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Grid Applications
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Abstract. We introduce FTRepMI, a simple fault-tolerant protocol for
providing sequential consistency amongst replicated objects in a grid,
without using any centralized components. FTRepMI supports dynamic
joins and graceful leaves of processes holding a replica, as well as fail-
stop crashes. Performance evaluation shows that FTRepMI behaves effi-
ciently, both on a single cluster and on a distributed cluster environment.

1 Introduction

Object replication is a well-known technique to improve the performance of
parallel object-based applications [13]. Java’s remote method invocation (RMI)
enables methods of remote Java objects to be invoked from other Java virtual
machines, possibly on different hosts. Maassen introduced Replicated Method
Invocation (RepMI) [11], which was implemented in Manta [12]. He obtained a
significant performance improvement by combining object replication and RMI.
His mechanism, however, uses a centralized sequencer node for serializing write
operations on object replicas, which makes it vulnerable to crashes.

We present FTRepMI, an efficient and robust, decentralized protocol for
RepMI in which processes progress in successive rounds. To increase efficiency,
local writes at different processes are combined in one round. Inspired by virtual
synchrony [18], FTRepMI provides object replication [7], while offering flexible
membership rules governing the process group (called world) that is dedicated
to an object. A process interested in an object can obtain a replica by joining
its world; when it is no longer interested in the object, it can leave the world.
Each member of a world can perform read/write operations on the replica. In
case of a write, the replicated object needs to be updated on all processes in its
world. A failure detector is used to detect crashed processes, and an iterative
mechanism to achieve agreement when a crash occurs. In case of such a process
failure, the other processes continue after a phase in which processes query each
other whether they received a write operation from the crashed process.

FTRepMI provides sequential consistency for the replicated object, meaning
that all involved processes execute the same write operations, in the same order.
We slightly digress from Lamport’s definition [9] in that we provide the means to
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ensure sequential consistency (by executing all write operations on all processes
in the same order), but we do not enforce it ourselves for read operations on
the replicated object (the programmer still has to use Java’s synchronized meth-
ods for both read and write). We sketch a correctness proof, and moreover we
analyzed FTRepMI by means of model checking, on the Distributed ASCI Su-
percomputer, DAS-3 (www.cs.vu.nl/das3/).

The strength of FTRepMI, compared to other decentralized fault-tolerant
protocols for sequential consistency, is its simplicity. This makes it relatively
straightforward to implement. Simplicity of protocols, and decentralized control,
is of particular importance in the dynamic setting of grid applications, where one
has to take into account extra-functional requirements like performance, security,
and quality of service. A prototype of FTRepMI has been implemented on top of
the Ibis system [16], a Java-based platform for grid computing. Results obtained
from testing the prototype on DAS-3 show that FTRepMI behaves efficiently
both on a single cluster and on a distributed cluster environment.

Related work. Orca [1] introduced conceptually shared, replicated objects,
extended in [4] with a primary/backup strategy, and partial replication with se-
quential consistency. Isis [2], on which GARF [5] relies for communication man-
agement, proposes a framework for replicated objects with various consistency
requirements. Isis presents a per-request chosen-coordinator/cohorts design ap-
proach, providing for fault tolerance and automatic restart. Chain replication [17]
is a particular case of a primary/backup technique improved by load-balancing
query requests. It is latency-bound as a result of ”chaining” latencies between
servers, leading to performance problems in multi-cluster grids. As support for
fault tolerance it uses a central master. Eternal [15] addresses CORBA appli-
cations, providing fault tolerance through a centralized component. It delegates
communication and ordering of operations to TOTEM [14], a reliable, totally
ordered multicast system based on extended virtual synchrony as derived from
the virtual synchrony model of Isis. General quorum consensus, used in [8], is an-
other replication technique, allowing for network partitions and process failure.
RAMBO [10] takes the same approach to address atomic memory operations.
It supports multiple objects, each shared by a group of processes; groups may
overlap. It is considerably more sophisticated, but induces a cost on crash-free
operations of eight times the maximum point-to-point network delay.

2 FTRepMI

In our model, a parallel program consists of multiple processes, each holding
some threads. A process is uniquely identified by a rank r, which prescribes
a total order on processes. All processes can send messages to each other; we
assume non-blocking, reliable and stream-based communication. Processes can
crash, but their communication channels are reliable. There is no assumption on
how the delivery of messages from a broadcast is scheduled.

During crash-free runs, FTRepMI uses a simple communication pattern to
dissipate a write operation in the world. The protocol proceeds in successive
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rounds, in which the processes progress in lockstep, based on binary-valued log-
ical clocks. If a process receives a local write while idle (this includes reading
the replica), it broadcasts the write; we use function shipping [11]. Then it waits
for all processes to reply, either with a write operation or a nop, meaning that
the process does not have a write operation to perform during this round. If
a process receives a remote write while idle, it broadcasts a nop and waits for
messages from all other processes (except the one which triggered this nop).
Processes apply write operations in some (world -wide) pre-defined order (e.g.
ascending, descending), based on the ranks attached to these write operations.

FTRepMI can in principle support multiple replicated objects. To simplify
our presentation, however, we assume there is only one shared object. The world
consists of the processes holding a replica of the object, at a given moment in
time. The world projection at each process is a set of ranks. Processes can join
or leave the world, so at a given moment, this set of ranks may contain gaps.

2.1 The Protocol – Crash-Free Runs

As previously explained, a process interested in accessing a replicated object has
to first join the world of that object. If there is no world for that object, the
process will start one. (This could be done using an external directory, e.g. a
file on stable storage, but the exact details are outside the scope of this paper.)
When trying to access the replica, a thread invokes the FTRepMI protocol. If it
is a read request, the thread can simply read the local copy. In case of a write
access, the thread must grab the local lock to contact the Local Round Manager
(LRM) at this process. The LRM is at the heart of FTRepMI: it keeps track of
the local and remote writes the process received, is in charge of controlling which
local writes pertain to which round, and executes writes on the local replica.

Dealing with world changes. Processes are allowed to join or leave the world.
This is achieved by two special operations, called join and leave. In our imple-
mentation of FTRepMI, for a smooth integration of these operations into the
protocol, they are processed as if they were write operations.

Handling a join request. When a new process N , with rank n, wants to join
the world, it contacts an external directory (e.g. stable storage) for the contact
address of another process O which already hosts a replica. Upon receiving N ’s
request, O constructs a special local operation join(n), which contains infor-
mation about the joining process. This operation is handled by the protocol as
a local write operation. Its special semantics is noticed upon its execution: all
processes add n to their R set. The contact process O sends N the initializa-
tion information (the current state of the replicated object, the current sequence
number, its world projection), and N joins the world in the round in which
join(n) is performed. In case O no longer accepts join requests because it is
leaving, process N stops and retries to join via another contact process.

If a process gets many join requests within a short time, its local writes (or the
joins) may be delayed for multiple rounds. To avoid this, one can alternatively
piggyback joins onto other messages. A process would then have to maintain four
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queues of join requests: local requests which need to be acknowledged, remote
requests, and local and remote requests pertaining to the next round.

Handling a leave request. When a process O, with rank o, wants to leave
the world, it performs a special operation leave(o) that results in the removal of
rank o from R on all other processes. It is handled as a local write operation.

Dealing with write operations. Local and remote write operations on the
replica are handled differently. A local write needs to be communicated to the
other processes, while the arrival of a remote write may get a process into action,
if this write operation is for the current round and the process is idle (i.e. did
not receive remote writes or generate a local write for the current round yet).
In the latter case, the process generates as a local write for the current round a
special nop operation. An alternative would be to generate nops at regular time
intervals. However, finding suitable intervals is not easy, and this would lead to
unnecessary message flooding during periods in which the entire system is idle.

Handling a local write. A thread wanting to perform a write operation op on
the local replica, must first grab the local write lock. Then it asks the LRM at
this process to start a new round. If the process is idle, op is placed in the queue
WO at this process, which contains write operations waiting to be executed on
the local replica in the current round in the correct order; each write operation
is paired with the rank of the process where it originates from. Then the next
round is started, and the thread that performs op broadcasts op to all other
processes. If there is an ongoing round, op is postponed until the next round, by
placing it in the queue NWO, which stores write operations for the next round.

Handling a remote write. A round can also be started by the arrival of a
remote write operation, which means this process has so far been idle during
the corresponding round, while another process generated a write operation for
this round and broadcast it to all other processes. When this remote operation
arrives, the LRM is invoked. If the process is idle, it starts a new round and
broadcasts a nop to all other processes. During its current round, a process also
buffers operations pertaining to the next round (NWO).

Starting a new round. When the current round at a process has been com-
pleted, the time stamp is inverted, NWO is cast to WO, and NWO is emptied.
If the new WO contains a local write, then the process initiates the next round,
in which this write is broadcast to the other processes. If WO does not contain
a local write, but does contain one or more remote writes, then the process also
initiates the next round, in which it broadcasts nop to the other processes. If
WO is empty, then the process remains idle.

2.2 Fault Tolerance

For the fault-tolerant version of FTRepMI, we require known bounds on commu-
nication delay, so that one can implement a perfectly accurate failure detector.

Fault tolerant consistency is provided by ensuring that operations issued by
a failing process are executed either by all alive processes or by none. When
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a process n has gathered information from/about each process in the current
round, either by a remote write or by a crash report from the local failure
detector, it checks if recovery is needed. If for some crashed process there is no
operation in the WO of n, then n starts the recovery procedure by broadcasting a
SOS -message. To answer such messages, each process preserves the queue CWO,
i.e. WO of the previous round, in case the requester is lagging one round behind.
Recovery procedure at process n terminates when either it obtains all missing
ops or it has received replies from all asked processes. If more processes crashed
while n was in recovery procedure and n is still missing ops, then n continues the
recovery procedure; namely, a newly crashed process may have communicated
missing ops to some processes but not to n. After the recovery procedure ends,
all crashed processes for which n still does not hold a remote write in WO are
deleted from n’s world, while crashed processes whose missing operations were
recovered are taken to the next round. A process q in crash recovery broadcasts
a message S(q, snq), to ask the other processes for their list of write operations
in q’s current round snq. A process p that receives this message sends either WO
or CWO to q; if snp = snq, then p sends WO, and if snp = 1−snq, then p sends
CWO. Note that, since q’s crash recovery is performed at the end of q’s current
round, q cannot be a round further than p, due to the fact that p did not send
a write in that round yet. Therefore, in the latter case, snq must refer to the
round before p’s current round.

This recovery mechanism assumes that the time-out for detecting crashed
processes ensures that at the time of such a detection no messages of the crashed
process remain in the system. This is the case for our current implementation of
FTRepMI. If this assumption is not valid, a request from a crash recovery must
be answered by a process only when it has received either a write or a crash
detection for each process in the corresponding round. That is, a process can al-
ways dissipate CWO, while it can dissipate WO only after collecting information
on all processes in its world projection.

As a process n is joining the world, the contact process may crash before
sending the join accept to n, but after it sent join(n) to some other processes.
Now these processes consider n as part of the world, but n is unaware of this
and may try to find another contact process. To avoid such confusion, when n
retries to join the world, either it must use a different rank, or it must wait for a
sufficient time. Then, the alive processes detect that n is no longer in the world,
and in the ensuing recovery it is decided that n did not perform a write.

As a process n is joining the world, the contact process o may crash after
sending the join accept to n, but before it has sent a join(n) to the other active
processes. Then n could join the world while no process is aware of this. The
solution is that o gives permission to n to join the world in the round 1 − sn
after the round sn in which o broadcast join(n), and only after o received in this
round 1 − sn a remote write or crash detection for each process that took part
in previous round sn (i.e. o becomes certain that all active processes that took
part in the previous round have received join(n)). o’s join accept contains not
only o’s world projection but also the number of detected crashes in the current
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round. To ensure that n will not wait indefinitely for round 1 − sn to start, o
will start it with a nop, if o’s NWO is empty (i.e. no process is in round 1−sn).

3 Validation

Model checking analysis. We specified the fault-tolerant version of FTRepMI
in the process algebraic language μCRL [3]. We performed a model checking
analysis for three types of properties, on a network of three processes, with
respect to several configurations of threads. We used a distributed version of
the μCRL toolset on 32 CPUs of DAS-3. First, we verified that the order in
which processes execute their writes complies to the order in which they occur
in the programs on the threads. Second, we verified that two processes will never
execute different writes in the same round. Third, we verified that FTRepMI is
deadlock-free, that is, if one process executes writes, and another process does
not crash, then the other process will eventually execute the same writes.

Correctness proof. We will now argue the correctness of FTRepMI. We focus
on sequential consistency, deadlock-freeness and joins. Note that given two active
processes, either they are in the same round, or one process is one round ahead
of the other. (That is why two round numbers are enough.)

