Skip to main content

A Self-stabilizing Marching Algorithm for a Group of Oblivious Robots

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5401))

Abstract

We propose a self-stabilizing marching algorithm for a group of oblivious robots in an obstacle-free workplace. To this end, we develop a distributed algorithm for a group of robots to transport a polygonal object, where each robot holds the object at a corner, and observe that each robot can simulate the algorithm, even after we replace the object by an imaginary one; we thus can use the algorithm as a marching algorithm. Each robot independently computes a velocity vector using the algorithm, moves to a new position with the velocity for a unit of time, and repeats this cycle until it reaches the goal position. The algorithm is oblivious, i.e., the computation depends only on the current robot configuration, and is constructed from a naive algorithm that generates only a selfish move, by adding two simple ingredients. For the case of two robots, we theoretically show that the algorithm is self-stabilizing, and demonstrate by simulations that the algorithm produces a motion that is fairly close to the time-optimal motion. For cases of more than two robots, we show that a natural extension of the algorithm for two robots also produces smooth and elegant motions by simulations as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alami, R., Fleury, S., Herrb, M., Ingrand, F., Qutub, S.: Operating a Large Fleet of Mobile Robots Using the Plan-merging Paradigm. In: IEEE Int. Conf. on Robotics and Automation, pp. 2312–2317 (1997)

    Google Scholar 

  2. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A Distributed Memoryless Point Convergence Algorithm for Mobile Robots with Limited Visibility. IEEE Trans. Robotics and Automation 15(5), 818–828 (1999)

    Article  Google Scholar 

  3. Asahiro, Y., Chang, E.C., Mali, A., Nagafuji, S., Suzuki, I., Yamashita, M.: Distributed Motion Generation for Two Omni-directional Robots Carrying a ladder. Distributed Autonomous Robotic Systems 4, 427–436 (2000)

    MATH  Google Scholar 

  4. Asahiro, Y., Chang, E.C., Mali, A., Suzuki, I., Yamashita, M.: A Distributed Ladder Transportation Algorithm for Two Robots in a Corridor. In: IEEE Int. Conf. on Robotics and Automation, pp. 3016–3021 (2001)

    Google Scholar 

  5. Asama, H., Sato, M., Bogoni, L., Kaetsu, H., Matsumoto, A., Endo, I.: Development of an Omni-directional Mobile Robot with 3 DOF Decoupling Drive Mechanism. In: IEEE Int. Conf. on Robotics and Automation, pp. 1925–1930 (1995)

    Google Scholar 

  6. Balch, T.: Behavior-based Formation Control for Multi-robot Teams. IEEE Trans. Robotics and Automation 14(6), 926–939 (1998)

    Article  Google Scholar 

  7. Belta, C., Kumar, V.: Abstraction and Control for Groups of Robots. IEEE Trans. Robotics 20(5), 865–875 (2004)

    Article  Google Scholar 

  8. Canepa, D., Gradinariu Potop-Butucaru, M.: Stabilizing Flocking via Leader Election in Robot Networks. In: Int. Symp. Stabilization, Safety, and Security, pp. 52–66 (2007)

    Google Scholar 

  9. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative Mobile Robots: Antecedents and Directions. Autonomous Robots 4, 1–23 (1997)

    Article  Google Scholar 

  11. Chen, A., Suzuki, I., Yamashita, M.: Time-optimal Motion of Two Omnidirectional Robots Carrying a Ladder Under a Velocity Constraint. IEEE Trans. Robotics and Automation 13(5), 721–729 (1997)

    Article  Google Scholar 

  12. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering Few Fat Mobile Robots in the Plane. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 350–364. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Cohen, R., Peleg, D.: Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems. SIAM J. on Computing 34, 1516–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, R., Peleg, D.: Convergence of Autonomous Mobile Robots with Inaccurate Sensors and Movements. SIAM J. on Computing 38, 276–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Debest, X.A.: Remark about Self-stabilizing Systems. Comm. ACM 38(2), 115–117 (1995)

    Google Scholar 

  16. Donald, B.R.: Information Invariants in Robotics: Part I – State, Communication, and Side-effects. In: IEEE Int. Conf. on Robotics and Automation, pp. 276–283 (1993)

    Google Scholar 

  17. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard Tasks for Weak Robots: The Role of Common Knowledge in Pattern Formation by Autonomous Mobile Robots. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 93–102. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary Pattern Formation by Asynchronous, Anonymous, Oblivious Robots. Theoretical Computer Science (to appear)

    Google Scholar 

  19. Ge, S.S., Lewis, F.L. (eds.): Autonomous Mobile Robots: Sensing, Control Decision Making and Applications. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  20. Gervasi, V., Prencipe, G.: Coordination without Communication: The case of the Flocking Problem. Discrete Applied Mathematics 143, 203–223 (2003)

    MATH  Google Scholar 

  21. Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering Autonomous Mobile Robots with Dynamic Compasses: An Optimal Results. In: Int’l Symp. Distributed Computing, pp. 298–312 (2007)

    Google Scholar 

  22. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules. IEEE Trans. Automatic Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  23. Justh, E.W., Krishnaprasad, P.S.: Equilibria and Steering Laws for Planar Formation. System Control Letters 52(1), 25–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic Compass Models and Gathering Algorithms for Autonomous Mobile Robots. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274–288. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Kosuge, K., Oosumi, T.: Decentralized Control of Multiple Robots Handling an Object. In: International Conference on Intelligent Robots and Systems, pp. 318–323 (1996)

    Google Scholar 

  26. Martínez, S., Cortés, J., Bullo, F.: Motion Coordination with Distributed Information. IEEE Control Systems Magazine, 75–88 (2007)

    Google Scholar 

  27. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  28. Lee, L.F., Krovi, V.: A Standardized Testing-ground for Artificial Potential-field Based Motion Planning for Robot Collectives. In: 2006 Performance Metrics for Intelligent Systems Workshop, pp. 232–239 (2006)

    Google Scholar 

  29. Nakamura, Y., Nagai, K., Yoshikawa, T.: Dynamics and Stability in Coordination of Multiple Robotics Mechanisms. Int. J. of Robotics Research 8(2), 44–60 (1989)

    Article  Google Scholar 

  30. Olfati-Saber, R.: Flocking for Multi-agent Dynamic Systems: Algorithms and Theory. IEEE Trans. Automatic Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  31. Prencipe, G.: CORDA: Distributed Coordination of a Set of Autonomous Mobile Robots. In: ERSADS 2001, pp. 185–190 (2001)

    Google Scholar 

  32. Prencipe, G.: On the Feasibility of Gathering by Autonomous Mobile robots. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Shuneider, F.E., Wildermuth, D., Wolf, H.L.: Motion Coordination in Formations of Multiple Robots Using a Potential Field Approach. Distributed Autonomous Robotic Systems 4, 305–314 (2000)

    Google Scholar 

  34. Souissi, S., Défago, X., Yamashita, M.: Gathering Asynchronous Mobile Robots with Inaccurate Compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  35. Souissi, S., Défago, X., Yamashita, M.: Using Eventually Consistent Compasses to Gather Oblivious Mobile Robots with Limited Visibility. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 471–487. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  36. Stilwell, D.J., Bay, J.S.: Toward the Development of a Material Transport System Using Swarms of Ant-like Robots. In: IEEE Int. Conf. on Robotics and Automation, pp. 766–771 (1995)

    Google Scholar 

  37. Sugihara, K., Suzuki, I.: Distributed Motion Coordination of Multiple Mobile Robots. In: IEEE Int. Symp. on Intelligent Control, pp. 138–143 (1990)

    Google Scholar 

  38. Sugihara, K., Suzuki, I.: Distributed Algorithms for Formation of Geometric Patterns with Many Mobile Robots. Journal of Robotic Systems 13(3), 127–139 (1996)

    Article  MATH  Google Scholar 

  39. Suzuki, I., Yamashita, M.: Formation and Agreement Problems for Anonymous Mobile Robots. In: Annual Allerton Conference on Communication, Control, and Computing, pp. 93–102 (1993)

    Google Scholar 

  40. Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM J. Computing 28(4), 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tanner, H., Jadbabaie, A., Pappas, G.J.: Flocking in Fixed and Switching Networks. IEEE Trans. Automatic Control 52(5), 863–868 (2007)

    Article  MathSciNet  Google Scholar 

  42. Whitcomb, L.L., Koditschek, D.E., Cabrera, J.B.D.: Toward the Automatic Control of Robot Assembly Tasks via Potential Functions: The Case of 2-D Sphere Assemblies. In: IEEE Int. Conf. on Robotics and Automation, pp. 2186–2191 (1992)

    Google Scholar 

  43. Yamaguchi, H.: A Distributed Motion Coordination Strategy for Multiple Nonholomic Mobile Robots in Cooperative Hunting Operations. Robotics and Autonomous Systems 43(4), 257–282 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asahiro, Y., Fujita, S., Suzuki, I., Yamashita, M. (2008). A Self-stabilizing Marching Algorithm for a Group of Oblivious Robots . In: Baker, T.P., Bui, A., Tixeuil, S. (eds) Principles of Distributed Systems. OPODIS 2008. Lecture Notes in Computer Science, vol 5401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92221-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92221-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92220-9

  • Online ISBN: 978-3-540-92221-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics