
Revising Distributed UNITY Programs is

NP-Complete?

Borzoo Bonakdarpour and Sandeep S. Kulkarni

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824, U.S.A.
{borzoo,sandeep}@cse.msu.edu

Abstract. We focus on automated revision techniques for adding Unity

properties to distributed programs. We show that unlike centralized pro-
grams, where multiple safety properties along with one progress property
can be simultaneously added in polynomial-time, addition of only one
safety or one progress property to distributed programs is NP-complete.
We also propose an efficient symbolic heuristic for adding a leads-to prop-
erty to a distributed program. We demonstrate the application of this
heuristic in automated synthesis of recovery paths in fault-tolerant dis-
tributed programs.

Keywords: UNITY, Distributed programs, Automated revision,
Transformation, Repair, Complexity, Formal methods.

1 Introduction

Program correctness is an important aspect and application of formal methods.
There are two ways to achieve correctness when designing programs: correct-

by-verification and correct-by-construction. Applying the former often involves
a cycle of design, verification, and subsequently manual repair if the verification
step does not succeed. The latter, however, achieves correctness in an automated
fashion.

Taking the paradigm of correct-by-construction to extreme leads us to syn-
thesizing programs from their specification. While synthesis from specification
is undoubtedly useful, it suffers from lack of reuse. In program revision, on the
other hand, one can transform an input program into an output program that
meets additional properties. As a matter of fact, such properties are frequently
identified during a system’s life cycle in practice due to reasons such as incom-
plete specification, renovation of specification, and change of environment. As a
concrete example, consider the case where a program is diagnosed with a failed
property by a model checker. In such a case, access to automated transformation

? This work was partially sponsored by NSF CAREER CCR-0092724 and ONR Grant
N00014-01-1-0744.



methods that revise the program at hand with respect to the failed property is
highly advantageous. For such revision to be useful, in addition to satisfaction of
new properties, the output program must inevitably preserve existing properties
of the input program as well.

In our previous work in this context [8], we focused on revising centralized

programs, where processes can read and write all program variables in one atomic
step, with respect to Unity [7] properties. Our interest in Unity properties is
due to the fact that they have been found highly expressive in specifying a
large class of programs. In [8], we showed that adding a conjunction of multiple
Unity safety properties (i.e., unless, stable, and invariant) along with one progress

property (i.e., leads-to and ensures) can be achieved in polynomial-time. We
also showed that the problem becomes NP-complete if we consider simultaneous
addition of two progress properties. We emphasize that our revision method
in [8] ensures satisfaction of all existing Unity properties of the input program
as well.

In this paper, we shift our focus to distributed programs where processes can
read and write only a subset of program variables. We expect the concept of pro-
gram revision to play a more crucial role in the context of distributed programs,
since non-determinism and race conditions make it significantly difficult to assert
program correctness. We find somewhat unexpected results about the complexity
of adding Unity properties to distributed programs. In particular, we find that
the problem of adding only one Unity safety property or one progress property
to a distributed program is NP-complete in the size of the input program’s state
space.

The knowledge of these complexity bounds is especially important in build-
ing tools for incremental synthesis. In particular, the NP-completeness results
demonstrate that tools for revising distributed programs must utilize efficient
heuristics to expedite the revision algorithm at the cost of completeness. More-
over, NP-completeness proofs often identify where the exponential complexity
lies in the problem. Thus, thorough analysis of proofs is also crucial in devising
efficient heuristics.

With this motivation, in this paper, we also propose an efficient symbolic
heuristic that adds a leads-to property to a distributed program. We integrate
this heuristic with our tool Sycraft [5] that is designed for adding fault-
tolerance to existing distributed programs. Meeting leads-to properties are of
special interest in fault-tolerant computing where recovery within a finite num-
ber of steps is essential. To this end, one can first augment the program with all
possible recovery transitions that it can use. This augmented program clearly
does not guarantee that it would recover to a set of legitimate states, although
there is a potential to reach the legitimate states from states reached in the pres-
ence of faults. In particular, it may continue to execute on a cycle that is entirely
outside the legitimate states. Thus, we apply our heuristic for adding a leads-to

property to modify the augmented program so that from any state reachable
in the presence of faults, the program is guaranteed recovery to its legitimate
states within a finite number of steps. A by-product of the heuristic for adding



leads-to properties is a cycle resolution algorithm. Our experimental results show
that this algorithm can also be integrated with state-of-the-art model checkers
for assisting in developing programs that are correct-by-construction.
Organization. The rest of the paper is organized as follows. In Section 2, we
present the preliminary concepts. Then, we formally state the revision problem
in Section 3. Section 4 is dedicated to complexity analysis of addition of Unity

safety properties to distributed programs. In Section 5, we present our results
on the complexity of addition of Unity progress properties. We also present
our symbolic heuristic and experimental results in Section 5. Related work is
discussed in Section 6. Finally, we conclude in Section 7.

2 Preliminary Concepts

In this section, we formally define the notion of distributed programs. We also
reiterate the concept of Unity properties introduced by Chandy and Misra [7].

2.1 Distributed Programs

Intuitively, we define a distributed program in terms of a set of processes. Each
process is in turn specified by a state-transition system and is constrained by
some read/write restrictions over its set of variables.

Let V = {v0, v1 · · · vn} be a finite set of variables with finite domains
D0, D1 · · ·Dn, respectively. A state, say s, is determined by mapping each vari-
able vi in V , 0 ≤ i ≤ n, to a value in Di. We denote the value of a variable v in
state s by v(s). The set of all possible states obtained by variables in V is called
the state space and is denoted by S. A transition is a pair of states of the form
(s0, s1) where s0, s1 ∈ S.

Definition 1 (state predicate) Let S be the state space obtained from vari-
ables in V . A state predicate is a subset of S.

Definition 2 (transition predicate) Let S be the state space obtained from
variables in V . A transition predicate is a subset of S × S.

Definition 3 (process) A process p is specified by the tuple 〈Vp, Tp, Rp, Wp〉
where Vp is a set of variables, Tp is a transition predicate in the state space of p
(denoted Sp), Rp is a set of variables that p can read, and Wp is a set of variables
that p can write such that Wp ⊆ Rp ⊆ Vp (i.e., we assume that p cannot blindly
write a variable).

Write restrictions. Let p = 〈Vp, Tp, Rp, Wp〉 be a process. Clearly, Tp must
be disjoint from the following transition predicate due to inability of p to change
the value of variables that p cannot write:

NW p = {(s0, s1) | v(s0) 6= v(s1) where v 6∈ Wp}.



Read restrictions. Let p = 〈Vp, Tp, Rp, Wp〉 be a process, v be a variable
in Vp, and (s0, s1) ∈ Tp where s0 6= s1. If v is not in Rp, then p must include
a corresponding transition from all states s′0 where s′0 and s0 differ only in the
value of v. Let (s′0, s

′
1) be one such transition. Now, it must be the case that

s1 and s′1 are identical except for the value of v, and, the value of v must be
the same in s′0 and s′1. For instance, let Vp = {a, b} and Rp = {a}. Since p
cannot read b, the transition ([a = 0, b = 0], [a = 1, b = 0]) and the transition
([a = 0, b = 1], [a = 1, b = 1]) have the same effect as far as p is concerned. Thus,
each transition (s0, s1) in Tp is associated with the following group predicate:

Groupp(s0, s1) = {(s′0, s
′
1) |

(∀v 6∈ Rp : (v(s0) = v(s1) ∧ v(s′0) = v(s′1))) ∧
(∀v ∈ Rp : (v(s0) = v(s′0) ∧ v(s1) = v(s′1)))}.

Definition 4 (distributed program) A distributed program Π is specified by
the tuple 〈PΠ, IΠ〉 where PΠ is a set of processes and IΠ is a set of initial states.
Without loss of generality, we assume that the state space of all processes in PΠ

is identical (i.e., ∀p, q ∈ PΠ :: (Vp = Vq)∧ (Dp = Dq)). Thus, the set of variables
(denoted VΠ) and state space of program Π (denoted SΠ) are identical to the
set of variables and state space of processes of Π, respectively. In this sense, the
set IΠ of initial states of Π is a subset of SΠ.

Notation. Let Π = 〈PΠ, IΠ〉 be a distributed program (or simply a program).
The set TΠ denotes the collection of transition predicates of all processes of Π,
i.e., TΠ =

⋃
p∈PΠ

Tp.

Definition 5 (computation) Let Π = 〈PΠ, IΠ〉 be a program. An infinite
sequence of states s = 〈s0, s1 · · · 〉 is a computation of Π iff the following three
conditions are satisfied: (1) s0 ∈ IΠ, (2) ∀i ≥ 0 : (si, si+1) ∈ TΠ, and (3) if s
reaches a terminating state sl where there does not exist s such that s 6= sl and
(sl, s) ∈ TΠ, then we extend s to an infinite computation by stuttering at sl

using transition (sl, sl).

Notice that we distinguish between a terminating computation and a dead-

locked computation. Precisely, if a computation s reaches a terminating state sd

such that there exists no process p in PΠ where (sd, s) ∈ Tp for some state s,
then sd is a deadlock state and s is a deadlocked computation. For a distributed
program Π = 〈PΠ, IΠ〉, we say that a sequence of states s = 〈s0, s1 · · · sn〉 is a
computation prefix of Π iff ∀j | 0 ≤ j < n : (sj , sj+1)∈TΠ.

2.2 UNITY Properties

Unity properties are categorized by two classes of safety and progress properties
defined next [7].

Definition 6 (UNITY safety properties) Let P and Q be arbitrary state
predicates.



– (Unless) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘P unless Q’
iff ∀i ≥ 0 : (si ∈ (P ∩ ¬Q)) ⇒ (si+1 ∈ (P ∪ Q)). Intuitively, if P holds in a
state of s, then either (1) Q never holds in s and P is continuously true, or
(2) Q becomes true and P holds at least until Q becomes true.

– (Stable) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘stable P ’ iff
s satisfies P unless false . Intuitively, P is stable iff once it becomes true, it
remains true forever.

– (Invariant) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘invariant

P ’ iff s0 ∈ P and s satisfies stable P . An invariant property always holds.

Definition 7 (UNITY progress properties) Let P and Q be arbitrary state
predicates.

– (Leads-to) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘P leads-to

Q’ iff (∀i ≥ 0 : (si ∈ P ) ⇒ (∃j ≥ i : sj ∈ Q)). In other words, if P holds in
a state si, i ≥ 0, of s, then there exists a state sj in s, i ≤ j, such that Q
holds in sj .

– (Ensures) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘P ensures

Q’ iff for all i, i ≥ 0, if P ∩ ¬Q is true in state si, then (1) si+1 ∈ (P ∪ Q),
and (2) ∃j ≥ i : sj ∈ Q. In other words, if P becomes true in si, there exists
a state sj where Q eventually becomes true and P remains true everywhere
in between si and sj .

In our formal framework, unlike standard Unity in which interleaved fair-

ness is assumed, we assume that all program computations are unfair. This
assumption is necessary when dealing with addition of Unity progress proper-
ties to programs. We also note that the definition of ensures property is slightly
different from that in [7]. Precisely, in Chandy and Misra’s definition, P ensures

Q implies that (1) P leads-to Q, (2) P unless Q, and (3) there is at least one
action that always establishes Q whenever it is executed in a state where P is
true and Q is false. Since, we do not model actions explicitly in our work, we
have removed the third requirement. Finally, as described in Subsection 2.1, in
this paper, our focus is only on programs with finite state space.

We now define what it means for a program to refine a Unity property. Note
that throughout this paper, we assume that a program and its properties have
identical state space.

Definition 8 (refines) Let Π = 〈PΠ, IΠ〉 be a program and L be a Unity

property. We say that Π refines L iff all computations of Π are infinite and
satisfy L.

Definition 9 (specification) A Unity specification Σ is the conjunction∧n

i=1
Li where each Li is a Unity safety or progress property.

One can easily extend the notion of refinement to Unity specifications as
follows. Given a program Π and a specification Σ =

∧n

i=1
Li, we say that Π

refines Σ iff for all i, 1 ≤ i ≤ n, Π refines Li.



Concise representation of safety properties. Observe that the Unity

safety properties can be characterized in terms of a set of bad transitions that
should never occur in a program computation. For example, stable P requires
that a transition, say (s0, s1), where s0 ∈ P and s1 /∈ P , should never occur in
any computation of a program that refines stable P . Hence, for simplicity, in this
paper, when dealing with safety Unity properties of a program Π = 〈PΠ, IΠ〉,
we assume that they are represented by a transition predicate B ⊆ SΠ × SΠ

whose transitions should never occur in any computation.

3 Problem Statement

Given are a program Π = 〈PΠ, IΠ〉 and a (new) Unity specification Σn. Our goal
is to devise an automated method which revises Π so that the revised program
(denoted Π′ = 〈PΠ′ , IΠ′〉) (1) refines Σn, and (2) continues refining its existing
Unity specification Σe, where Σe is unknown. Thus, during the revision, we
only want to reuse the correctness of Π with respect to Σe in the sense that the
correctness of Π′ with respect to Σe is derived from ‘Π refines Σe’.

Intuitively, in order to ensure that the revised program Π′ continues refin-
ing the existing specification Σe, we constrain the revision problem so that the
set of computations of Π′ is a subset of the set of computations of Π. In this
sense, since Unity properties are not existentially quantified (unlike in Ctl),
we are guaranteed that all computations of Π′ satisfy the Unity properties that
participate in Σe.

Now, we formally identify constraints on SΠ′ , IΠ′ , and TΠ′ . Observe that if
SΠ′ contains states that are not in SΠ, there is no guarantee that the correctness
of Π with respect to Σe can be reused to ensure that Π′ refines Σe. Also, since
SΠ denotes the set of all states (not just reachable states) of Π, removing states
from SΠ is not advantageous. Likewise, IΠ′ should not have any states that were
not there in IΠ. Moreover, since IΠ denotes the set of all initial states of Π, we
should preserve them during the revision. Finally, we require that TΠ′ should
be a subset of TΠ. Note that not all transitions of TΠ may be preserved in TΠ′ .
Hence, we must ensure that Π′ does not deadlock. Based on Definitions 8 and
9, if (i) TΠ′ ⊆ TΠ, (ii) Π′ does not deadlock, and (iii) Π refines Σe, then Π′ also
refines Σe. Thus, the revision problem is formally defined as follows:

Problem Statement 1 Given a program Π = 〈PΠ, IΠ〉 and a Unity specifi-
cation Σn, identify Π′ = 〈PΠ′ , IΠ′〉 such that:

(C1) SΠ′ = SΠ,
(C2) IΠ′ = IΠ,
(C3) TΠ′ ⊆ TΠ, and
(C4) Π′ refines Σn.

Note that the requirement of deadlock freedom is not explicitly specified in the
above problem statement, as it follows from ‘Π′ refines Σn’. Throughout the
paper, we use ‘revision of Π with respect to a specification Σn (or property L)’
and ‘addition of Σn (respectively, L) to Π’ interchangeably.



4 Adding UNITY Safety Properties to Distributed

Programs

As mentioned in Section 2, Unity safety properties can be characterized by a
transition predicate, say B, whose transitions should occur in no computation
of a program. In a centralized setting where processes have no restrictions on
reading and writing variables, a program Π = 〈PΠ, IΠ〉 can be easily revised
with respect to B by simply (1) removing the transitions in B from TΠ, and (2)
making newly created deadlock states unreachable [8].

To the contrary, the above approach is not adequate for a distributed setting,
as it is sound (i.e., it constructs a correct program), but not complete (i.e., it
may fail to find a solution while there exists one). This is due to the issue of read
restrictions in distributed programs, which associates each transition of a process
with a group predicate. This notion of grouping makes the revision complex, as a
revision algorithm has to examine many combinations to determine which group
of transitions must be removed and, hence, what deadlock states need to be
handled. Indeed, we show that the issue of read restrictions changes the class of
complexity of the revision problem entirely.
Instance. A distributed program Π = 〈PΠ, IΠ〉 and a Unity safety specifica-
tion Σn.
Decision problem. Does there exist a program Π′ = 〈PΠ′ , IΠ′〉 such that Π′

meets the constraints of Problem Statement 1 for the above instance?

We now show that the above decision problem is NP-complete by a reduction
from the well-known satisfiability problem. The SAT problem is as follows:

Let x1, x2 · · ·xN be propositional variables. Given a Boolean for-
mula y = yN+1 ∧ yN+2 · · · yM+N , where each clause yj , N + 1 ≤
j ≤ M + N , is a disjunction of three or more literals, does there
exist an assignment of truth values to x1, x2 · · ·xN such that y is
satisfiable?

We note that the unconventional subscripting of clauses in the above definition
of the SAT problem is deliberately chosen to make our proofs simpler.

Theorem 1. The problem of adding a Unity safety property to a distributed

program is NP-complete.

Proof. Since showing membership to NP is straightforward, we only need to
show that the problem is NP-hard. Towards this end, we present a polynomial-
time mapping from an instance of the SAT problem to a corresponding instance
of our revision problem. We construct the instance Π = 〈PΠ, IΠ〉 as follows.
Variables. The set of variables of program Π and, hence, its processes is
V = {v0, v1, v2, v3, v4}. The domain of these variables are respectively as follows:
{−1, 0, 1}, {−1, 0, 1}, {0, 1}, {0, 1}, {−N · · · − 2,−1, 1, 2 · · ·M + N} ∪ {j i | (1 ≤
i ≤ N) ∧ (N + 1 ≤ j ≤ M + N)}. We note that ji in the last set is not an
exponent, but a denotational symbol.
Reachable states. The set of reachable states in our mapping is as follows:



– For each propositional variable xi, 1 ≤ i ≤ N , in the instance of the SAT
problem, we introduce the following states (see Figure 1): ai, bi, b

′
i, ci, c

′
i, di,

and d′i. We require that states a1 and aN+1 are identical.
– For each clause yj , N + 1 ≤ j ≤ M + N , we introduce state rj .
– For each clause yj , N + 1 ≤ j ≤ M + N , and variable xi in clause yj ,

1 ≤ i ≤ N , we introduce the following states: rji, sji, s
′
ji, tji, and t′ji.

Value assignments. Assignment of values to each variable at reachable states
is shown in Figure 1 (denoted by < v0, v1, v2, v3, v4 >). We emphasize that
assignment of values in our mapping is the most crucial factor in forming group
predicates. For reader’s convenience, Table 1 illustrates the assignment of values
to variables more clearly.

State / Variable name v0 v1 v2 v3 v4

ai -1 1 0 1 i

bi 0 0 0 0 −i

b′i 0 0 0 0 i

ci 1 0 1 1 −i

c′i 0 1 1 1 i

di 0 1 1 1 −i

d′

i 1 0 1 1 i

(a)

State / Variable name v0 v1 v2 v3 v4

rj 0 0 1 0 j

rji 0 0 0 0 ji

sji 0 1 1 1 ji

s′ji 1 0 1 1 ji

tji 1 -1 0 1 ji

t′ji -1 -1 0 1 ji

(b)

Table 1. Assignment of values to variables in proof of Theorem 1.

Processes. Program Π consists of four processes. Formally,PΠ = {p1, p2, p3, p4}.
Transition predicate and read/write restrictions of processes in PΠ are as follows:

– Read/write restrictions. The read/write restrictions of processes p1, p2,
p3, and p4 are as follows:

• Rp1
= {v0, v2, v3} and Wp1

= {v0, v2, v3}.
• Rp2

= {v1, v2, v3} and Wp2
= {v1, v2, v3}.

• Rp3
= {v0, v1, v2, v3, v4} and Wp3

= {v0, v1, v2, v4}.
• Rp4

= {v0, v1, v2, v3, v4} and Wp4
= {v0, v1, v3, v4}.

– Transition predicates. For each propositional variable xi, 1 ≤ i ≤ N , we
include the following transitions in processes p1, p2, p3, and p4 (see Figure
1):

• Tp1
= {(b′i, d

′
i), (bi, ci) | 1 ≤ i ≤ N}.

• Tp2
= {(b′i, c

′
i), (bi, di) | 1 ≤ i ≤ N}.

• Tp3
= {(c′i, ai+1), (ci, ai+1), (d

′
i, ai+1), (di, ai+1) | 1 ≤ i ≤ N}.



�� ����������������

� �� �����������������
��

��� �����������������
��

��� ������������������
��� �� �������������������

��

� � ���������������� �� ��������������� ��

�� ��������������� �	� � ����������������


�	� �����������������	��


� �����������������

�� ��������������� �
� � ����������������

��� ����������������
�


��������


��������


��������


��������

�������������������

������

�������

�������

���
����������

�����������

� ����!�����!���
������!�������

�����������

� ����!�����!� ��
������!�������

"����

Fig. 1. Mapping SAT to addition of Unity safety properties.

• Tp4
= {(ai, bi), (ai, b

′
i) | 1 ≤ i ≤ N}.

Moreover, corresponding to each clause yj , N +1 ≤ j ≤ M +N , and variable
xi, 1 ≤ i ≤ N , in clause yj , we include transition (rj , rji) in Tp3

and the
following:

• If xi is a literal in clause yj , then we include transition (rji, sji) in Tp2
,

(sji, tji) in Tp3
, and (tji, bi) in Tp4

.
• If ¬xi is a literal in clause yj , then we include transition (rji, s

′
ji) in Tp1

,
(s′ji, t

′
ji) in Tp3

, and (t′ji, b
′
i) in Tp4

.

Note that only for the sake of illustration, Figure 1 shows all possible transi-
tions. However, in order to construct Π, based on the existence of xi or ¬xi

in yj , we only include a subset of the transitions.

Initial states. The set IΠ of initial states represents clauses of the instance
of the SAT problem, i.e., IΠ = {rj | N + 1 ≤ j ≤ M + N}.
Safety property. Let P be a state predicate that contains all reachable
states in Figure 1 except ci and c′i (i.e., ci, c

′
i ∈ ¬P ). Thus, the properties

stable P and invariant P can be characterized by the transition predicate B =
{(bi, ci), (b

′
i, c

′
i) | 1 ≤ i ≤ N}. Similarly, let P and Q be two state predicates

that contain all reachable states in Figure 1 except ci and c′i. Thus, the safety
property P unless Q can be characterized by B as well. In our mapping, we let
B represent the safety specification for which Π has to be revised.

Before we present our reduction from the SAT problem using the above map-
ping, we make the following observations regarding the grouping of transitions
in different processes:

1. Due to inability of process p1 to read variable v4, for all i, 1 ≤ i ≤ N ,
transitions (rji, s

′
ji), (b

′
i, d

′
i), and (bi, ci) are grouped in p1.

2. Due to inability of process p2 to read variable v4, for all i, 1 ≤ i ≤ N ,
transitions (rji, sji), (bi, di), and (b′i, c

′
i) are grouped in p2.



3. Transitions grouped with the rest of the transitions in Figure 1 are unreach-
able and, hence, are irrelevant.

Now, we show that the answer to the SAT problem is affirmative if and only
if there exists a solution to the revision problem. Thus, we distinguish two cases:

– (⇒) First, we show that if the given instance of the SAT formula is satisfi-
able, then there exists a solution that meets the requirements of the revision
decision problem. Since the SAT formula is satisfiable, there exists an as-
signment of truth values to all variables xi, 1 ≤ i ≤ N , such that each yj ,
N +1 ≤ j ≤ M +N , is true. Now, we identify a program Π′, that is obtained
by adding the safety property represented by B to program Π as follows.

• The state space of Π′ consists of all the states of Π, i.e., SΠ = SΠ′ .

• The initial states of Π′ consists of all the initial states of Π, i.e., IΠ = IΠ′ .

• For each variable xi, 1 ≤ i ≤ N , if xi is true, then we include the
following transitions: (ai, bi) in Tp4

, (bi, di) in Tp2
, and (di, ai+1) in Tp3

.

• For each variable xi, 1 ≤ i ≤ N , if xi is false , then we include the
following transitions:(ai, b

′
i) in Tp4

, (b′i, d
′
i) in Tp1

, and (d′i, ai+1) in Tp3
.

• For each clause yj , N + 1 ≤ j ≤ M + N , that contains literal xi, if xi is
true, we include the following transitions: (rj , rji) and (sji, tji) in Tp3

,
(rji , sji) in Tp2

, and (tji, bi) in Tp4
.

• For each clause yj , N +1 ≤ j ≤ M +N , that contains literal ¬xi, if xi is
false , we include the following transitions: (rj , rji) and (s′ji, t

′
ji) in Tp3

,
(rji , s

′
ji) in Tp1

, and (t′ji, b
′
i) in Tp4

.

As an illustration, we show the partial structure of Π′, for the formula (x1 ∨
¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x4), where x1 = true, x2 = false , x3 = false , and
x4 = false , in Figure 2. Notice that states whose all outgoing and incoming
transitions are eliminated are not illustrated. Now, we show that Π′ meets
the requirements of the Problem Statement 1:

1. The first three constraints of the decision problem are trivially satisfied
by construction.

2. We now show that constraint C4 holds. First, it is easy to observe that
by construction, there exist no reachable deadlock states in the revised
program. Hence, if Π refines Unity specification Σe, then Π′ refines Σe as
well. Moreover, if a computation of Π′ reaches a state bi for some i, from
an initial state rj (i.e., xi is true in clause yj), then that computation
cannot violate safety since bad transition (bi, ci) is removed. This is
due to the fact that (bi, ci) is grouped with transition (rji , s

′
ji) and this

transition is not included in TΠ′ , as literal xi is true in yj . Likewise, if
a computation of Π′ reaches a state b′i for some i, from initial state rj

(i.e., xi is false in clause yj), then that computation cannot violate safety
since transition (b′i, c

′
i) is removed. This is due to the fact that (b′i, c

′
i) is

grouped with transition (rji, sji) and this transition is not included in
TΠ′ , as xi is false . Thus, Π′ refines Σn.



��

��

������

�������

�������

����

������������������

������

��

�������

�������

������

��	
�����

��	
�����

��	
�����

��	
�����

������

�����

Fig. 2. The structure of the revised program for Boolean formula (x1 ∨ ¬x2 ∨
x3) ∧ (x1 ∨ x2 ∨ ¬x4), where x1 = true, x2 = false , x3 = false , and x4 = false .

– (⇐) Next, we show that if there exists a solution to the revision problem
for the instance identified by our mapping from the SAT problem, then the
given SAT formula is satisfiable. Let Π′ be the program that is obtained
by adding the safety property Σn to program Π. Now, in order to obtain a
solution for SAT, we proceed as follows. If there exists a computation of Π′

where state bi is reachable, then we assign xi the truth value true. Otherwise,
we assign the truth value false .
We now show that the above truth assignment satisfies all clauses. Let yj be
a clause for some j, N + 1 ≤ j ≤ M + N , and let rj be the corresponding
initial state in IΠ′ . Since rj is an initial state and Π′ cannot deadlock, the
transition (rj , rji) must be present in TΠ′ , for some i, 1 ≤ i ≤ N . By the same
argument, there must exist some transition that originates from rji. This
transition terminates in either sji or s′ji. Observe that TΠ′ cannot have both
transitions, as grouping of transitions will include both (bi, ci) and (b′i, c

′
i)

which in turn causes violation of safety by Π′. Now, if the transition from
rji terminates in sji, then clause yj contains literal xi and xi is assigned the
truth value true. Hence, yj evaluates to true. Likewise, if the transition from
rji terminates in s′ji, then clause yj contains literal ¬xi and xi is assigned
the truth value false . Hence, yj evaluates to true. Therefore, the assignment
of values considered above is a satisfying truth assignment for the given SAT
formula.

5 Adding UNITY Progress Properties to Distributed

Programs

This section is organized as follows. In Subsection 5.1, we show that adding a
Unity progress property to a distributed program is NP-complete. Then, in



Subsection 5.2, we present a symbolic heuristic for adding a leads-to property to
a distributed program.

5.1 Complexity

In a centralized setting, where programs have no restriction on reading and
writing variables, a program, say Π = 〈PΠ, IΠ〉, can be easily revised with respect
to a progress property by simply (1) breaking non-progress cycles that prevent
a program to eventually reach a desirable state predicate, and (2) removing
deadlock states [8]. To the contrary, in a distributed setting, due to the issue of
grouping, it matters which transition (and as a result its corresponding group)
is removed to break a non-progress cycle.
Instance. A distributed program Π = 〈PΠ, IΠ〉 and a Unity progress property
Σn.
Decision problem. Does there exist a program Π′ = 〈PΠ′ , IΠ′〉 such that Π′

meets the constraints of Problem Statement 1 for the above instance?

Theorem 2. The problem of adding a Unity progress property to a distributed

program is NP-complete.

Proof. Since showing membership to NP is straightforward, we only show that
the problem is NP-hard by a reduction from the SAT problem. First, we present
a polynomial-time mapping.
Variables. The set of variables of program Π and, hence, its processes is
V = {v0, v1, v2, v3, v4}. The domain of these variables are respectively as follows:
{0, 1}, {0, 1}, {−N · · · − 2,−1, 1, 2 · · ·M + N} ∪ {ji | (1 ≤ i ≤ N) ∧ (N + 1 ≤
j ≤ M + N)}, {−1, 0, 1}, and {−1, 0, 1}.
Reachable states. The set of reachable states in our mapping is as follows:

– For each propositional variable xi, 1 ≤ i ≤ N , we introduce the following
states (see Figure 3): ai, a′

i, bi, b′i, ci, c′i, di, d′i, Qi, and Q′
i.

– For each clause yj , N + 1 ≤ j ≤ M + N , we introduce state rj .
– For each clause yj , N + 1 ≤ j ≤ M + N , and variable xi, 1 ≤ i ≤ N , in

clause yj , we introduce states rji, sji, and s′ji.

Value assignments. Assignment of values to each variable at reachable states
is shown in Figure 3 (denoted by < v0, v1, v2, v3, v4 >). For reader’s convenience,
Table 2 illustrates the assignment of values to variables more clearly.
Processes. Program Π consists of four processes. Formally,PΠ = {p1, p2, p3, p4}.
Transition predicate and read/write restrictions of processes in PΠ are as follows:

– Read/write restrictions. The read/write restrictions of processes p1, p2,
p3, and p4 are as follows:
• Rp1

= {v0, v1, v3} and Wp1
= {v0, v1, v3}.

• Rp2
= {v0, v1, v4} and Wp2

= {v0, v1, v4}.
• Rp3

= {v0, v1, v2, v3, v4} and Wp3
= {v0, v2, v3, v4}.

• Rp4
= {v0, v1, v2, v3, v4} and Wp4

= {v1, v2, v3, v4}.



State / Variable name v0 v1 v2 v3 v4

ai 1 0 −i -1 -1

a′

i 1 0 i -1 1

bi 0 0 −i 0 0

b′i 0 0 i 0 0

ci 1 1 −i 0 1

c′i 1 1 i 1 0

di 0 1 i 1 -1

d′

i 0 1 −i 1 1

Qi 1 1 −i 1 0

Q′

i 1 1 i 0 1

(a)

State / Variable name v0 v1 v2 v3 v4

rj 0 1 j 1 1

rji 0 0 ji 0 0

sji 1 1 ji 0 1

s′ji 1 1 ji 1 0

(b)

Table 2. Assignment of values to variables in proof of Theorem 2.

– Transition predicates. For each propositional variable xi, 1 ≤ i ≤ N , we
include the following transitions in processes p1, p2, p3, and p4 (see Figure
3):
• Tp1

= {(b′i, c
′
i), (bi, Qi) | 1 ≤ i ≤ N}.

• Tp2
= {(bi, ci), (b

′
i, Q

′
i) | 1 ≤ i ≤ N}.

• Tp3
= {(ai, bi), (a

′
i, b

′
i), (ci, di), (c

′
i, d

′
i), (Qi, Qi), (Q

′
i, Q

′
i) | 1 ≤ i ≤ N}.

• Tp4
= {(d′i, bi), (di, b

′
i) | 1 ≤ i ≤ N}.

Moreover, corresponding to each clause yj , N +1 ≤ j ≤ M +N , and variable
xi, 1 ≤ i ≤ N , in clause yj , we include transition (rj , rji) in Tp4

and the
following:
• If xi is a literal in clause yj , then we include transition (rji, sji) in Tp2

,
and (sji, ai) in Tp4

.
• If ¬xi is a literal in clause yj , then we include transition (rji, s

′
ji) in Tp1

and (s′ji, a
′
i) in Tp4

.
Note that for the sake of illustration, Figure 3 shows all possible transitions.
However, in order to construct Π′, based on the existence of xi or ¬xi in yj ,
we only include a subset of transitions.

Initial states. The set IΠ of initial states represents clauses of the Boolean
formula in the instance of the SAT problem, i.e., IΠ = {rj | N +1 ≤ j ≤ M +N}.
Progress property. In our mapping, the desirable progress property is of the
form Σn ≡ (true leads-to Q), where Q = {Qi, Q

′
i | 1 ≤ i ≤ N} (see Figure 3).

Observe that Σn is a leads-to as well as an ensures property. This property in
Linear Temporal Logic (Ltl) is denoted by �♦Q (called always eventually Q).

Before we present our reduction from the SAT problem using the above map-
ping, we make the following observations regarding the grouping of transitions
in different processes:



�� ��������������������

��� �����������������

�� ������������������

��� ����������
�
�������

	�� ����������
�
�������

	��� ����������
�
�������

��� ������������������


�� �����������������


� ������������������

�� �����������������

�� ������������������

��� �����������������

��� ������������������

�� ������������������

�	
�����

�	
�����

�	
�����

�������������������

������

�	
����

�	�����
�

���	������	�����
�������������

�	�����
�

���	������	��� ��
�������������

 ����

�	
�����

�	
����

Fig. 3. Mapping SAT to addition of a progress property.

1. Due to inability of process p1 to read variable v2, for all i, 1 ≤ i ≤ N ,
transitions (rji, s

′
ji), (b′i, c

′
i), and (bi, Qi) are grouped in process p1.

2. Due to inability of process p2 to read variable v2, for all i, 1 ≤ i ≤ N ,
transitions (rji, sji), (bi, ci), and (b′i, Q

′
i) are grouped in process p2.

3. Transitions grouped with the rest of the transitions in Figure 3 are unreach-
able and, hence, are irrelevant.

We distinguish the following two cases for reducing the SAT problem to our
revision problem :

– (⇒) First, we show that if the given instance of the SAT formula is satisfi-
able, then there exists a solution that meets the requirements of the revision
decision problem. Since the SAT formula is satisfiable, there exists an as-
signment of truth values to all variables xi, 1 ≤ i ≤ N , such that each yj ,
N +1 ≤ j ≤ M +N , is true. Now, we identify a program Π′, that is obtained
by adding the progress property �♦Q to program Π as follows.

• The state space of Π′ consists of all the states of Π, i.e., SΠ = SΠ′ .
• The initial states of Π′ consists of all the initial states of Π, i.e., IΠ = IΠ′ .
• For each variable xi, 1 ≤ i ≤ N , if xi is true, then we include the

following transitions: (ai, bi), (ci, di), and (Q′
i, Q

′
i) in Tp3

, (bi, ci) and
(b′i, Q

′
i) in Tp2

, and, (di, b
′
i) in Tp4

.
• For each variable xi, 1 ≤ i ≤ N , if xi is false , then we include the

following transitions: (a′
i, b

′
i), (c′i, d

′
i), and (Qi, Qi) in Tp3

, (b′i, c
′
i) and

(bi, Qi) in Tp1
, and, (d′i, bi) in Tp4

.
• For each clause yj , N + 1 ≤ j ≤ M + N , that contains literal xi, if xi is

true, we include transitions (rj , rji) and (sji, ai) in Tp4
, and, transition

(rji , sji) in Tp2
.

• For each clause yj , N +1 ≤ j ≤ M +N , that contains literal ¬xi, if xi is
false , we include transitions (rj , rji) and (s′ji, a

′
i) in Tp4

, and, transition
(rji , s

′
ji) in Tp1

.



��

���

��

���

��� ����

���

��� ��

�� ��

���

��� ��

�� ��

��� ���

����

���
���

��

���
���

��� ��

���

���
���	
���	�

���	
���	

���	
���	�

�
�
��

����


���	
���	�

Fig. 4. The structure of the revised program for Boolean formula (x1 ∨ ¬x2 ∨
x3) ∧ (x1 ∨ x2 ∨ ¬x4), where x1 = true, x2 = false , x3 = false , and x4 = false .

As an illustration, we show the partial structure of Π′, for the formula (x1 ∨
¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x4), where x1 = true, x2 = false , x3 = false , and
x4 = false in Figure 4. Notice that states whose all outgoing and incoming
transitions are eliminated are not illustrated. Now, we show that Π′ meets
the requirements of the Problems Statement 1:

1. The first three constraints of the decision problem are trivially satisfied
by construction.

2. We now show that constraint C4 holds. First, it is easy to observe that
by construction, there exist no reachable deadlock states in the revised
program. Hence, if Π refines Unity specification Σe, then Π′ refines Σe

as well. Moreover, by construction, all computations of Π′ eventually
reach either Qi or Q′

i and will stutter there. This is due to the fact that
if literal xi is true in clause yj , then transition (rji, s

′
ji) is not included in

TΠ′ and, hence, its group-mates (b′i, c
′
i) and (bi, Qi) are not in TΠ′ as well.

Consequently, a computation that starts from rj eventually reaches Q′
i

without meeting a cycle. Likewise, if literal ¬xi is false in clause yj , then
transition (rji, sji) is not included in TΠ′ and, hence, its group-mates
(bi, ci) and (b′i, Q

′
i) are not in TΠ′ as well. Consequently, a computation

that starts from rj eventually reaches Qi without meeting a cycle. Hence,
Π′ refines Σn ≡ �♦Q.

– (⇐) Next, we show that if there exists a solution to the revision problem for
the instance identified by our mapping from the SAT problem, then the given
SAT formula is satisfiable. Let Π′ be the program that is obtained by adding
the progress property in Σn ≡ �♦Q to program Π. Now, in order to obtain
a solution for SAT, we proceed as follows. If there exists a computation of Π′



where state ai is reachable, then we assign xi the truth value true. Otherwise,
we assign the truth value false .
We now show that the above truth assignment satisfies all clauses. Let yj be
a clause for some j, N + 1 ≤ j ≤ M + N , and let rj be the corresponding
initial state in IΠ′ . Since rj is an initial state and Π′ cannot deadlock, the
transition (rj , rji) must be present in TΠ′ , for some i, 1 ≤ i ≤ N . By the
same argument, there must exist some transition that originates from rji.
This transition terminates in either sji or s′ji. Observe that TΠ′ cannot have
both transitions, as grouping of transitions will include transitions (bi, ci)
and (b′i, c

′
i). If this is the case, Π′ does not refine the property �♦Q due to

the existence of cycle bi → ci → di → b′i → c′i → d′i → bi. Thus, there
can be one and only one outgoing transition from rji in TΠ′ . Now, if the
transition from rji terminates in sji, then clause yj contains literal xi and xi

is assigned the truth value true. Hence, yj evaluates to true. Likewise, if the
transition from rji terminates in s′ji, then clause yj contains literal ¬xi and
xi is assigned the truth value false . Hence, yj evaluates to true. Therefore,
the assignment of values considered above is a satisfying truth assignment
for the given SAT formula.

5.2 A Symbolic Heuristic for Adding Leads-To Properties

We now present a polynomial-time (in the size of the state space) symbolic
(BDD1-based) heuristic for adding leads-to properties to distributed programs.
Leads-to properties have interesting applications in automated addition of recov-
ery for synthesizing fault-tolerant distributed programs.

The NP-hardness reduction presented in the proof of Theorem 2 precisely
shows where the complexity of the problem lies in. Indeed, Figure 3 shows that
transition (bi, ci) which can potentially be removed to break the non-progress
cycle bi → ci → di → b′i → c′i → d′i → bi is grouped with the critical transition
(rji, sji) which ensures that state rji and consequently initial state rj are not
deadlocked. The same argument holds for transitions (b′i, c

′
i) and (rji, s

′
ji). Thus,

a heuristic that adds a leads-to property to a distributed program needs to
address this issue.

Our heuristic works as follows (cf. Figure 5). The Algorithm Add LeadsTo

takes a distributed program Π = 〈PΠ, IΠ〉 and a property P leads-to Q as input,
where P and Q are two arbitrary state predicates in the state space of Π. The
algorithm (if successful) returns transition predicate of the derived program Π′ =
〈PΠ′ , IΠ′〉 that refines P leads-to Q as output. In order to transform Π to Π′,
first, the algorithm ranks states that can be reached from P based on the length
of their shortest path to Q (Line 2). Then, it attempts to break non-progress
cycles (Lines 3-13). To this end, it first computes the set of cycles that are
reachable from P (Line 4). This computation can be accomplished using any

1 Ordered Binary Decision Diagrams [6] represent Boolean formulae as directed acyclic
graphs making testing of functional properties such as satisfiability and equivalence
straightforward and extremely efficient.



Algorithm 1 Add LeadsTo

Input: A distributed program Π = 〈PΠ, IΠ〉 and property P leads-to

Q.
Output: If successful, transition predicate TΠ′ of the new program.

1: repeat

2: Let Rank [i] be the state predicate whose length of shortest path
to Q is i, where Rank [0] = Q and Rank [∞] = the state predicate
that is reachable from P , but cannot reach Q;

3: for all i and j do

4: C := ComputeCycles(TΠ, P );
5: if (i ≤ j) ∧ (i 6= 0) ∧ (i 6= ∞) then

6: tmp := Group(〈C ∧ Rank [i]〉 ∧ 〈C ∧ Rank [j]〉′);
7: if removal of tmp from TΠ eliminates a state from Q then

8: Make 〈C ∧ tmp〉 unreachable;
9: else

10: TΠ := TΠ − tmp;
11: end if

12: end if

13: end for

14: until Rank [∞] = {}
15: TΠ′ := EliminateDeadlockStates(P , Q, 〈PΠ, IΠ〉);
16: return TΠ′ ;

Fig. 5. A symbolic heuristic for adding a leads-to property to a distributed pro-
gram.

BDD-based cycle detection algorithm. We apply the Emerson-Lie method [10].
Then, the algorithm removes transitions from TΠ that participate in a cycle
and whose rank of source state is less than or equal to the rank of destination
state (Lines 6-10). However, since removal of a transition must take place with
its entire group predicate, we do not remove a transition that causes creation
of deadlock states in Q. Instead, we make the corresponding cycle unreachable
(Line 8). This can be done by simply removing transitions that terminate in a
state on the cycle. Thus, if removal of a group of transitions does not create
new deadlock states in Q, the algorithm removes them (Line 10). Finally, since
removal of transitions may create deadlock states outside Q but reachable from
P , we need to eliminate those deadlock states (Line 15). Such elimination can
be accomplished using the BDD-based method proposed in [4].

Given O(n2) complexity of the cycle detection algorithm [10], it is straight-
forward to observe that the complexity of our heuristic is O(n4), where n is the
size of state space of Π. In order to evaluate the performance of our heuristic,
we have implemented the Algorithm Add LeadsTo in our tool Sycraft [5]. This
heuristic can be used for adding recovery in order to synthesize fault-tolerant
distributed programs as follows. Let S be a set of legitimate states (e.g., an
invariant predicate) and T be the fault-span predicate (i.e., the set of states



Space Time(s)
reachable memory cycle pruning total

states (KB) detection transitions

BA5
10

4
12 0.5 2.5 3

BA10
10

8
18 5 18 23

BA15
10

12
26 47 76 125

BA20
10

16
29 522 372 894

BA25
10

20
30 3722 1131 4853

TR5
10

2
6 0.2 0.3 0.5

TR10
10

5
7 13 2 15

TR15
10

7
10 470 10 480

TR20
10

9
33 2743 173 2916

TR25
10

11
53 22107 2275 24382

Fig. 6. Experimental results of the symbolic heuristic.

reachable in the presence of faults). First, we add all possible transitions that
start from T − S and end in T . Then, we apply the Algorithm Add LeadsTo for
property (T − S) leads-to S.

