Skip to main content

Byzantine-Resilient Convergence in Oblivious Robot Networks

  • Conference paper
Distributed Computing and Networking (ICDCN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5408))

Included in the following conference series:

Abstract

Given a set of robots with arbitrary initial location and no agreement on a global coordinate system, convergence requires that all robots asymptotically approach the exact same, but unknown beforehand, location. Robots are oblivious— they do not recall the past computations — and are allowed to move in a one-dimensional space. Additionally, robots cannot communicate directly, instead they obtain system related information only via visual sensors. We prove ([4]) necessary and sufficient conditions for the convergence of mobile robots despite a subset of them being Byzantine (i.e. they can exhibit arbitrary behavior). Additionally, we propose a deterministic convergence algorithm for robot networks and analyze its correctness and complexity in various synchrony settings. The proposed algorithm tolerates f Byzantine robots for (2f + 1)-sized robot networks in fully synchronous networks, (3f + 1)-sized in semi-synchronous networks and (4f + 1)-sized in asynchronous networks. The bounds obtained for the ATOM model are optimal for the class of cautious algorithms, which guarantee that correct robots always move inside the range of positions of the correct robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Amit, Y., Dolev, D.: Optimal Resilience Asynchronous Approximate Agreement. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 229–239. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: Symposium on Discrete Algorithms: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, vol. 11(14), pp. 1070–1078 (2004)

    Google Scholar 

  3. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation 15(5), 818–828 (1999)

    Article  Google Scholar 

  4. Bouzid, Z., Gradinariu Potop-Butucaru, M., Tixeuil, S.: Byzantine-resilient convergence in oblivious robot networks. Technical Report inria-00329890, INRIA (2008)

    Google Scholar 

  5. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Proc. of the 11th Int. Colloquium on Structural Information and Communication Complexity, pp. 79–88 (2004)

    Google Scholar 

  6. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM Journal on Computing 34(6), 1516–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 549–560. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agreement in the presence of faults. Journal of the ACM (JACM) 33(3), 499–516 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Information and Computation 185(1), 105–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  11. Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile robots. In: Proc. 4th European Research Seminar on Advances in Distributed Systems (ERSADS 2001), Bertinoro, Italy, pp. 185–190 (May 2001)

    Google Scholar 

  12. Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S. (2008). Byzantine-Resilient Convergence in Oblivious Robot Networks. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds) Distributed Computing and Networking. ICDCN 2009. Lecture Notes in Computer Science, vol 5408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92295-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92295-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92294-0

  • Online ISBN: 978-3-540-92295-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics