rule R, let 'aifr'
denote the lower range, 'aiur' the upper range, and 'aiv' the initial value if the ranges
of ai are not set. The value from the i-th attribute of IV will be denotes as ivai' The i­
th term ofthe ED calculation between IVand WVof R for continuous attributes is:

- case 1: ai ranges are not set

• 0 iff ivai a/v
• ivai - aiv if ivai> a/v
• aiv - ivai if iva; < aiv

- case 2: a/ ranges are set

• 0 iff ivai ~ a;fr and iva;:S a;ur
• a;lr - ivai if ivai < alr
• ivai - alur if ivai> alur

The input merge threshold used for continuous attribute (Ml) also needs to be set
with respect to the number of continuous attributes in the set. It corresponds to the
maximum allowed sum of the range differences among the WV and IV so that the rule
would capture the instance at hand.

When calculating the ED for the purpose of merging similar rules there are four
possibilities that need to be accounted with respect to the ranges being set in the rule
attributes, and the ED calculation is adjusted. For rule RI let rIa; denote the attribute
occurring at the position i of WVofrule RI,Iet 'rIalr' denote the lower range, 'rIaiur'
the upper range, and 'rJa/v' the initial value if the ranges of rial are not set. Similarly
for rule R2 let r2ai denote the attribute occurring at the position i of WV of rule R1• let
'r2aI1r' denote the lower range, 'r1,,;ur' the upper range, and 'rtU;v' the initial value if
the ranges of rtU; are not set. The i-th term of the ED calculation between the WVof
RJ and WV ofR} for continuous attributes is:

- case 1: both ria; and r tU/ ranges are not set
• 0 iff rJa/v = r2a/v
• rtajV - r2ajV if rJa/v > r]Q/v
• r]QjV - rtajV if r,a;v < r]a/v

case 2: rJa; ranges are set and r,alranges are not set

• 0 iff r2"/v ~ r'''ilr and r,,,/v :s r'''iur
• r J"Ilr - r .alv ifr]alv < r Ja1lr
• rtU/v rlajur if rlaiV > rlajur

- case 3: r lai ranges are not set and r]Q/ ranges are set

• 0 iff r t"IV ?: rl"Jr and r I";V :'S rtUiUr
• rl"ilr - rJaiV if rI"iV < r Jadr
• rIalv r;za,ur if rtalV > rzajur

- case 4: both rJal and rlal ranges are set

• 0 iff rJai1r ~ r;zair and rlajur:S rzaiur
• 0 iff rla;fr ~ r taifr and r]ajur:S rJalur
• min(rJa;lr - rza;lr, rla;ur - r;zaiur) iff r,ai1r > rza,lr and rJa;ur > rla;ur

• min(r2Q;ir - r,Q;ir, r}Qjur -r,Qjur iff r}Q;lr > r,Q;lr and r2Q;ur > r,Qjur
• (r ,Q;ir - r }Q;ur) iff r ,Q;ir > r }Qjur

• (r2a;lr - r,Qjur) iff r2Q;lr > r,Q,ur

For a rule to capture an instance or for it to be considered sufficiently similar to
another rule the ED would need to be smaller than the MTthreshold.

3.3.2 Merging of Similar Rules

As mentioned at the start of Section 3.3 the child rules may be created when a
particular rule captures an instance that has a different class value than the implying
class value of that rule (i.e. misclassification occurs). After the whole file is read in
the child rules that have the same implying class values are merged together if the ED
between them is below the MT. Thereafter the child rules either become a new rule or
are merged back into the parent rule, as discussed earlier. Once all the child rules have
been validated the merging can occur among the new rule set. Hence if any of the
rules have the same implying class value and the ED between them is below the MT
the rules will be merged together and the attribute constraints updated. After this
process the file is read in again and any of the rules that do not capture any instances
are deleted from the rule set.

3.4 Lower Level Reasoning

Once the rules have undergone the process of splitting and merging, the relevance of
rule attributes should be calculated as some attributes may have lost their relevance
through merging of two or more rules. Other attributes may have become relevant as a
more specific distinguishing factor of a new rule which resulted from splitting of an
original rule. For this purpose we make use of the Symmetrical Tau [12] feature
selection criterion whose calculation is made possible by the information stored at the
lower level of the graph structure. We start this section by discussing the properties of
the symmetrical tau and then proceed onto explaining how the relevance cut-off is
determined and the issue of choosing the merge value threshold for the value objects
in a value list.

3.4.1 Feature Selection Measure

Symmetrical Tau (1') [12] is a statistical measure for the capability of an attribute in
predicting the class of another attribute. The T measure is calculated using a
contingency table which is used in statistical area to record and analyze the
relationship between two or more variables. If there are I rows and J columns in the
table, the probability that an individual belongs to row category i and column
category j is represented as P(ij), and P(i+) and P(+j) are the marginal probabilities in
row category i and column category j respectively, the Symmetrical Tau measure is
defined as [12]:

t t.(Pij).2 + t. t P(~)2 - t. PU+)2
t= j=l 1=1 P(+ J) 1=1 j=1 P(l+) 1=1

2 	 LI

p(i+)2 - LJ

p(+j)2
i=1 j=1

For the purpose of feature selection problem one criteria in the contingency table
could be viewed as an attribute and the other as the target class that needs to be
predicted. In our case the information contained in a contingency table between the
rule attributes and the class attributes is stored at the lower level of the graph structure
as explained in Section 3.2. The t measure was used as a filter approach for the
feature subset selection problem in [13]. In the current work its capability of
measuring the sequential variation of an attribute's predictive capability is exploited.

3.4.2 Calculating Relevance Cut-orr

For each of the rules that are triggered for multiple class values we calculate the t

criterion and rank the rule attributes according to the decreasing t value. The
relevance cut-off point is determined as the point in the ranking where the t value of
an attribute is less than half of the previous attribute's t value. All the attributes below
the cut-off point are considered irrelevant for that particular rule and are removed
from the rule's WV. On the other hand. if some of the attributes above the relevance
cut-off point were previously excluded from the WV of the rule, they are now re­
introduced since their t value indicates their relevance for the rule at hand.

As mentioned in Section 3.2 when the occurring values stored in the value list of
an attribute are close together they are merged and the new value object represents a
range of values. The merge value threshold chosen determines when the difference
among the value objects is sufficiently small for merging to occur. This is important
for appropriate t calculation. Ideally a good merge value threshold will be picked with
respect to the value distribution of that particular attribute. However, this information
is not always available and in our approach we pick a general merge threshold of
around 0.02. This has some implications for the calculated T value since when the
categories of an attribute A are increased more is known about attribute A and the
error in predicting attribute B may decrease. Hence, if the merge value threshold is
too large many attributes will be considered as irrelevant since all the occurring
values could be merged into one value object which points to many target objects and
this aspect would indicate no distinguishing property of the attribute. On the other
hand, if it is too smail many value objects may exist which may wrongly indicate that
the attribute has high relevance in predicting the class attribute.

3.4 Summary ofthe Method

The whole set of RO processes is usually repeated for around 10 iterations. Each time
a new iteration is started, the dataset is read in so that the implying class values of the

rules can be detennined. The dataset is read in again during which misclassifications
are detected, and the rules where the misclassifications occur are split in order to
isolate the characteristic which leads to the wrong prediction of the class value. The
child rules which have the same implying class value and are similar according to the
ED are merged together. Thereafter, the child rules are either merged back into the
parent rule or become a new rule if they are not similar to the parent rule with respect
to the implying class value and the ED between their weight vectors. The whole rule
set is then traversed to merge any further similar rules. The dataset is then read in to
store the lower level instance infonnation according to which the t criterion can be
calculated and irrelevant attributes deleted for a rule, and relevant ones re-introduced
when necessary. After a number of iterations, the unseen test file is used to detennine
the predictive accuracy ofthe optimized rule set.

4 Method Evaluation

The proposed method was evaluated on two rule sets learned from publicly available
real world datasets [14]. The rule optimizing process was run for 10 iterations for
each of the tested domains. The first set of rules we consider has been learned from
the 'Iris' dataset using the continuous self-organizing map [5] so that we can compare
the improvement of the extension to the rule optimizing method. The merge cluster
threshold MT was set to 0.1 and the merge value threshold MIT for attribute values
was set to 0.02. The rules obtained using the CSOM technique [5] are displayed in
Fig. 6. When the rules obtained after retraining were taken as input by our proposed
rule optimization method the resulting rule set was different in only one rule. The rule
4 was further simplified to exclude the attribute constraint from sepal-width and the
new attribute constraint was only that petal-width has to be between the values of
0.667 and 1.0 for the class value of Iris-virginica. Hence the process was able to
detect another attribute that has become irrelevant during the RO process. The
predictive accuracy remained the same.

Fig. 6. Iris rule set as obtained by using the traditional rule optimizing technique

With respect to using CSOM to extract rules from the 'Iris' domain we have
performed another experiment. The initial rules extracted by CSOM without the
network pruning and retraining of the network were optimized. When network
pruning occurs the network should be re-trained for new abstractions to be properly
formed. In this experiment we wanted to see how the RO technique performs by itself
without any network pruning or retraining.

R.uIes class
033 <PI.. <0.678 Iris-versicolor
0375 <PW<O.792
0208 <SW<0542 his-v irginica
0.627<PL <0.847
054<PW< 1.0
0.778<SL < 1.0 his-virp:1lca
025 < SW < 0.75
0.S14 <PI.. < 1.0
0.625 <PW <0917
0.0 < SL < 0.417 Ins-sei:olOa
0.41 <SW< 0917
0.0 <PI.. < 0.153
0.0 < PW < 0.20S

Fig. 7. Optimized initial rules extracted by CSOM Notation: SL sepaUength, SW ­
sepal_width, PL - petal_length, PW petal_width

By applying the RO technique the rule set was reduced to four rules as displayed in
Fig. 7. However, not as many attributes were removed from each of the rules and two
instances were miscIassified. Hence, performing network pruning and retraining prior
to RO may achieve a more optimal rule set. However, in the cases where retraining
the network may be too expensive the RO technique can be applied by itself In fact
compared to the initial set of rules detected by CSOM, which consisted of nine rules
with three misclassified instances this is still a significant improvement.

The second set of experiments was performed on the complex 'Sonar' dataset
which consists of sixty continuous attributes. The examples are classified into two
groups one identified as rocks (R) and the second identified as metal cylinders (M).
The learned decision tree by the C4.S algorithm [15] consisted of 18 rules with the
predictive accuracy equal to 65.1%. These rules were taken as input in our RO
technique and the MTwas set to 0.2 while the MVTwas set to 0.0005. The optimized
rule set consisted of only two rules i.e 0.0 < all <= 0.197 ~ Rand 0.197 < all <=
1.0 ~ M. When tested on an unseen dataset the predictive accuracy was 82.2 % i.e.
1 I instances were misclassified from the available 62. Hence the RO process has
again proved useful in simplifYing the rules set without the cost of increasing the
number of misclassified instances ..

5 Conclusions

This work has described a rule optlmlzmg technique suitable for domains
characterized by continuous attributes. It is applicable to the optimization of rules
obtained from any data mining techniques, and with such a characteristic it allows for

the incorporation of domain expert knowledge. This domain knowledge can be
represented as a set of rules, which are then to be fine tuned according to the newly
collected data from the domain. Hence the method as a whole is adaptable to the
changes in the domain it is applied to. Being able to swap from higher level reasoning
to the reasoning at the lower instance level has indeed proven useful for determining
the relevance of attributes throughout the rule optimizing process. The evaluation of
the method on the rules learned from real world data by different classifier methods
has shown its effectiveness in optimizing the rule set. As a future work method needs
to be extended so that categorical attributes can be handled as well. Furthermore, it
would be interesting to explore the possibilities of the rule optimizing method in
becoming a stand-alone machine learning method itself.

References

1. 	 Wang, D.H., Dillon, T S., Chang, E.: Trading off between misc1assification, recognition and
generalization in data minin~ with continuous features. In: Developments in Applied Artificial
Intelligence (Proc. of the 15 Int'I Conf. on Industrial & Engineering Application of Artificial
Intelligence & Expert Systems, Lecture Notes in Artificial Intelligence, LNAI 2358, Springer, T.
Hendtlass and M. Ali (eds)., June 17-20, pp.303-313, Cairns, (2002).

2. 	 Abe, S. & Sakaguchi, K.: Generalization Improvement of a Fuzzy Classifier with Ellipsoidal Regions.
In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2001), pp.
207-210, Melbourne, (2001)

3. 	 Chen, Z.: Data mining and uncertain reasoning: an integrated approach. John Wiley & Sons, Inc., New
York, (200 I).

4. 	 Engelbrecht, A.P.: Computational intelligence: an introduction.. 1. Wiley & Sons, Hoboken, New
Jersey, (2002).

5. 	 Hadzic, F., Dillon, T.S.: CSOM: Self Organizing Map for Continuous Data. In: 3'" International IEEE
Conference on Industrial Informatics (INDIN'05), 10-12 August, Perth, (2005).

6. 	 Hadzic, F., Dillon, T.S.: CSOM for Mixed Data Types, In: Fourth International Symposium on Neural
Networks, June 3-7, Nanjing, China, (2007).

7. 	 Bruner, 1.S., Goodnow, J.J., Austin, G.A.: A study of thinking. John Wiley & Sons, Inc., New York,
(1956).

8. 	 Sestito, S., Dillon, S.T.: Automated Knowledge Acquisition. Prentice Hall of Australia Pty Ltd, Sydney,
(1994).

9. 	 Krista!, L.: ABC of Psychology (ed.). MichaelJoseph, London, pp. 56-57, (1981).
10. Pollio, H.R: The psyehology ofSymbolic Activity. Addison-Wesley, Reading, Massachusetts, (1974).
II. 	Roch, E.: Classification of real-world objects: Origins and representations in cognition. in Thinking:

Readings in Cognitive Seienee, (eds) P.N. Johnson-Laird & P.c. Wason, Cambridge University Press,
Cambridge, pp. 212-222, (1977).

12. 	Zhou, X., Dillon, T.S.: A statistical-heuristic feature selection criterion for decision tree induction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no.8, August, pp 834-841,
(1991).

13. Hadzic, F, Dillon, T.S.: Using the Symmetrical Tau (~) Criterion for Feature Selection in Decision Tree
and Neural Network Learning. In: Proceedings of the 2nd Workshop on Feature Selection for Data
Mining: Interfacing Machine Learning and Statistics, in conjunction with the 2006 SIAM International
Conference on Data Mining April 22, Bethesda, (2006).

14. 	 Blake, c., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases, Irvine, CA:
University of California, Department of Information and Computer Science., (1998).
[http://www.ics.uci.edul-mleam/MLRepository.htrnl].

15. 	Quinlan, 1.R: Probabilistic Decision Trees. Machine Learning: An Artificial Intelligence Approach
Volume 4, Kadratoff, Y & Michalski, R, Morgan Kaufmann Publishers, Inc., San Mateo, California,
(1990).

http://www.ics.uci.edul-mleam/MLRepository.htrnl

