Skip to main content

A Most General Edge Elimination Polynomial

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5344))

Included in the following conference series:

Abstract

We look for graph polynomials which satisfy recurrence relations on three kinds of edge elimination: edge deletion, edge contraction and edge extraction, i.e., deletion of edges together with their end points. Like in the case of deletion and contraction only (J.G. Oxley and D.J.A. Welsh 1979), it turns out that there is a most general polynomial satisfying such recurrence relations, which we call ξ(G,x,y,z). We show that the new polynomial simultaneously generalizes the Tutte polynomial, the matching polynomial, and the recent generalization of the chromatic polynomial proposed by K.Dohmen, A.Pönitz and P.Tittman (2003), including also the independent set polynomial of I. Gutman and F. Harary, (1983) and the vertex-cover polynomial of F.M. Dong, M.D. Hendy, K.T. Teo and C.H.C. Little (2002). We give three definitions of the new polynomial: first, the most general recursive definition, second, an explicit one, using a set expansion formula, and finally, a partition function, using counting of weighted graph homomorphisms. We prove the equivalence of the three definitions. Finally, we discuss the complexity of computing ξ(G,x,y,z).

Partially supported by the Israel Science Foundation for the project “Model Theoretic Interpretations of Counting Functions” (2007–2010) and by a grant of the Fund for Promotion of Research of the Technion–Israel Institute of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Averbouch, I., Godlin, B., Makowsky, J.A.: The most general edge elimination polynomial. arXiv (2007), http://uk.arxiv.org/pdf/0712.3112.pdf

  2. Averbouch, I., Godlin, B., Makowsky, J.A.: An extension of the bivariate chromatic polynomial (submitted, 2008)

    Google Scholar 

  3. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  4. Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  5. Bollobás, B., Riordan, O.: A Tutte polynomial for coloured graphs. Combinatorics, Probability and Computing 8, 45–94 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Courcelle, B., Olariu, S.: Upper bounds to the clique–width of graphs. Discrete Applied Mathematics 101, 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.F.: Parametrized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  8. Dong, F.M., Hendy, M.D., Teo, K.L., Little, C.H.C.: The vertex-cover polynomial of a graph. Discrete Mathematics 250, 71–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, F.M., Koh, K.M., Teo, K.L.: Chromatic Polynomials and Chromaticity of Graphs. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  10. Dohmen, K., Pönitz, A., Tittmann, P.: A new two-variable generalization of the chromatic polynomial. Discrete Mathematics and Theoretical Computer Science 6, 69–90 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized complexity theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  12. Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S.: Clique-width: On the price of generality. Department of Informatics, University of Bergen, Norway (preprint, 2008)

    Google Scholar 

  13. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphisms of graphs. Journal of AMS 20, 37–51 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree width and clique-width. Discrete Applied Mathematics 156, 511–529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutman, I., Harary, F.: Generalizations of the matching polynomial. Utilitas Mathematicae 24, 97–106 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Giménez, O., Hlinĕný, P., Noy, M.: Computing the Tutte polynomial on graphs of bounded clique-width. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 59–68. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  18. Heilmann, C.J., Lieb, E.H.: Theory of monomer-dymer systems. Comm. Math. Phys 28, 190–232 (1972)

    Article  MATH  Google Scholar 

  19. Hoffmann, C.: A most general edge elimination polynomial–thickening of edges (2008) arXiv:0801.1600v1 [math.CO]

    Google Scholar 

  20. Lovasz, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  21. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126(1-3), 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Makowsky, J.A.: Colored Tutte polynomials and Kauffman brackets on graphs of bounded tree width. Disc. Appl. Math. 145(2), 276–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Makowsky, J.A., Rotics, U., Averbouch, I., Godlin, B.: Computing graph polynomials on graphs of bounded clique-width. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 191–204. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Oxley, J.G., Welsh, D.J.A.: The Tutte polynomial and percolation. In: Bundy, J.A., Murty, U.S.R. (eds.) Graph Theory and Related Topics, pp. 329–339. Academic Press, London (1979)

    Google Scholar 

  25. Sokal, A.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Survey in Combinatorics, 2005. London Mathematical Society Lecture Notes, vol. 327, pp. 173–226 (2005)

    Google Scholar 

  26. Traldi, L.: On the colored Tutte polynomial of a graph of bounded tree-width. Discrete Applied Mathematics 154(6), 1032–1036 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yetter, D.N.: On graph invariants given by linear recurrence relations. Journal of Combinatorial Theory, Series B 48(1), 6–18 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Averbouch, I., Godlin, B., Makowsky, J.A. (2008). A Most General Edge Elimination Polynomial. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2008. Lecture Notes in Computer Science, vol 5344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92248-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92248-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92247-6

  • Online ISBN: 978-3-540-92248-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics