Skip to main content

Active Annuloplasty System for Mitral Valve Insufficiency

  • Conference paper
Book cover Biomedical Engineering Systems and Technologies (BIOSTEC 2008)

Abstract

Active materials are capable of responding in a controlled way to different external physical or chemical stimuli by changing some of their properties. These materials can be used to design and develop sensors, actuators and multifunctional systems with a large number of applications for developing medical devices.

Shape-memory polymers are active materials with thermo-mechanical coupling (changes in temperature induce shape changes) and a capacity to recover from high levels of distortion, (much greater than that shown by shape-memory alloys), which combined with a lower density and cost has favoured the appearance of numerous applications. In many cases, these materials are of medical standard, which increases the chances of ultimately obtaining biocompatible devices.

This paper presents the procedure for designing, manufacturing, and programming the “shape-memory” effect and in vitro trials for an active annuloplasty ring for the treatment of mitral valve insufficiency, developed by using shape-memory polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Díaz Rubio, M., Espinós, D.: Tratado de Medicina Interna. Editorial Médica Panamericana (1994)

    Google Scholar 

  2. Gómez Durán, C.: Estado Actual de la Cirugía Mitral Reconstructiva. Rev. Esp. Cardiol. 57, 39–46 (2004)

    Article  PubMed  Google Scholar 

  3. Hernández, J.M., et al.: Manual de Cardiología Intervencionista. Sociedad Española de Cardiología, Sección de Hemodinámica y Cardiología Intervencionista (2005)

    Google Scholar 

  4. Carpentier, A.: Cardiac Valve Surgery - The French Correction. J. Thorac. Cardiovasc. Surg. 86(3), 323–337 (1983)

    CAS  PubMed  Google Scholar 

  5. Duran, C.M.G.: Duran Flexible Annuloplasty Repair of the Mitral and Tricuspid Valves: Indications, Patient Selection, and Surgical Techniques Using the Duran Flexible Annuloplasty Ring. Medtronic Inc. (1992)

    Google Scholar 

  6. Okada, Y., et al.: Comparison of the Carpentier and Duran Prosthetic Rings Used in Mitral Reconstruction. Ann. Thorac. Surg. 59, 658–662 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. Flameng, W., et al.: Recurrence of Mitral Valve Regurgitation after Mitral Valve Repair in Degenerative Valve Disease. Circulation 107, 1609–1613 (2003)

    Article  PubMed  Google Scholar 

  8. Gillinov, A.M., Cosgrove, D.M., et al.: Mitral Valve Repair. In: Cardiac Surgery in the Adult, pp. 933–950. McGraw-Hill, New York (2003)

    Google Scholar 

  9. Kaye, D., et al.: Feasibility and Short-Term Efficacy of Percutaneous Mitral Annular Reduction for the Therapy of Heart Failure-Induced Mitral Regurgitation. Circulation 108, 1795–1797 (2003)

    Article  PubMed  Google Scholar 

  10. St. Goar, F., et al.: Endovascular Edge-to-Edge Mitral Valve Repair: Short-Term Results in a Porcine Model. Circulation 108, 1990–1993 (2003)

    Article  PubMed  Google Scholar 

  11. Yamaura, Y., et al.: Three-dimensional Echocardiographic Evaluation of Configuration and Dynamics of the Mitral Annulus in Patients Fitted with an Annuloplaty Ring. J. Heart Valve Dis. 6, 43–47 (1997)

    CAS  PubMed  Google Scholar 

  12. Lendlein, A., Kelch, S.: Shape-Memory Polymers. Angew. Chemie. Chem. Int. 41, 2034–2057 (2002)

    Article  CAS  Google Scholar 

  13. Lendlein, A., Kelch, S., Kratz, K.: Shape-Memory Polymers. Encyclopedia of Materials: Science and Technology (2005)

    Google Scholar 

  14. Tonmeister, P.A.: Shape-Memory Polymers Reshape Product Design. Plastics Engineering 14, 10–11 (2005)

    Google Scholar 

  15. Volk, B., et al.: Characterization of Shape-Memory Polymers. NASA Langley Research Centre. Texas A&M University (2005)

    Google Scholar 

  16. Lendlein, A., Langer, R.: Biodegradable elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002)

    Article  PubMed  Google Scholar 

  17. Lendlein, A., et al.: Light-induced Shape-Memory Polymers. Nature 434, 879–882 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Wilson, T., et al.: Shape-Memory Polymer Therapeutic Devices for Stroke. In: Proc. SPIE, vol. 6007, pp. 157–164 (2005)

    Google Scholar 

  19. Small, W., et al.: Laser-activated Shape-Memory Polymer Intravascular Thrombectomy Device. Optics Express 13, 8204–8213 (2005)

    Article  Google Scholar 

  20. Nusskern, H.: Thermische Stellelemente in der Gerätetechnik. Feinwerktechnik, Mikrotechnik, Messtechnik, 9, Carl Hanser Verlag (1995)

    Google Scholar 

  21. Pelton, A., Stöckel, D.: Medical uses of Nitinol. Materials Science Forum 327–328, 63–70 (2000)

    Article  Google Scholar 

  22. Tautzenberger, P., et al.: Vergleich der Eigenschaften von Thermobimetallen und Memory-Elementen. Metall 41, 26–32 (1987)

    CAS  Google Scholar 

  23. Shandas, R., Mitchell, M., et al.: A general method for estimating deformation and forces imposed in vivo on bioprosthetic heart valves with flexible annuli: in vitro and animal validation studies. J. Heart Valve Dis. 10, 495–504 (2001)

    CAS  PubMed  Google Scholar 

  24. Mohr, R., et al.: Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. PNAS 103, 3540–3545 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kucklick, T.R.: The Medical Device R&D Handbook. CRC Taylor & Francis (2005)

    Google Scholar 

  26. Schwarz, M.: New Materials Processes, and Methods Technology. CRC Taylor & Francis, Boca Raton (2005)

    Book  Google Scholar 

  27. Freitag, D., Wohlers, T.: Rapid Prototyping: State of the Art. Manufacturing Technology Information Analysis Centre (2003)

    Google Scholar 

  28. Lafont, P., et al.: Rapid Tooling: Moldes Rápidos a Partir de Estereolitografía. Rev. Plast. Mod. 79, 150–156 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz Lantada, A. et al. (2008). Active Annuloplasty System for Mitral Valve Insufficiency. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2008. Communications in Computer and Information Science, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92219-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92219-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92218-6

  • Online ISBN: 978-3-540-92219-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics