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Abstract. Efficient exploration of unknown or unmapped environmeras be-
come one of the fundamental problem domains in algorithnigdests applica-
tions range from robot navigation in hazardous environsiemtigorous search-
ing, indexing and analysing digital data available on ttterimet. A large number
of exploration algorithms has been proposed under varisgisaptions about the
capability of mobile (exploring) entities and various cheteristics of the envi-
ronment which are to be explored. This paper considergthph modelwhere
the environment is represented by a graph of connectiongiictwdiscrete moves
are permitted only along its edges. Designing efficient@gtion algorithms in
this model has been extensively studied under a diversd assomptions, e.g.,
directed vs undirected graphs, anonymous nodes vs nodedigtinct identities,
deterministic vs probabilistic solutions, single vs mulki agent exploration, as
well as in the context of different complexity measuresudahg the time com-
plexity, the memory consumption, and the use of other coatjmutal resources
such as tokens and messages. In this work the emphasis isrmargefficient
exploration of anonymous graphs. We discuss in more détagbtapproaches:
random walk Propp machinend basic walk reviewing major relevant results,
presenting recent developments, and commenting on direcfor further re-
search.

1 Introduction

A graphis a crucial combinatorial notion used for modeling compgstems in var-
ious application domains including communication, trawggion and computer net-
works, manufacturing, scheduling, molecular biology aedrpto-peer networks. Mod-
els based on graphs often involve mobile entities which caventhroughout the graph
from node to node along the edges. We call such entéigents An agent can be a
robot servicing a hazardous environment, or a softwaregz®navigating the Internet
in search for some informatioaraph exploratiomefers to problems of designing algo-
rithms (protocols) for an agent, or a group of agents, toetrsay a graph in a systematic
and efficient way.

In recent years the research on efficient graph explorattimeged a new momen-
tum, generated to large extent by the theory and the apiglicatoming ever closer
together. The demand for efficient practical solutions hasgased as systems of soft-
ware agents moving through a large network of computersibaseme reality. Another
example is the relevance of efficient graph explorationrtigms for efficiency of the



Internet search engines. The current applications inglittedt the relative importance
of various aspects of graph exploration has been changipthese changes become
reflected in the theoretical research.

In the broad context of algorithmic agent design we distisigitwo main models:
thegeometric modekhere the search environmentis represented by two- or highe
mensional space (see, e.g., [11, 28, 59]) andytlaph modelconsidered in this paper,
where the environment is represented by a finite or infinig@rsupported by discrete
moves permitted only along its edges. The design of effi@gptoration algorithms in
the graph model has been extensively studied under mareretiff assumptions, e.g.,
directedvs undirected graphsanonymousiodes vs nodes withistinct identities or
deterministicvs probabilisticsolutions, as well as with different performance objec-
tives in mind including optimal time complexity, memory gumption, or use of other
resources, see [1,6,9,29-31, 34,41, 56]. Different studiay also consider different
aims of exploration. The aim of exploration can be to visitteaode in the network, or
each edge, and terminate. Alternatively, one may drop timeit@tion requirement and
ask only forperpetualexploration and a guarantee that each node is visited iglfynit
many times, or perhaps a stronger guarantee that the nagesiag visited with similar
frequencies.

If nodes have distinct identities (given églog n)-bit words), the graph stays un-
changed (a static graph), and the size of the memory avaitatihe agent (counted in
words) is linear in the number of nodes of the graph, then #padfirst search (DFS)
procedure gives linear time exploration. However, in mapgligations one or more
of these assumptions might not hold. The nodes may not hageeidentities; for
example, if the nodes represent very simple devieemymousyraphs). The graph
may keep changing; for example, if it models a growing peegpaer networkdynamic
graphs). Finally, the agents may have very limited memohjictv may be sufficient
for storing only few node identities. For example, softwagents moving through a
computer network from host to host might not be allowed t@ycayo much data with
them. This survey is mainly concerned with exploration afraymous graphs by agents
equipped with bounded memory.

In graph exploration algorithms, the memory utilisatiofers actually not only to
the memory of the agents (“carried” by them when they movefrmde to node), but
also to any extra memory required in the graph environmere.|dtter may store some
(pre-computed) additional information about the graphuiolg the exploration, or may
allow the agent to leave marks at nodes or to move tokensragérses. The demand for
simple and cost effective agents as well as the desire tgrlesiploration algorithms
that are suitable for rigorous mathematical analysis intp& importance of limiting
the local memory of agents and their ability to manipulat ékplored environment.
One of the most challenging problems in the theory of contpmrids to look at the
far ends,border caseof the considered models. In case of algorithmic agenigdesi
such a border case may refer to the size of the agent’'s membeye one can limit
the memory of an agent to a constant number of bits. This casery often modeled
as graph exploration by a finite state automaton and it has brensively studied
already in the 1970’s [15, 54,58, 61]. Probably the strohgesult in this setting is
due to Cook and Rackoff [19]. They proved that a fixed grouprofdiautomata, that



can permanently cooperate and that can use "teleportaban®ve from their current
location to the location of any other automaton, cannot @ephll graphs. See [42]
for some recent results about limits of graph exploratiothinite automata. These
results imply that we either have to allow the agents to uggtanemory, or to divert
to randomization, or to provide the agents with extra stmatinformation that restricts
the set of graphs they have to traverse.

It has been known for some time that if we do not place strattigions on the local
memory, then a single pebble is sufficient to explore an amaug undirected graph.
This result was extended to directed graphs by Beedet.[8]. Note however that a
good upper bound on the number of nodes must be known to an@gmonential-time
solution. Moreover, even if such a bound is known, the timaglexity, while polyno-
mial, remains impractically high. Another possibility ssdrop determinism and to look
for randomized solutions. It is known, e.g., that a randortkwé length O(n? log n)
visits all nodes of an arbitrany-node graph with high probability [3]. Attempts to re-
gain determinism included research on derandomizatioarafom walks and the main
approach wasiniversal traversal sequendgs that provide guidance in deterministic
traversal of all graphs in a given class. Several importastlts have been achieved
[4,7,46,60] including Reingold’s [60] recent asymptoligaptimal O(logn)-space
deterministic algorithm for the undirectesd-connectivityproblem based on a novel
O(log n)—bit navigation mechanism. However, note that the explorgtime given by
this algorithm is a polynomial of a rather high degree.

Research closely related to the setting adopted in thisrpgseimes some struc-
tural information about the explored environment. Suchitaathl information allows
improvements in the time or memory complexity of graph trasé The first results,
concerning exploration of a labyrinth using a compass, aetd Blum and Kozen
[12]. Later, Flocchiniet al.[39] introduced a more general notion &énse of direction
and proved that traversal can be performed ugiig) messages/agent moves in this
model [38]. Fraigniau@t al.[40] have shown that interval routing scheme can be used
to achieve the same goal. In fact, given a spanning treertiphgan be traversed using
O(n) moves. Pelc and Panaite [56] studied the impact of havingmahthe graph on
the efficiency of graph exploration. Finally Cohenhal. studied efficient navigation in
graphs with nodes marked with a constant number of coloes|15].

In this paper we focus on three graph traversal methods. &kexgth the probabilis-
tic random walkmethod and then discuss its recently proposed deterngimmistinter-
part known as théropp machingwhich requires some (small) memory at the nodes of
the graph. We conclude this survey with presentation of emradtive traversal method
based on théasic walk in which a small amount of memory is provided to an agent
and a certain type of graph preprocessing is permitted.eltieee methods have sev-
eral interesting combinatorial properties and one mightthat they have already set
certain standards in agent based anonymous graph explarati

2 The graph model

In this survey we consider environments represented byrectéid (Symmetric) graphs.
We denote by+ = (V, E) the graph which is to be explored, and assume that it is con-



nected, unless stated otherwise. It will sometimes be cuewnéto viewG as a digraph

‘G obtained by replacing each undirected edge with two arastipgiin opposite di-
rections. We consider graphs (environments) that are anouy, i.e., the nodes in the
graphs are neither labeled nor marked in any other way. Hexvéve ends of edges
incident to each node are ordered and often labeled by consecutive integers, d,
calledport numberswhered, is the degree of.

If an agent is in the current step at a nagehen the standard assumptions are that
it knowsd,, the label of the port through which it has enterednd any information
about the graph that it might have gathered in previous steddas been able to (has
been allowed to) store in its internal limited memory. Therdglecides on the basis
of this knowledge which port it should take to move in the netefp to a neighbour
of v. Agents do not have prior knowledge about the topology ofhitevork. The exact
details about the resources and abilities of the agents lhasvabout the objectives of
exploration may vary from problem to problem. The numberades and the number
of edges in= are denoted by andm, respectively, but note that these parameters might
not be known to the exploring agents.

3 The random walk

A random walkon an (undirected, connected) gra@lstarting at a nodey is an (infi-
nite) random sequencey, v1, ve, . . .) Of nodes inG such that for each > 1, nodev;
is selected randomly and uniformly from all neighbours ofl@o; ;. Using the graph
exploration terminology, we say that an agent moves in stiegpm nodev;_; to its
random neighboup;. To implement such random exploration of an arbitrargpode
graph, the agent has to be able to select a random neighbthe ofirrent node, so it
need<O(log n)-bit memory and access tog n random bits per step.

The (node) cover time of grap@i from a nodev is the expected number of steps
C,(G) the random walk starting from nodetakes to visit all nodes of the graph.
The cover timeC(G) of graphG is defined as the maximud, (C) over all nodes
v € V. Thus the cover time is the worst-case (over all startingesp@xpected time
of exploring the whole graph. For graphs of some specialdyfiee cover time can
be easily estimated, or even calculated exactly. For exantps easy to show that the
cover time of the grapl,, which is ann-node simple path is equal @(P,,) = (n—1)2,
by solving a simple recurrence relation for the number etggeaumber of step&l;
required to reach the end of the path starting from-ttsnode. Calculation of the cover
time of then-node cliquek’,, is thecoupon collectoproblem: at step select randomly
and uniformly one of thex coupons/nodes and wait until all coupons have been seen,
with a slight modification that the next coupon/node has tdifierent from the one just
selected. If we have already seen exattistinct nodes, then the probability that in the
next step we will see a new node is equalio-i)/(n — 1), so the expected number of
steps before a new node is encountered is equal toe 1) /(n — ¢) and the cover time
C(K,)isequal oy ' (n —1)/(n —i) = (n — 1) Y77 1/i = n(lnn + O(1)).

Random walks became an important tool in algorithm desighcamplexity the-
ory when Aleliunaset al.[3] showed in 1979 that the cover time efery graph is
polynomial, or more specifically, at maat:(rn — 1). Since then general techniques for



bounding the cover times have been developed and boundssfopver times for vari-
ous families of graphs have been derived. An agent usingagoramalk on am-node
graph with the cover time bounded BYn) = poly(n) should have a®(log n)-bit
counter to counf’(n) steps to terminate with the knowledge that the whole gragh ha
been explored with constant probability, or to cofliit)p log n steps to terminate with
the knowledge the whole graph has been explored with thegmgiability of at least
1 —1/nP. Thus a good bound@(n) on the cover time is required not to expand unnec-
essarily the exploration time, and we review below the maiovwn bounds. Observe
that an agent implementing a random walk needs memory foiptwposes. It needs
O(log A) bits to implement individual moves from the current node taradom neigh-
bour, whereA < n is a bound on the degree of a node, @hdog n) bits to count the
moves. If we do not require that the agent terminates, tharndtal of O(log A) bits
suffices. In particular, constant-size memory is sufficfenthe randomizegerpetual
exploration of any constant degree graph.

Feige [36, 35] showed the following tight bounds on the ramigbe cover times of
n-node graphs:

(1—o(L))nlnn < C(G) < (14 0(1))21‘7713.
Thus K, is an example of a graph with the cover time achieving the tdwaind,
while it can be shown that the-nodelollipop graph given in Figure 1 has the cover
time achieving the upper bound. A quadrafi¢n?) upper bound on the cover time
of regular graphs was first shown by Kahn, Linial, Nisan ankisSa 1989, and the
best know bound o2n? is due to Feige [37]. This worst-case upper bound for regular
graphs should be contrasted with Rubinfeld’s [62}: log ) bound on the cover time
of regularexpandegraphs, and with Cooper and Frieze'’s [2dO] recent result gigpw
—1

that the cover time of @aandomd-regular graph i1 + o(1))9= nInn with high

probability. The cover time of the 2-dimensiongh x \/n grid is ©(n log® n), with
the upper bound due to Chandital.[17] and the lower bound due to Zuckerman [65].
Aldous [2] showed that the cover time of thenodek-dimensional grid i®9(n log n),

for k > 3.

Aleliunas’ et al.[3] polynomial upper bound on the cover time of an arbitrangn
was an important result for the computational complexigotly as it showed that the
undirecteds-t connectivity problem can be solved by a randomised log-epdgo-
rithm. This started a vast body of research with the goal tbesthe conjecture that
this problem can be solved bydeterministidog-space algorithm, and, ultimately, the
more general conjecture thaty problem solvable by a randomised log-space algo-
rithm can be solved by a deterministic log-space algorithmatural approach to settle
the first conjecture was to de-randomise random walks. Bfthimework the objec-
tive was to produce an explicit universal traversal seqeghTS), i.e., a sequence
p1,...,pr Of port labels, such that the path guided by this sequendts &l edges
of any graph of a given size. It is known that, with high proligh a sequence of
lengthO(n3d? log n), chosen uniformly at random, guides a walk in @megular (con-
nected):-node graph [3]. Unfortunately, explicit short UTS are kmosnly for special
families of graphs, including 2-regular graphs [7, 13, 15,38], 3-regular graphs [49],
cliques [51], and expanders [46]. Some of these sequencdseceonstructed in log-



space, providing exploration witt(log n)-bit memory. Koucly [52] introduced the
notion of a universaéxplorationsequence (UXS), i.e., a sequenge. . ., gx such that
the agent leaves the current nadeia portp + ¢; at theith step, where is the label of
the port through which the agent entered nod€his notion allows to construct simpler
and shorter sequences, for exampleis a UXS forn-node cycles, an¢l0)™ is a UXS
for n-node cliques. Reingold [60] has recently showed that a UxSQyéneral graphs
is log-space constructible, providing a deterministic$pgce algorithm for undirected
s-t connectivity and settling the first of the above two conjeesuNote that both UTS
and UXS require priori knowledge of the size of the network. If an agent uses an UTS
or UXS for exploration, with stopping, of graphs (of somedypf size at most, then

it does not know at the termination whether the graph has at moodes, or whether
it is larger and possibly not fully explored.

By

Fig. 1. Then-node lollipop graph(n/3)-node path connected tenode clique.

A random walk on a graph is an example ofimite-state Markov chairmand has
often been studied within this general context, with itstcadrissue of thestationary
distributionand the rate of convergence to this distribution. If a randatk starts at a
nodes (v = s), then thei-th nodev; on the walk is the random variable with distribu-
tion 7¢, wherer(v) = Prob(v; = v). The stationary distribution is the probability
distribution on the set of nodes definedbi) = lim; .., 7 (v), if these limits exist
and are independent of the starting nedd@he stationary distribution exists for every
connected non-bipartite graph, and is equatto) = deg(v)/(2m). (For a bipartite
graph, since there is no odd-length cycle, a random walk ¢Ehasgiven nodev ei-
ther only in even steps, or only in odd steps,liso; ... 7i(v) is not defined. Not to
exclude bipartite graphs, the inconvenience of not havingdd length cycle is usu-
ally dealt with by allowing the walk to stay at the current eaalith, say, probability
1/2, or, equivalently, by adding self-loops to the graph.) Téie of convergence to the
stationary distribution is usually measured by thixing time defined as the first step
t when the distributiont! of the random variable; is guaranteed to be close to the
stationary distributionr. More precisely, the mixing time is the minimutrsuch that
max; ,ev{|mt(v) — m(v)|} < 1/n3, though other definitions of the distance between
two distributions, and degrees of closeness other thari have also been used. The
random walk israpidly mixing if the mixing time is short, sag)(n°¢) for a small con-
stante. Among the constant degree graphs, expanders have thedssglpO(log n)
mixing time.



The advantage of a random walk as a strategy for exploringyahgis its simplic-
ity and low memory requirements. Its main drawback is theetrequired to complete
the exploration, which is given by the cover time and can bbigls asf2(n?). Thus
a natural question is to reduce the cover time, if possiliegkample by consider-
ing nonuniform transition probabilities, or by allowingettwalking agent to gather,
and use, some limited information about the graph. lketlal. [47] considered the
nonuniform probabilitieg(v, «) of moving from a node to its neighbour: such that
p(v,u')/p(v,u") = (deg(u')/ deg(u'))'/?, for any two neighbours’ andw” of node
v. They showed that these transition probabilities lead t@aw logn) bound on the
cover time of any graph. This quite remarkable reductiomftbeO(n?) bound of the
uniform random walk, comes unfortunately with a cost. Tolenpent this non-standard
random walk, each node of the graph has to store informabontahe degrees of its
neighbours, or the agent has to visit first all neighbourstber this information. Ikeda
et al.[47] showed also that th@(n? log n) bound is close to the best what we can hope
for, since for any transition probabilities defined onranode path, the cover time is
2(n?).

If we are looking for graph exploration with > 2 agents, then we would like to
know good bounds on the cover time byandom walks: the expected number of steps
until each node has been visited by at least one random weskif@ng all agents move
simultaneously in synchronised steps). Observe that it beayand indeed is, crucial
what are the relative positions of the starting nodes of thiksv Brodetet al.[14] con-
sideredk independent random walks starting from the stationaryitligion (the start-
ing node of walki is a nodev with probabilityr(v)) and showed a®((m? log® n)/k?)
bound on the cover time. Thus, for example, for constantekegraphs, thepeed-up
(the ratio of the cover times of a single random walk @andandom walks) can be
(k2 /log® n). Recently Alonet al.[5] showed bounds on the speed-uptahdepen-
dent random walks starting from treamenode, including a9 (log k) speed-up for
n-node cycles, ifog k = O(n), and anf2(k) speed-up fon-node expanders, if < n.
Cooperet al. [22] considered: independent random walks on random regular graphs,
and analysed the cover time and the time required to ach@t&c interaction between
the agents.

Random walks have been also applied in the context of exggalynamic graphs
Cooper and Frieze [21] considered a random walk on a dynaraphggrowing accord-
ing to some random process, and analysed the expected poopairvisited vertices.
Law and Siu [55] and Coopeat al.[23] used graph exploration with random walks to
create new, random edges in a process of building and maimgaa well connected
network.

4 The Propp machine

We consider now a type of graph exploration where the agemts ho operational
memory and the whole steering mechanism is provided withénenvironment. Thus
the agents may actually be viewed as mere tokens which ang beived around the
graph. We discuss the deterministic mechanism ofrtiter-router modelwhich was

introduced by Priezzhev in [57], further popularised by darRropp, and now known



also as théPropp machindn this model each node of the graghis equipped with a

small marker indicating the exit port (the edge) to be takgaragent on the conclu-
sion of the next visit to this node. After the agent leavestbée, the marker is moved
immediately to the next port in the cyclic order. The rotowter model has been intro-
duced as a deterministic alternative to the random walk atethis advantages include
the balanced usage of exit ports at each node, replacingthgbdn collector” nature

of the usage of ports by the random walk method.

The research on this model splits naturally into two dietdiassociated witfinite
andinfinite graphs. The main question for finite graphs is about progeedf the peri-
odic tour that has to be eventually adopted by the agent.rffimite graphs the Propp
machine model was mainly investigated in the context of ity schemes for even
distribution of workload in networks.

Finite graphs. Note that if an agent follows the rotor-router mechanismhig Propp
machine defined on a finite graph, the agent must eventuallyitself in a tour of
limited size. This is a straightforward consequence of #ut that the number of con-
figurations based on positions of markers on exit ports andtion of the agent is
bounded byn(d,,q.)"™, whered,,,... is the maximum degree of a node. However, and
rather surprisingly, following the rotor-router mechamniteads to a periodic tour that
corresponds to akuler tourdefined onG [10]. Moreover this periodic phenomenon
starts occurring very early, namely within( | E'| - n) steps, independently of the original
configuration of the port numbers and markers as well as teetasgocation. Yanovski
et al.[64] improved this bound by showing that in fatf| - D steps suffice to form an
Euler tour, whereD is the diameter ofs. On the other hand a lower boutig |E| - D)
can be obtained on a lollipop graph (of a general structuie Bgure 1) in which exit
ports and markers in the cligue witi(|E|) edges are set to form an Euler tour, and
markers on the external path of lendihare placed on ports leading towards the clique.

Yanovskiet al.[64] studied also behaviour of a multi-agent system of esgoin
the Propp machine where the agents cooperate via sharedmnatkheri agents want
to exit from the same node in the same step, then they all ldkdseode in this step
through the next consecutive ports (according to an arbitrary assignmetisohgents
to thesd ports, and sending multiple agents through the same pbtts, greater than
the degree of the node). They proved that for a teah ajents, the numbers of edge
visits in the networks are balanced up to a factor of two withtimost(1 + +)|E|D
steps.

Infinite graphs. In the context of infinite graphs the rotor-router has beestipstud-

ied as a deterministic analogue of the random walk appraslshlaincing the workload

in a network, and the main question has been how similar thesprocesses are. The
agents are now tokens, which are initially distributed agithe nodes in some, possibly
uneven, way (for example, they all may be initially piled upane node). The random
walk approach balances the load of tokens among nodes bingethém along inde-
pendent random walks of the same lengthet E;(v) denote the expected number of
tokens which end up at a node The rotor-router process starting with the same ini-
tial distribution of tokens and executinddeterministic) steps reaches a configuration



with a;(v) tokens at node. The question of similarity of these two processes is the
question of analysing the node discrepan¢ig&) — E:(v)|. In particular, Cooper and
Spencer [24] studied this question fétdimensional grids and showed that all node
discrepancies are bounded by a constant, which dependsban does not depend on
the initial configuration, the total timeand the initial rotor settings. For example, they
showed a bounding constant fér= 1 which is~ 2.3. This work was followed by a
detail study of the-dimensional grid by Doerr and Friedrich [33]. They provddzvi-
dence that the exact (constant) value of the maximum nodeegliancy depends on the
choice of rotor sequences. The situation is different incee ofk-ary trees: for any
numberD, there exists an initial configuration of tokens, a numteend a node such
that aftert steps of the rotor-router process nadeas at leasD tokens more than it is
expected to get in the random walk process [25].

5 The basic walk

The basic walk method is based on an observation that oneman a graphG =

(V, E), or more precisely its symmetric digraph counterﬁ@rt by a collection of di-
rected cycles. The cycles are formed according to a simjie Atiany nodey with the
degreel,,, the incoming arc incident via a parbecomes the predecessor of the outgo-
ing arc incident via porfi mod d,) + 1. Note that since each arc in the digraph has
a unique predecessor as well as a unique successor a aullettarc-disjoint cycles
containing all arcs in the digraph is formed. Figure 2 showsxample.