Figure 6 illustrates experimental results of our heuristic for adding such re-
covery. All experiments are run on a PC with a 2.8GHz Intel Xeon processor and
1.2GB RAM. The BDD representation of the Boolean formulae has been done
using the Glu/CUDD package2. Our experiments target addition of recovery to
two well-known problems in fault-tolerant distributed computing, namely, the
Byzantine agreement problem [14] (denote BAi) and the token ring problem [2]
(denoted TRi), where i is the number of processes. Figure 6 shows the size of
reachable states in the presence of faults, memory usage, total time spent to
add the desirable leads-to property, time spent for cycle detection (i.e., Line 4
in Figure 5), and time spent for breaking cycles by pruning transitions. Given
the huge size of reachable states and complexity of structure of programs in
our experiments, we find the experimental results quite encouraging. We note
that the reason that TR and BA behave differently as their number of processes
grow is due to their different structures, existing cycles, and number of reachable
states. In particular, the state space of TR is highly reachable and its original
program has a cycle that includes all of its legitimate states. This is not the case
in BA. We also note that in case of TR, the symbolic heuristic presented in this
subsection tend to be slower than the constructive layered approach introduced
in [4]. However, the approach in this paper is more general and has a better
potential of success than the approach in [4].

2 Colorado University Decision Diagram Package, available at http://vlsi.

colorado.edu/~fabio/CUDD/cuddIntro.html.



6 Related Work

The most relevant work to this paper proposes automated transformation tech-
niques for adding Unity properties to centralized programs [8]. The authors
show that addition of multiple Unity safety properties along with a single
progress property to a centralized program can be accomplished is polynomial-
time. They also show that the problem of simultaneous addition of two leads-to

properties to a centralized program is NP-complete. Also in this context, Jobst-
mann et al. [11] independently show that the problem of repairing a centralized
program with respect to two progress properties in NP-complete.

Existing synthesis methods in the literature mostly focus on deriving the
synchronization skeleton of a program from its specification (expressed in terms
of temporal logic expressions or finite-state automata) [1, 3, 9, 15, 16]. Although
such synthesis methods may have differences with respect to the input specifica-
tion language and the program model that they synthesize, the general approach
is based on the satisfiability proof of the specification. This makes it difficult to
provide reuse in the synthesis of programs, i.e., any changes in the specification
require the synthesis to be restarted from scratch.

Algorithms for automatic addition of fault-tolerance to distributed programs
are studied from different perspectives [4, 12, 13]. These (enumerative and sym-
bolic) algorithms add fault-tolerance concerns to existing programs in the pres-
ence of faults, and guarantee not to add new behaviors to the input program in
the absence of faults. Most problems in addition of fault-tolerance to distributed
programs are known to be NP-complete.

7 Conclusion and Future Work

In this paper, we concentrated on automated techniques for revising finite state
distributed programs with respect to Unity properties. We showed that unlike
centralized programs, the revision problem for distributed programs with respect
to only one safety or one progress property is NP-complete. Thus, the results
in this paper is a theoretical evidence to the belief that designing distributed
programs is strictly harder than centralized programs even in the context of finite
state systems. Our NP-completeness results also generalize the results in [12,13]
in the sense that the revision problems remain NP-complete even if the input
program is not subject to faults. We also introduced and implemented a BDD-
based heuristic for adding a leads-to property to distributed programs in our
tool Sycraft [5]. Our experiments show encouraging results paving the path
for applying automated techniques for deriving programs that are correct-by-

construction in practice.
For future work, we plan to generalize the issue of distribution by incorpo-

rating communication channels in addition to read/write restriction. We also
plan to identify sub-problems where one can devise sound and complete algo-
rithms that add Unity properties to distributed programs in polynomial-time.
We also plan to devise heuristics for adding other types of Unity properties



to distributed programs. Another interesting direction is to study the revision
problem where programs are allowed to have a combination of fair and unfair
computations. We conjecture that this generalization makes the revision problem
more complex.

References

1. A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant concurrent
programs. In Principles of Distributed Computing (PODC), pages 173–182, 1998.

2. A. Arora and S. S. Kulkarni. Component based design of multitolerant systems.
IEEE Transactions on Software Engineering, 24(1):63–78, 1998.

3. P. Attie and E. A. Emerson. Synthesis of concurrent programs for an atomic
read/write model of computation. ACM Transactions on Programming Languages
and Systems (TOPLAS), 23(2):187 – 242, 2001.

4. B. Bonakdarpour and S. S. Kulkarni. Exploiting symbolic techniques in automated
synthesis of distributed programs with large state space. In IEEE International
Conference on Distributed Computing Systems (ICDCS), pages 3–10, 2007.

5. B. Bonakdarpour and S. S. Kulkarni. SYCRAFT: A tool for synthesizing fault-
tolerant distributed programs. In Concurrency Theory (CONCUR), pages 167–171,
2008.

6. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

7. K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988.

8. A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Revising UNITY programs:
Possibilities and limitations. In On Principles of Distributed Systems (OPODIS),
pages 275–290, 2005.

9. E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

10. E. A. Emerson and C. L. Lei. Efficient model checking in fragments of the propo-
sitional model mu-calculus. In Logic in Computer Science (LICS), pages 267–278,
1986.

11. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In
Computer Aided Verification (CAV), pages 226–238, 2005.

12. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT), pages
82–93, 2000.

13. S. S. Kulkarni and A. Ebnenasir. The complexity of adding failsafe fault-tolerance.
International Conference on Distributed Computing Systems (ICDCS), pages 337–
344, 2002.

14. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

15. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal
logic specifications. ACM Transactions on Programming Languages and Systems
(TOPLAS), 6(1):68–93, 1984.

16. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Principles of
Programming Languages (POPL), pages 179–190, 1989.


