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Abstract. Efficient exploration of unknown or unmapped environments has be-
come one of the fundamental problem domains in algorithm design. Its applica-
tions range from robot navigation in hazardous environments to rigorous search-
ing, indexing and analysing digital data available on the Internet. A large number
of exploration algorithms has been proposed under various assumptions about the
capability of mobile (exploring) entities and various characteristics of the envi-
ronment which are to be explored. This paper considers thegraph model, where
the environment is represented by a graph of connections in which discrete moves
are permitted only along its edges. Designing efficient exploration algorithms in
this model has been extensively studied under a diverse set of assumptions, e.g.,
directed vs undirected graphs, anonymous nodes vs nodes with distinct identities,
deterministic vs probabilistic solutions, single vs multiple agent exploration, as
well as in the context of different complexity measures including the time com-
plexity, the memory consumption, and the use of other computational resources
such as tokens and messages. In this work the emphasis is on memory efficient
exploration of anonymous graphs. We discuss in more detail three approaches:
random walk, Propp machineandbasic walk, reviewing major relevant results,
presenting recent developments, and commenting on directions for further re-
search.

1 Introduction

A graphis a crucial combinatorial notion used for modeling complexsystems in var-
ious application domains including communication, transportation and computer net-
works, manufacturing, scheduling, molecular biology and peer-to-peer networks. Mod-
els based on graphs often involve mobile entities which can move throughout the graph
from node to node along the edges. We call such entitiesagents. An agent can be a
robot servicing a hazardous environment, or a software process navigating the Internet
in search for some information.Graph explorationrefers to problems of designing algo-
rithms (protocols) for an agent, or a group of agents, to traverse a graph in a systematic
and efficient way.

In recent years the research on efficient graph exploration gathered a new momen-
tum, generated to large extent by the theory and the applications coming ever closer
together. The demand for efficient practical solutions has increased as systems of soft-
ware agents moving through a large network of computers havebecome reality. Another
example is the relevance of efficient graph exploration algorithms for efficiency of the



Internet search engines. The current applications indicate that the relative importance
of various aspects of graph exploration has been changing, and those changes become
reflected in the theoretical research.

In the broad context of algorithmic agent design we distinguish two main models:
thegeometric modelwhere the search environment is represented by two- or higher- di-
mensional space (see, e.g., [11, 28, 59]) and thegraph model, considered in this paper,
where the environment is represented by a finite or infinite graph supported by discrete
moves permitted only along its edges. The design of efficientexploration algorithms in
the graph model has been extensively studied under many different assumptions, e.g.,
directedvs undirected graphs, anonymousnodes vs nodes withdistinct identities, or
deterministicvs probabilisticsolutions, as well as with different performance objec-
tives in mind including optimal time complexity, memory consumption, or use of other
resources, see [1, 6, 9, 29–31,34, 41, 56]. Different studies may also consider different
aims of exploration. The aim of exploration can be to visit each node in the network, or
each edge, and terminate. Alternatively, one may drop the termination requirement and
ask only forperpetualexploration and a guarantee that each node is visited infinitely
many times, or perhaps a stronger guarantee that the nodes are being visited with similar
frequencies.

If nodes have distinct identities (given asO(log n)-bit words), the graph stays un-
changed (a static graph), and the size of the memory available to the agent (counted in
words) is linear in the number of nodes of the graph, then the depth-first search (DFS)
procedure gives linear time exploration. However, in many applications one or more
of these assumptions might not hold. The nodes may not have unique identities; for
example, if the nodes represent very simple devices (anonymousgraphs). The graph
may keep changing; for example, if it models a growing peer-to-peer network (dynamic
graphs). Finally, the agents may have very limited memory, which may be sufficient
for storing only few node identities. For example, softwareagents moving through a
computer network from host to host might not be allowed to carry too much data with
them. This survey is mainly concerned with exploration of anonymous graphs by agents
equipped with bounded memory.

In graph exploration algorithms, the memory utilisation refers actually not only to
the memory of the agents (“carried” by them when they move from node to node), but
also to any extra memory required in the graph environment. The latter may store some
(pre-computed) additional information about the graph to guide the exploration, or may
allow the agent to leave marks at nodes or to move tokens as it traverses. The demand for
simple and cost effective agents as well as the desire to design exploration algorithms
that are suitable for rigorous mathematical analysis implythe importance of limiting
the local memory of agents and their ability to manipulate the explored environment.
One of the most challenging problems in the theory of computation is to look at the
far ends,border cases, of the considered models. In case of algorithmic agent design
such a border case may refer to the size of the agent’s memory,where one can limit
the memory of an agent to a constant number of bits. This case is very often modeled
as graph exploration by a finite state automaton and it has been extensively studied
already in the 1970’s [15, 54, 58, 61]. Probably the strongest result in this setting is
due to Cook and Rackoff [19]. They proved that a fixed group of finite automata, that



can permanently cooperate and that can use "teleportation"to move from their current
location to the location of any other automaton, cannot explore all graphs. See [42]
for some recent results about limits of graph exploration with finite automata. These
results imply that we either have to allow the agents to use larger memory, or to divert
to randomization, or to provide the agents with extra structural information that restricts
the set of graphs they have to traverse.

It has been known for some time that if we do not place strict restrictions on the local
memory, then a single pebble is sufficient to explore an anonymous undirected graph.
This result was extended to directed graphs by Benderet al. [8]. Note however that a
good upper bound on the number of nodes must be known to avoid an exponential-time
solution. Moreover, even if such a bound is known, the time complexity, while polyno-
mial, remains impractically high. Another possibility is to drop determinism and to look
for randomized solutions. It is known, e.g., that a random walk of lengthO(n3 log n)
visits all nodes of an arbitraryn-node graph with high probability [3]. Attempts to re-
gain determinism included research on derandomization of random walks and the main
approach wasuniversal traversal sequences[3] that provide guidance in deterministic
traversal of all graphs in a given class. Several important results have been achieved
[4, 7, 46, 60] including Reingold’s [60] recent asymptotically optimal O(log n)-space
deterministic algorithm for the undirectedst-connectivityproblem based on a novel
O(log n)−bit navigation mechanism. However, note that the exploration time given by
this algorithm is a polynomial of a rather high degree.

Research closely related to the setting adopted in this paper assumes some struc-
tural information about the explored environment. Such additional information allows
improvements in the time or memory complexity of graph traversal. The first results,
concerning exploration of a labyrinth using a compass, are due to Blum and Kozen
[12]. Later, Flocchiniet al.[39] introduced a more general notion ofsense of direction
and proved that traversal can be performed usingO(n) messages/agent moves in this
model [38]. Fraigniaudet al.[40] have shown that interval routing scheme can be used
to achieve the same goal. In fact, given a spanning tree, the graph can be traversed using
O(n) moves. Pelc and Panaite [56] studied the impact of having a map of the graph on
the efficiency of graph exploration. Finally Cohenet al.studied efficient navigation in
graphs with nodes marked with a constant number of colors, see [18].

In this paper we focus on three graph traversal methods. We start with the probabilis-
tic random walkmethod and then discuss its recently proposed deterministic counter-
part known as thePropp machine, which requires some (small) memory at the nodes of
the graph. We conclude this survey with presentation of an alternative traversal method
based on thebasic walk, in which a small amount of memory is provided to an agent
and a certain type of graph preprocessing is permitted. These three methods have sev-
eral interesting combinatorial properties and one might say that they have already set
certain standards in agent based anonymous graph exploration.

2 The graph model

In this survey we consider environments represented by undirected (symmetric) graphs.
We denote byG = (V, E) the graph which is to be explored, and assume that it is con-



nected, unless stated otherwise. It will sometimes be convenient to viewG as a digraph←→
G obtained by replacing each undirected edge with two arcs pointing in opposite di-
rections. We consider graphs (environments) that are anonymous, i.e., the nodes in the
graphs are neither labeled nor marked in any other way. However, the ends of edges
incident to each nodev are ordered and often labeled by consecutive integers1, . . . , dv

calledport numbers, wheredv is the degree ofv.
If an agent is in the current step at a nodev, then the standard assumptions are that

it knowsdv, the label of the port through which it has enteredv and any information
about the graph that it might have gathered in previous stepsand has been able to (has
been allowed to) store in its internal limited memory. The agent decides on the basis
of this knowledge which port it should take to move in the nextstep to a neighbour
of v. Agents do not have prior knowledge about the topology of thenetwork. The exact
details about the resources and abilities of the agents as well as about the objectives of
exploration may vary from problem to problem. The number of nodes and the number
of edges inG are denoted byn andm, respectively, but note that these parameters might
not be known to the exploring agents.

3 The random walk

A random walkon an (undirected, connected) graphG starting at a nodev0 is an (infi-
nite) random sequence(v0, v1, v2, . . .) of nodes inG such that for eachi ≥ 1, nodevi

is selected randomly and uniformly from all neighbours of nodevi−1. Using the graph
exploration terminology, we say that an agent moves in stepi from nodevi−1 to its
random neighbourvi. To implement such random exploration of an arbitraryn-node
graph, the agent has to be able to select a random neighbour ofthe current node, so it
needsO(log n)-bit memory and access tolog n random bits per step.

The (node) cover time of graphG from a nodev is the expected number of steps
Cv(G) the random walk starting from nodev takes to visit all nodes of the graph.
The cover timeC(G) of graphG is defined as the maximumCv(C) over all nodes
v ∈ V . Thus the cover time is the worst-case (over all starting nodes) expected time
of exploring the whole graph. For graphs of some special types, the cover time can
be easily estimated, or even calculated exactly. For example, it is easy to show that the
cover time of the graphPn which is ann-node simple path is equal toC(Pn) = (n−1)2,
by solving a simple recurrence relation for the number expected number of stepsHi

required to reach the end of the path starting from itsi-th node. Calculation of the cover
time of then-node cliqueKn is thecoupon collectorproblem: at stepi select randomly
and uniformly one of then coupons/nodes and wait until all coupons have been seen,
with a slight modification that the next coupon/node has to bedifferent from the one just
selected. If we have already seen exactlyi distinct nodes, then the probability that in the
next step we will see a new node is equal to(n− i)/(n− 1), so the expected number of
steps before a new node is encountered is equal to(n − 1)/(n− i) and the cover time
C(Kn) is equal to

∑n−1

i=1
(n− 1)/(n− i) = (n− 1)

∑n−1

i=1
1/i = n(ln n + O(1)).

Random walks became an important tool in algorithm design and complexity the-
ory when Aleliunaset al. [3] showed in 1979 that the cover time ofevery graph is
polynomial, or more specifically, at most2m(n− 1). Since then general techniques for



bounding the cover times have been developed and bounds for the cover times for vari-
ous families of graphs have been derived. An agent using a random walk on ann-node
graph with the cover time bounded byT (n) = poly(n) should have anO(log n)-bit
counter to countT (n) steps to terminate with the knowledge that the whole graph has
been explored with constant probability, or to countT (n)p logn steps to terminate with
the knowledge the whole graph has been explored with the highprobability of at least
1− 1/np. Thus a good boundT (n) on the cover time is required not to expand unnec-
essarily the exploration time, and we review below the main known bounds. Observe
that an agent implementing a random walk needs memory for twopurposes. It needs
O(log ∆) bits to implement individual moves from the current node to arandom neigh-
bour, where∆ ≤ n is a bound on the degree of a node, andO(log n) bits to count the
moves. If we do not require that the agent terminates, than the total ofO(log ∆) bits
suffices. In particular, constant-size memory is sufficientfor the randomizedperpetual
exploration of any constant degree graph.

Feige [36, 35] showed the following tight bounds on the rangeof the cover times of
n-node graphs:

(1− o(1))n ln n ≤ C(G) ≤ (1 + o(1))
4

27
n3.

ThusKn is an example of a graph with the cover time achieving the lower bound,
while it can be shown that then-nodelollipop graph given in Figure 1 has the cover
time achieving the upper bound. A quadraticO(n2) upper bound on the cover time
of regular graphs was first shown by Kahn, Linial, Nisan and Saks in 1989, and the
best know bound of2n2 is due to Feige [37]. This worst-case upper bound for regular
graphs should be contrasted with Rubinfeld’s [62]O(n log n) bound on the cover time
of regularexpandergraphs, and with Cooper and Frieze’s [20] recent result showing
that the cover time of arandomd-regular graph is(1 + o(1))d−1

d−2
n lnn with high

probability. The cover time of the 2-dimensional
√

n × √n grid is Θ(n log2 n), with
the upper bound due to Chandraet al.[17] and the lower bound due to Zuckerman [65].
Aldous [2] showed that the cover time of then-nodek-dimensional grid isΘ(n log n),
for k ≥ 3.

Aleliunas’et al.[3] polynomial upper bound on the cover time of an arbitrary graph
was an important result for the computational complexity theory as it showed that the
undirecteds-t connectivity problem can be solved by a randomised log-space algo-
rithm. This started a vast body of research with the goal to settle the conjecture that
this problem can be solved by adeterministiclog-space algorithm, and, ultimately, the
more general conjecture thatany problem solvable by a randomised log-space algo-
rithm can be solved by a deterministic log-space algorithm.A natural approach to settle
the first conjecture was to de-randomise random walks. In this framework the objec-
tive was to produce an explicit universal traversal sequence (UTS), i.e., a sequence
p1, . . . , pk of port labels, such that the path guided by this sequence visits all edges
of any graph of a given size. It is known that, with high probability, a sequence of
lengthO(n3d2 log n), chosen uniformly at random, guides a walk in anyd-regular (con-
nected)n-node graph [3]. Unfortunately, explicit short UTS are known only for special
families of graphs, including 2-regular graphs [7, 13, 16, 50, 53], 3-regular graphs [49],
cliques [51], and expanders [46]. Some of these sequences can be constructed in log-



space, providing exploration withO(log n)-bit memory. Kouck̀y [52] introduced the
notion of a universalexplorationsequence (UXS), i.e., a sequenceq1, . . . , qk such that
the agent leaves the current nodex via portp + qi at theith step, wherep is the label of
the port through which the agent entered nodex. This notion allows to construct simpler
and shorter sequences, for example,1n is a UXS forn-node cycles, and(10)n is a UXS
for n-node cliques. Reingold [60] has recently showed that a UXS for general graphs
is log-space constructible, providing a deterministic log-space algorithm for undirected
s-t connectivity and settling the first of the above two conjectures. Note that both UTS
and UXS requirea priori knowledge of the size of the network. If an agent uses an UTS
or UXS for exploration, with stopping, of graphs (of some type) of size at mostn, then
it does not know at the termination whether the graph has at most n nodes, or whether
it is larger and possibly not fully explored.

Fig. 1. Then-node lollipop graph:(n/3)-node path connected ton-node clique.

A random walk on a graph is an example of afinite-state Markov chainand has
often been studied within this general context, with its central issue of thestationary
distributionand the rate of convergence to this distribution. If a randomwalk starts at a
nodes (v0 = s), then thei-th nodevi on the walk is the random variable with distribu-
tion πi

s, whereπi
s(v) = Prob(vi = v). The stationary distributionπ is the probability

distribution on the set of nodes defined byπ(v) = limi→∞ πi
s(v), if these limits exist

and are independent of the starting nodes. The stationary distribution exists for every
connected non-bipartite graph, and is equal toπ(v) = deg(v)/(2m). (For a bipartite
graph, since there is no odd-length cycle, a random walk can visit a given nodev ei-
ther only in even steps, or only in odd steps, solimi→∞ πi

s(v) is not defined. Not to
exclude bipartite graphs, the inconvenience of not having an odd length cycle is usu-
ally dealt with by allowing the walk to stay at the current node with, say, probability
1/2, or, equivalently, by adding self-loops to the graph.) The rate of convergence to the
stationary distribution is usually measured by themixing time, defined as the first step
t when the distributionπt

s of the random variablevt is guaranteed to be close to the
stationary distributionπ. More precisely, the mixing time is the minimumt such that
maxs,v∈V {|πt

s(v) − π(v)|} ≤ 1/n3, though other definitions of the distance between
two distributions, and degrees of closeness other than1/n3 have also been used. The
random walk israpidly mixing, if the mixing time is short, sayO(nǫ) for a small con-
stantǫ. Among the constant degree graphs, expanders have the best possibleO(log n)
mixing time.



The advantage of a random walk as a strategy for exploring a graph is its simplic-
ity and low memory requirements. Its main drawback is the time required to complete
the exploration, which is given by the cover time and can be ashigh asΩ(n3). Thus
a natural question is to reduce the cover time, if possible, for example by consider-
ing nonuniform transition probabilities, or by allowing the walking agent to gather,
and use, some limited information about the graph. Ikedaet al. [47] considered the
nonuniform probabilitiesp(v, u) of moving from a nodev to its neighbouru such that
p(v, u′)/p(v, u′′) = (deg(u′)/ deg(u′′))1/2, for any two neighboursu′ andu′′ of node
v. They showed that these transition probabilities lead to anO(n2 log n) bound on the
cover time of any graph. This quite remarkable reduction from theO(n3) bound of the
uniform random walk, comes unfortunately with a cost. To implement this non-standard
random walk, each node of the graph has to store information about the degrees of its
neighbours, or the agent has to visit first all neighbours to gather this information. Ikeda
et al.[47] showed also that theO(n2 log n) bound is close to the best what we can hope
for, since for any transition probabilities defined on ann-node path, the cover time is
Ω(n2).

If we are looking for graph exploration withk ≥ 2 agents, then we would like to
know good bounds on the cover time byk random walks: the expected number of steps
until each node has been visited by at least one random walk (assuming all agents move
simultaneously in synchronised steps). Observe that it maybe, and indeed is, crucial
what are the relative positions of the starting nodes of the walks. Broderet al.[14] con-
sideredk independent random walks starting from the stationary distribution (the start-
ing node of walki is a nodev with probabilityπ(v)) and showed anO((m2 log3 n)/k2)
bound on the cover time. Thus, for example, for constant degree graphs, thespeed-up
(the ratio of the cover times of a single random walk andk random walks) can be
Ω(k2/ log3 n). Recently Alonet al. [5] showed bounds on the speed-up ofk indepen-
dent random walks starting from thesamenode, including aΘ(log k) speed-up for
n-node cycles, iflog k = O(n), and anΩ(k) speed-up forn-node expanders, ifk ≤ n.
Cooperet al. [22] consideredk independent random walks on random regular graphs,
and analysed the cover time and the time required to achieve certain interaction between
the agents.

Random walks have been also applied in the context of exploringdynamic graphs.
Cooper and Frieze [21] considered a random walk on a dynamic graph growing accord-
ing to some random process, and analysed the expected proportion of visited vertices.
Law and Siu [55] and Cooperet al. [23] used graph exploration with random walks to
create new, random edges in a process of building and maintaining a well connected
network.

4 The Propp machine

We consider now a type of graph exploration where the agents have no operational
memory and the whole steering mechanism is provided within the environment. Thus
the agents may actually be viewed as mere tokens which are being moved around the
graph. We discuss the deterministic mechanism of therotor-router model, which was
introduced by Priezzhev in [57], further popularised by James Propp, and now known



also as thePropp machine. In this model each node of the graphG is equipped with a
small marker indicating the exit port (the edge) to be taken by an agent on the conclu-
sion of the next visit to this node. After the agent leaves thenode, the marker is moved
immediately to the next port in the cyclic order. The rotor-router model has been intro-
duced as a deterministic alternative to the random walk method. Its advantages include
the balanced usage of exit ports at each node, replacing the “coupon collector” nature
of the usage of ports by the random walk method.

The research on this model splits naturally into two directions associated withfinite
andinfinite graphs. The main question for finite graphs is about properties of the peri-
odic tour that has to be eventually adopted by the agent. For infinite graphs the Propp
machine model was mainly investigated in the context of balancing schemes for even
distribution of workload in networks.

Finite graphs. Note that if an agent follows the rotor-router mechanism in the Propp
machine defined on a finite graph, the agent must eventually lock itself in a tour of
limited size. This is a straightforward consequence of the fact that the number of con-
figurations based on positions of markers on exit ports and location of the agent is
bounded byn(dmax)n, wheredmax is the maximum degree of a node. However, and
rather surprisingly, following the rotor-router mechanism leads to a periodic tour that
corresponds to anEuler tourdefined on

←→
G [10]. Moreover this periodic phenomenon

starts occurring very early, namely withinO(|E|·n) steps, independently of the original
configuration of the port numbers and markers as well as the agent’s location. Yanovski
et al.[64] improved this bound by showing that in fact2|E| ·D steps suffice to form an
Euler tour, whereD is the diameter ofG. On the other hand a lower boundΩ(|E| ·D)
can be obtained on a lollipop graph (of a general structure asin Figure 1) in which exit
ports and markers in the clique withΩ(|E|) edges are set to form an Euler tour, and
markers on the external path of lengthD are placed on ports leading towards the clique.

Yanovskiet al. [64] studied also behaviour of a multi-agent system of explorers in
the Propp machine where the agents cooperate via shared markers. Whenl agents want
to exit from the same node in the same step, then they all leavethis node in this step
through the nextl consecutive ports (according to an arbitrary assignment ofthe agents
to thesel ports, and sending multiple agents through the same ports, if l is greater than
the degree of the node). They proved that for a team ofk agents, the numbers of edge
visits in the networks are balanced up to a factor of two within at most2(1 + 1

k )|E|D
steps.

Infinite graphs. In the context of infinite graphs the rotor-router has been mostly stud-
ied as a deterministic analogue of the random walk approach to balancing the workload
in a network, and the main question has been how similar thesetwo processes are. The
agents are now tokens, which are initially distributed among the nodes in some, possibly
uneven, way (for example, they all may be initially piled up on one node). The random
walk approach balances the load of tokens among nodes by sending them along inde-
pendent random walks of the same lengtht. Let Et(v) denote the expected number of
tokens which end up at a nodev. The rotor-router process starting with the same ini-
tial distribution of tokens and executingt (deterministic) steps reaches a configuration



with at(v) tokens at nodev. The question of similarity of these two processes is the
question of analysing the node discrepancies|at(v)−Et(v)|. In particular, Cooper and
Spencer [24] studied this question ford-dimensional grids and showed that all node
discrepancies are bounded by a constant, which depends ond, but does not depend on
the initial configuration, the total timet and the initial rotor settings. For example, they
showed a bounding constant ford = 1 which is≈ 2.3. This work was followed by a
detail study of the2-dimensional grid by Doerr and Friedrich [33]. They provided evi-
dence that the exact (constant) value of the maximum node discrepancy depends on the
choice of rotor sequences. The situation is different in thecase ofk-ary trees: for any
numberD, there exists an initial configuration of tokens, a numbert and a nodev such
that aftert steps of the rotor-router process nodev has at leastD tokens more than it is
expected to get in the random walk process [25].

5 The basic walk

The basic walk method is based on an observation that one can cover a graphG =

(V, E), or more precisely its symmetric digraph counterpart
←→
G , by a collection of di-

rected cycles. The cycles are formed according to a simple rule. At any nodev with the
degreedv, the incoming arc incident via a porti becomes the predecessor of the outgo-
ing arc incident via port(i mod dv) + 1. Note that since each arc in the digraph has
a unique predecessor as well as a unique successor a collection of arc-disjoint cycles
containing all arcs in the digraph is formed. Figure 2 shows an example.
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Fig. 2. The formation of cycles

Note also that a certain arrangement of the port numbers may lead to a cycle that
visits all nodes in the graph (symmetric digraph), see Figure 3. We call such a cycle a
witness cycle, see [32]. The presence of a witness cycle is very convenientin the context
of graph exploration, since it can be used by a very simple mobile entity to periodically
visit all nodes in the graph.
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We consider two types of graph traversal based on the basic walk method. In the
oblivious modelan agent has no operational memory. It is equipped with a simplest
possible mechanism that allows it to follow a single cycle inthe collection of cycles
covering the input graph. In this model the main task is to provide port labeling to the
input graph such that a witness cycle is formed. Moreover oneis interested in forming
a shortest possible witness cycle. Note that in this model anagent traverses indefinitely
along the chosen cycle since its has no memory to make any decisions and no state to
stop. In theadaptive modelan agent is provided with small (constant number of bits)
memory that allows the agent to switch between different cycles in order to shorten
the route covering all nodes in the graph. Such an agent is often modeled as Mealy au-
tomaton, where the output (outgoing port number) depends onthe input (incoming port
number) and the state of the automaton. More formally the automaton has a transition
functionf and a finite number of states governing the actions of the agent. When the
agent enters a nodev of degreedv through porti, it switches to states′ and exits the
node through porti′, where(s′, i′) = f(s, i, dv), see [44] for more detail description.

Oblivious traversal. The oblivious traversal based on the basic walk method was first
proposed by Dobrevet al. in [32]. The authors claimed that there exists a port label-
ing, such that the oblivious agent requires at most10n steps to visit alln nodes of a
graph in a periodic manner. While the stated problem and several combinatorial ob-
servations, in particular merging and exchanging contentsof cycles, attracted attention
in the community, the bound of10n on their port labeling turned out to be incorrect.
Very recently Czyzowiczet al. in [27] proposed a polished version of the previous ar-
gument supported by a new combinatorial structure of athree-layer partitionof graphs.
This led to the first provably correct port labeling inducinga linear tour of length4 1

3
n.

Moreover, the labeling based on the three-layer partition can be performed in the opti-
malO(|E|)−time. The authors proposed also a non-trivial class of graphs in which one
can select a spanning tree such that each node is incident to some edge outside of the
spanning tree. For this class of graphs one can construct a labeling that forms a witness



cycle of length≤ 2n− 2. An example of formation of the witness cycle in this class of
graphs is presented in Figure 4.

a) b)

d) e)

c)

f)

32
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Fig. 4. Formation of a witness cycle: a) an input graph, b) a spanningtree with external edges
at each node is formed, c) excessive external edges are dropped, d) the spanning tree edges are
doubled, e) the parity of nodes is repaired starting from leaves in the tree, f) remaining double
(non-bridging) edges are dropped and a witness cycle is formed.

Unfortunately the problem of deciding whether the input graph has a spanning tree
with the required property isNP-hardsince this problem corresponds to selection of a
Hamiltonian path in 3-regular graphs, which is known to be hard. The authors in [27]
give also ann-node graph, shown in Figure 5, in which the witness cycle must contain
all arcs in

←→
G and therefore cannot be shorter than2.8n.
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Fig. 5. A feasible solution in which each edge must be used in two directions

It is worth mentioning that the explicit labeling of ports inG is not essential in the
oblivious graph traversal. In fact, it is enough to provide aperiodic ordering of ports at



each node inG. The agent when arrives at some nodev via some port must know only
its successor in the periodic order to continue the walk along the chosen cycle.

Adaptive traversal. In [48] David Ilcinkas noted that the tour used by an agent to visit
all nodes in the graph can be shortened to4n − 2 if the agent is provided with a 2-bit
operational memory. The extra memory translated to a largernumber of states allows
the agent to perform context sensitive decisions includingswitching between the cycles
available in the basic walk method. More precisely, Ilcinkas noticed that using a certain
type of port labeling cycles and the extra memory bits, one can force the agent to follow
an Euler tour defined on a chosen spanning treeT in G. The spanning tree contains a
uniqueroot edgeer = (vr, wr) that bears port number1 at its both ends. Apart fromvr

andwr every nodeu in G has a parent which is reachable fromu via port1. In fact one
can also interpret thatvr is a parent ofwr and vice versa. All children of any nodev in
G (including root nodes) are reachable fromv via ports2 throughcv + 1, wherecv is
the number of children ofv in the spanning treeT . When the agent traverses along the
Euler tour down in the tree it follows consecutive arcs of some cycle provided by the
basic walk method. This process is terminated when for two consecutive nodes on the
cyclev1 andv2, the nodev2 is entered via port different from1, meaning thatv2 is not
a child ofv1 in T. In this case the agent returns first tov1 and then to the parentv of
v1, concluding that there are no more children ofv1 to be visited inT . The traversal is
then continued along some other cycle starting at the next child (if any) of v. The edge
(v1, v2) is called apenalty edgesince it does not belong toT and it contributes an extra
two agent moves in the tour that visits all nodes in the graph.The total length of the tour
can be bounded by2n− 2 moves along edges in the spanning tree (each edge has to be
visited in two directions) and2n moves along the penalty edges (each node including
root nodes may have incident edges not forming a part of the spanning treeT ). Thus
the total length of the tour is bounded by4n − 2. Ilcinkas claimed also that4n − 2 is
the exact bound for all agents equipped with a small (constant size) memory.

This claim was later disproved by Gąsieniecet al.in [44] where they showed that the
length of the tour could be shortened to3.75n− 2. The improvement was possible due
to the observation that visits to penalty edges could be avoided at the fraction1

8
of the

nodes. They proved that one can construct port labeling in which either a large fraction
of nodes issaturated(all incident edges to these nodes are present in the spanning tree)
or there are large clusters of sibling leaves and extended leaves (paths of length 2)
located at the bottom of the spanning tree. Within each cluster the penalty edges are
visited only at the first sibling, while visiting all other siblings in the same cluster is
penalty free. This result was recently further improved in [27] to3.5n− 2 with help of
the three-layer partitionandsham edgesthat pretend to be penalty edges while serving
as proper edges in the spanning tree.

Note here that while the explicit labeling of ports inG is not essential in the adaptive
graph traversal at least one port at each node has to be distinguished in order to form
the hierarchical structure of the spanning treeT. More precisely the marked ports play
the same role as ports 1 in the explicit labeling setting.



6 Conclusion

The standard random walks are memoryless in the sense that the selection of the next
node does not depend on the past. This assumption is important from the point of view
of the probabilistic methods used in the theoretical analysis. Simulations show that the
performance of random walks may be improved for some types ofgraphs, if the agents
are allowed to remember, and use, some very limited information about the past. It
would be very interesting to develop some theoretical analysis of such processes.

Further work on the random walk approach should include further efforts on deran-
domisation with limited random access memory, ideally considering also the secondary
objective of minimizing the time complexity. An interesting aspects of random walks
can be considered in the context of efficiency of pseudo-random number generators. A
pseudo-random number generator can be seen as a deterministic steering mechanism of
an agent and the efficiency of such a generator may be expressed as the efficiency of
exploration in arbitrary graphs.

Research on the rotor-router mechanism started only very recently and further re-
sults on comparing this approach with random walks should becoming in near future.
One possible interesting question is whether the results for infinite graphs can be used
to obtain implications for their finite counterparts. Also better understanding of Eu-
ler tours formed by the rotor-router mechanism by single andmultiple robots would
be highly appreciated. Another direction for studies of this model is graph exploration
by agents granted dynamic port labeling mechanism. This would refer to creation of
various geometrical shapes and surfaces.

Finally, in the context of the basic walk approach, further understanding of witness
cycles as well as tours used by agents equipped with a small memory is required. There
is also very little known so far about the case when the ports at each node form a random
permutation.
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