Fig. 2. The formation of cycles

Note also that a certain arrangement of the port numbers e@al/tb a cycle that
visits all nodes in the graph (symmetric digraph), see EiguiWe call such a cycle a
witness cyclesee [32]. The presence of a witness cycle is very convemiéime context
of graph exploration, since it can be used by a very simpleil@ehtity to periodically
visit all nodes in the graph.
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Fig. 3. A witness cycle

We consider two types of graph traversal based on the badicmethod. In the
oblivious modelan agent has no operational memory. It is equipped with aleshp
possible mechanism that allows it to follow a single cycleéha collection of cycles
covering the input graph. In this model the main task is tosjoi® port labeling to the
input graph such that a witness cycle is formed. Moreoverigirgerested in forming
a shortest possible witness cycle. Note that in this modabgmt traverses indefinitely
along the chosen cycle since its has no memory to make angiolesiand no state to
stop. In theadaptive modeén agent is provided with small (constant number of bits)
memory that allows the agent to switch between differentasyin order to shorten
the route covering all nodes in the graph. Such an agentes aftbdeled as Mealy au-
tomaton, where the output (outgoing port number) dependsemput (incoming port
number) and the state of the automaton. More formally theraaton has a transition
function f and a finite number of states governing the actions of thetagémen the
agent enters a nodeof degreed,, through porti, it switches to state’ and exits the
node through port’, where(s’,i") = f(s,,d,), see [44] for more detail description.

Oblivious traversal. The oblivious traversal based on the basic walk method wsts fir
proposed by Dobreet al.in [32]. The authors claimed that there exists a port label-
ing, such that the oblivious agent requires at midst steps to visit alln nodes of a
graph in a periodic manner. While the stated problem andrakeembinatorial ob-
servations, in particular merging and exchanging conteintgcles, attracted attention
in the community, the bound dfon on their port labeling turned out to be incorrect.
Very recently Czyzowicat al.in [27] proposed a polished version of the previous ar-
gument supported by a new combinatorial structure thfrae-layer partitioof graphs.
This led to the first provably correct port labeling inducatinear tour of Iength%n.
Moreover, the labeling based on the three-layer partitamtre performed in the opti-
mal O(| E|)—time. The authors proposed also a non-trivial class of graptvhich one
can select a spanning tree such that each node is incideotte edge outside of the
spanning tree. For this class of graphs one can construbeling that forms a witness



cycle of length< 2n — 2. An example of formation of the witness cycle in this class of
graphs is presented in Figure 4.
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Fig. 4. Formation of a witness cycle: a) an input graph, b) a spantreg with external edges
at each node is formed, c) excessive external edges areattogpthe spanning tree edges are

doubled, e) the parity of nodes is repaired starting froedean the tree, f) remaining double
(non-bridging) edges are dropped and a witness cycle isddrm

Unfortunately the problem of deciding whether the inpufadraas a spanning tree
with the required property isIP-hardsince this problem corresponds to selection of a
Hamiltonian path in 3-regular graphs, which is known to bedh@he authors in [27]
give also am-node graph, shown in Figure 5, in which the witness cycletroostain

all arcs in? and therefore cannot be shorter ti2agn.

Fig. 5. A feasible solution in which each edge must be used in twatoes

It is worth mentioning that the explicit labeling of portséhis not essential in the
oblivious graph traversal. In fact, it is enough to provideeaiodic ordering of ports at



each node irz. The agent when arrives at some nedéa some port must know only
its successor in the periodic order to continue the walkgtbie chosen cycle.

Adaptive traversal. In [48] David licinkas noted that the tour used by an agenisd v
all nodes in the graph can be shortenedsto- 2 if the agent is provided with a 2-bit
operational memory. The extra memory translated to a largarber of states allows
the agent to perform context sensitive decisions includimigching between the cycles
available in the basic walk method. More precisely, licimkaticed that using a certain
type of port labeling cycles and the extra memory bits, omefgece the agent to follow
an Euler tour defined on a chosen spanning #ée G. The spanning tree contains a
uniqueroot edge:,. = (v,, w,-) that bears port numbérat its both ends. Apart from,.
andw, every node; in G has a parent which is reachable framia port1. In fact one
can also interpret that. is a parent ofv,- and vice versa. All children of any noden

G (including root nodes) are reachable framria ports2 throughe, + 1, wherec, is
the number of children of in the spanning tre@&. When the agent traverses along the
Euler tour down in the tree it follows consecutive arcs of saycle provided by the
basic walk method. This process is terminated when for twseoutive nodes on the
cyclev; andwvq, the nodeys is entered via port different frorh, meaning that, is not

a child ofv; in T'. In this case the agent returns firstitpand then to the parentof

v1, concluding that there are no more childrervptto be visited inT". The traversal is
then continued along some other cycle starting at the neédt ¢hany) of v. The edge
(v1,v9) is called gpenalty edgsince it does not belong 6 and it contributes an extra
two agent moves in the tour that visits all nodes in the grajpb.total length of the tour
can be bounded 8n — 2 moves along edges in the spanning tree (each edge has to be
visited in two directions) an@dn moves along the penalty edges (each node including
root nodes may have incident edges not forming a part of tharspg tre€l’). Thus
the total length of the tour is bounded by — 2. licinkas claimed also thatn — 2 is
the exact bound for all agents equipped with a small (cohstae) memory.

This claim was later disproved by Gasien&@l.in [44] where they showed that the
length of the tour could be shortenedX@5n — 2. The improvement was possible due
to the observation that visits to penalty edges could bedaebat the fractior% of the
nodes. They proved that one can construct port labeling intwdither a large fraction
of nodes issaturatedall incident edges to these nodes are present in the sgatrai)
or there are large clusters of sibling leaves and extendmdee(paths of length 2)
located at the bottom of the spanning tree. Within each eiuse penalty edges are
visited only at the first sibling, while visiting all otherldings in the same cluster is
penalty free. This result was recently further improveddw][to 3.5n — 2 with help of
the three-layer partitiomndsham edgethat pretend to be penalty edges while serving
as proper edges in the spanning tree.

Note here that while the explicit labeling of portsihis not essential in the adaptive
graph traversal at least one port at each node has to begiitstived in order to form
the hierarchical structure of the spanning tféeMore precisely the marked ports play
the same role as ports 1 in the explicit labeling setting.



6 Conclusion

The standard random walks are memoryless in the sense éhaglction of the next
node does not depend on the past. This assumption is impédanthe point of view
of the probabilistic methods used in the theoretical ansly&mulations show that the
performance of random walks may be improved for some typgsagths, if the agents
are allowed to remember, and use, some very limited infdomabout the past. It
would be very interesting to develop some theoretical aiglyf such processes.

Further work on the random walk approach should includén&rréfforts on deran-
domisation with limited random access memory, ideally abering also the secondary
objective of minimizing the time complexity. An intereggimspects of random walks
can be considered in the context of efficiency of pseudoaanaumber generators. A
pseudo-random number generator can be seen as a detadosteisting mechanism of
an agent and the efficiency of such a generator may be exgrasdbe efficiency of
exploration in arbitrary graphs.

Research on the rotor-router mechanism started only vesnily and further re-
sults on comparing this approach with random walks shoulddneing in near future.
One possible interesting question is whether the resultsfimite graphs can be used
to obtain implications for their finite counterparts. Alsetter understanding of Eu-
ler tours formed by the rotor-router mechanism by single exudtiple robots would
be highly appreciated. Another direction for studies o$ tmodel is graph exploration
by agents granted dynamic port labeling mechanism. Thiddvaier to creation of
various geometrical shapes and surfaces.

Finally, in the context of the basic walk approach, furthederstanding of witness
cycles as well as tours used by agents equipped with a smalbnyds required. There
is also very little known so far about the case when the pogaeh node form a random
permutation.
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