Sequential consistency. Suppose that processes p and q have completed the
same round, and have not crashed. We will now argue that they performed the
same writes at the end of this round. That is, if p performs a write operation
WO, then q also performs WO. The operation WO must be a local write at
some process r in this round. If r does not crash, it will communicate WO to
q, and we are done. So let’s consider what happens if r crashes in this round,
before communicating WO to q. Then q will detect, either in the previous or in
the current round, that r crashed. In the first case, q is guaranteed to receive
(e.g. from p) in a crash recovery at the end of the previous round, r’s local
write in that round, after which q shifts r’s crash to the current round. Since p
obtains WO, r has managed to communicated WO to some processes s1, . . . , sk

in the current round. If at least one of these processes does not crash, WO is
communicated to q in the crash recovery procedure that q performs at the end of
the current round, and we are done. So let’s consider what happens if s1, . . . , sk

all crash without replying to q’s SOS -message. Since q detects these crashes,
and did not receive a write operation for r in the current round yet, q will start
a crash recovery for the current round once again. This iterative crash recovery
mechanism guarantees that ultimately q will receive WO.

Deadlock-freeness. Suppose that process p does not crash, and is not idle, and
that all active processes are in p’s current or next round. We will now argue that
eventually p will progress to the next round. Each active process is guaranteed
to become active in p’s current round, either by the local write (possibly nop) at
p in this round, or by a write from some other process. If none of the processes
active in this round crash, then p is guaranteed to receive a write from each of
these processes, and complete this round. So suppose that one or more processes
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crash before sending a write to p in this round. The failure detector of p will
report these crashes, meaning that at the end of the round p starts the crash
recovery procedure, and asks all processes it thinks to be active in this round
for their WO (if they are in p’s current round) or CWO (if they are in the next
round). Active processes that have not crashed will eventually answer with an
SOSReply-message. And those that crash before sending an SOSReply to p will
be reported by p’s failure detector, possibly leading to an iteration of p’s crash
recovery procedure. Since only a limited number of processes can join a round,
eventually p will complete its crash recovery procedure, and thus the round.

Joins. Suppose a process N is allowed by its contact process O to join the world.
Then all alive processes participating in the round that N joins are informed of
this fact. Namely, in the previous round, O has broadcast join(n) to all processes
that participated in that round. In the current round, O only gives permission
to N to join the world after having received a remote write or crash detection for
all processes that participated in the previous round. These processes can only
have progressed to the current round after having received join(n). And they
will pass on this information to other processes that join in the current round.

4 Performance Evaluation

We tested the performance of the FTRepMI Ibis-empowered prototype on a test-
bed of two DAS-3 clusters, both having 2.4GHz AMD Opteron dual-core nodes
interconnected by Myri-10G; the clusters are connected by a StarPlane-based [6]
wide-area network, with 1ms round-trip latencies and dedicated 10Gbps light-
paths. As a first test, a process generates 1000 write operations on the replica;
the rest of the processes only read the replica. Up to 16 CPUs performance is
dependent only on the network delay; for 32 CPUs, bandwidth becomes a bot-
tleneck. Second, we analyze the performance of two processes each generating
1000 write operations on the replica. To validate the advantage of combining in
the same execution round write operations issued by different processes, each
process computes the time per operation as if there were only 1000. There is
no significant performance overhead when more writers are present in the sys-
tem. Third, to analyze FTRepMI in terms of network delay and bandwidth, we
repeat the same tests for an equal distribution of CPUs over two clusters. We
also look at how distributing the “writing” processes over the clusters affects the
performance. We found that FTRepMI performs efficiently also on a wide-area
distributed system. The performance penalty incurred is maximum 10%.

We then analyzed the performance of crash-recovery for the simple scenarios of
one process generating 1000 write operations on the replica in worlds of up to 32
processes, equally distributed on two clusters. Half-way through the computation
(i.e., after 500 write operations are executed), all processes in one cluster (not
containing the writer) crash. The remaining processes spend between 2 to 200 ms
before resuming normal operation. Note that recovery time is not performance
critical. FTRepMI caters for applications which require more than FTRepMI’s
recovery time to recompute a lost result (if at all possible).
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Future work. Scalability can be improved by decreasing the size of exchanged
messages. Tests on a wide-area network with higher latency (e.g., using clusters
from Grid5000) would add more insight on the performance of FTRepMI. We
also plan to develop a version of FTRepMI that does not require the presence
of perfectly accurate failure detectors.

Acknowledgments. We thank Niels Drost and Rena Bakhshi for their helpful
comments, and Stefan Blom for his help with the μCRL model checking exercise.
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