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Taming Modal Impredicativity:

Superlazy Reduction

Ugo Dal Lago∗, Luca Roversi†and Luca Vercelli‡

Abstract

Pure, or type-free, Linear Logic proof nets are Turing complete once cut-elimination is

considered as computation. We introduce modal impredicativity as a new form of impredica-

tivity causing the complexity of cut-elimination to be problematic from a complexity point

of view. Modal impredicativity occurs when, during reduction, the conclusion of a residual

of a box b interacts with a node that belongs to the proof net inside another residual of b.

Technically speaking, superlazy reduction is a new notion of reduction that allows to control

modal impredicativity. More specifically, superlazy reduction replicates a box only when all its

copies are opened. This makes the overall cost of reducing a proof net finite and predictable.

Specifically, superlazy reduction applied to any pure proof nets takes primitive recursive time.

Moreover, any primitive recursive function can be computed by a pure proof net via superlazy

reduction.
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1 Introduction

Predicativity is a logical concept known from a century, starting from Russel’s work. It has various
technical meanings. All of them, however, refer implicitly or explicitly to some form of aciclicity
(see [2] for an excellent survey). Impredicative definitions or logical rules in a logical system may
lead to logical paradoxes. On the other hand, if logical systems are interpreted as programming
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languages (via the Curry-Howard correspondence), impredicativity may lead to type systems and
programming languages with high expressive power.
In this paper, we introduce the notion modal impredicativity. We start from Linear Logic which
gives first-order status to structural rules (on the logical side) and to duplication and erasure
(on the computational side). The very definition of modal impredicativity refers to boxes, i.e.,
those portions of proof nets, related to the modal meaning of formulae, that may be duplicated.
During cut-elimination, a duplication occurs when a box interacts with a contraction node, which
corresponds to an instance of the structural rule contraction in a logical derivation. Boxes allow
to structure proofs into layers : any rule instance has a level, the number of boxes into which it
is contained. Focusing our attention to boxes is the reason why our notion of impredicativity is
dubbed as modal. Specifically, modal impredicativity occurs when, during reduction, the root of
a residual of a box b interacts with a node that belongs to the proof net inside another residual
of b. The paradigmatic example where an interaction of this kind occurs is in the (pure) proof
net in Figure 1, which encodes the prototypical non normalizing lambda-term (λx.xx)(λx.xx).
Call b the (unique) box in Figure 1. After two reduction steps we get two copies b′ and b′′ of
b. Two further reduction steps plug the root of b′ as premise of the node X belonging to the
second copy b′′ of b. This is a basic form of one-step-long cycle, since the content of b interacts
with the root of b itself. Compared to what happens classically, self-copying plays the rôle of
self-application or self-definition. Notice that the cycles we are speaking about can have length

P

L⊸

R⊸

L⊸

D

X

R!

R⊸

L⊸

D

X

Figure 1: The pure proof net ∆∆.

greater than one. As an example, consider the proof net corresponding to the lambda term
(λx.λy.xyx)(λx.λy.xyx)(λx.λy.xyx): it includes two boxes b1 and b2 where b1 copies b2 and b2
copies b1.
Our long-term goal is to define proper restrictions on Linear Logic allowing to control modal
impredicativity. This paper is just the first step towards this goal. What we define here is a
new notion of reduction for Linear Logic proof nets which rules out the previously described
cyclic phenomenon dynamically, i.e. at the level of the graph-theoretic rewriting relation which
governs proof net reduction. This way, we break impredicative cycles, while keeping the freedom
of statically compose pure proof nets.

Light Logics and Modal Impredicativity. We now recall how the known subsystems of
Linear Logic, introduced as characterization of certain complexity classes, work. Let us call them
light logics, for short. Proof-theoretically, they parsimoniously use the contraction rule. On the
computational side, they control the duplication of structure. Technically, we currently know two
ways of controlling the use of duplication. One is stratification. The other one is what we like to
call boundedness.
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Stratification is a structural constraint that, at the dynamic level, has the following meaning:
one reduction step at level n can only increase the complexity of the underlying proof at levels
(strictly) higher than n. This is achieved by dropping dereliction and digging as logical rules.
The consequence is the control over the dimension of every single reduct, that reflects on the
overall control of reduction time. The mechanism is implicit in the structural and combinatorial
properties of proofs and is totally independent from its logical soundness. In stratified systems,
the level of any node cannot change during reduction. As a consequence, any stratified system,
by definition, cannot be modally impredicative because the nodes inside a box b cannot interact
with the root of any copy of b. Elementary Linear Logic, Light Linear Logic [5] and their affine
versions use stratification.
Concerning boundedness, recall that in ordinary Linear Logic, !A is semantically equivalent to
⋃

n∈N
(A⊗ . . .⊗A)
︸ ︷︷ ︸

n

. Boundedness refers to various methodologies that, informally, put !A in

correspondence to a finite subset of
⋃

n∈N
(A⊗ . . .⊗A)
︸ ︷︷ ︸

n

. Computationally, this means the number

of copies of each box in a proof can somehow be statically or dynamically predicted, i.e. bounded.
This way, we automatically get a system that cannot be modally impredicative, since in bounded
systems !A cannot be equal to !A ⊗ A (and this principle seems necessary to have self-copying).
Soft Linear Logic [7] and Bounded Linear Logic [3] use boundedness.

Superlazy Reduction and Modal Impredicativity. Superlazy reduction is a new notion of
reduction for Linear Logic (pure) proof nets. It is specifically designed to control modal impred-
icativity. Under superlazy reduction, any box b can interact with a tree of contraction, dereliction,
digging and weakening nodes only if the global result of this interaction somehow reduces the
overall complexity of the proof net, namely when it produces (possibly many) “open” copies of b.
If this is not the case, reduction is blocked and cannot be performed. This way modal impredica-
tivity is automatically ruled out, since whenever the content of b is copied, b as a box is destroyed
and no residuals of b are produced. Technically, this is ensured by prescribing that reduction can
happen only when the box is faced with a derelicting tree of nodes, a key notion introduced in
Section 3.

Superlazy Reduction and Primitive Recursion. The calculus we obtain by adopting su-
perlazy reduction over pure proof nets is still powerful enough to characterize the class PR of
primitive recursive functions. We show the characterization under a standard pattern. As for
soundness, we prove that every pure proof net G can be rewritten to its normal form in time
bounded by a primitive recursive function in the size of G. This is remarkable by itself, since
the mere fact that superlazy reduction computes something is interesting by itself, considered the
strong requirements superlazy reduction must satisfy. As for completeness, every function in PR

can be represented as a pure proof net, even under superlazy reduction.

Superlazy Reduction and Expressive Power. We here want to make some observations
about pure proof nets and superlazy reduction as a paradigmatic programming language. The
set of terms we can program with are pure proof nets coming from Linear Logic. Namely, we
can use every lambda-term as a program, ∆∆ (Figure 1) included. However, we do not have the
standard unconstrained reduction steps, which, by simulating the usual beta-reduction, allow to
embed pure, i.e. untyped, lambda-calculus into pure proof nets. In particular, the proof net ∆∆
is normal in our setting, the reason being that we can never reach a situation where the “amount”
of open copies of the box it contains is known in advance.

Related Work. Several authors have used some notion of predicativity as a way to restrict
the expressive power of programming languages or logical systems. We here recall some of them,
without any hope of being exhaustive. In [10], as a first example, Danner and Leivant presented a
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L⊗ R⊗ L⊸ R⊸

Figure 2: The nodes of the proof nets.

variant of the second order λ-calculus obtained imposing a restriction on the second-order quan-
tification. Such a restriction has semantic flavor: all the types have a rank, an ordinal number; the
type ∀R : ξ.τ is a legal type where R can be replaced with every other type of rank at most ξ. Of
course the formula ∀R : ξ.τ has rank higher than ξ, so a form of predicativity is reached. However,
this is not enough to limit the expressive power: the maximum possible rank must be limited a

priori. This way they get a characterization of primitive recursion. Another, earlier, example is
Leivant’s predicative recursion [8]: if predicativity is imposed on ordinary primitive recursion (on
any word algebra), one gets a characterization of polynomial time computable functions. Further
work shows how other classes can be characterized with similar tools [9, 11]. A final example is
Simmons’ fine analysis of tiering [13]. All the cited proposals, however, share a property which
make them fundamentally different from superlazy reduction: predicativity is enforced through
static constraints, i.e., constraints on programs rather than on the underlying reduction relation.
The first author has recently proposed a characterization of primitive recursion by a fragment of
Gödel’s T [1].
On the other hand, restricted notions of reduction on Linear Logic proof nets have appeared in the
literature. This includes, for example, Girard’s closed reduction [4] or head linear reduction [12].
None of them, however, decreases the expressive power of the logical systems on top of which they
are applied, as superlazy reduction does.

Paper Outline. Section 2 recalls pure, i.e., untyped, proof nets and defines what are derelicting
trees and superlazy reduction. Section 3 proves the primitive recursive soundness of superlazy
reduction on pure proof nets. Section 4 shows that even under superlazy reduction, pure proof
nets remain expressive enough to represent all the primitive recursive functions. Section 5 presents
some further developments on the ideas presented in the paper.

2 Pure Proof Nets

Pure proof nets are graph-like structures built using the nodes in Figure 2 and the inductive
clauses in Figure 3(a), 3(b) and 4. Figure 3(a) says that a wire is a proof net. Given the two
proof nets in 3(b) we can build those in Figure 4. The inductive rule at the end of Figure 3(a)
introduces (modal) boxes.
Please notice that the proof nets introduced here are slightly different from the usual ones. In
particular, there is not any explicit node playing the rôle of the cut rule or of axioms. Moreover,
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R⊸

L⊸

e

e g

e′g′

−→⊸ e ≡ e′ g ≡ g′

R⊗

L⊗

e g

e′ g′

−→⊗ e ≡ e′ g ≡ g′

Figure 5: Linear graph rewriting rules.

proof net conclusions are partitioned into one proper conclusion and some premises. This way,
proof nets get an intuitionistic flavor which makes the correspondence with lambda-terms more
evident; this will be useful in Section 4.

Reduction Rules. The reduction rules for the proof nets are in Figure 5, and 6. Call −→
the contextual closure of the rewriting steps −→⊸,−→⊗,−→D,−→X ,−→W ,−→N ,−→M . The
reflexive and transitive closure of −→ is −→∗.
The reduction rules−→X and−→N are the only ones somehow increasing the size of the underlying
proof-net: the first one copies a box, while the second one puts a box inside another box. Superlazy
reduction, as we will see shortly, does not simply eliminate those rules, but rather forces them to
be applicable only in certain contexts, i.e., only when those rules are part of a sequence of modal
rewriting rules which have a globally predictable behavior.

2.1 Superlazy Reduction

We shall be able to prove a soundness result about the cost of the reduction of the proof nets
relatively to a superlazy version of −→ that requires the notion of derelicting tree.

Derelicting trees. For every proof net G, let us assume that the cost of traversing any X-node
of G is 0, any D-node is −1, any W -node is 0 and any N -node is +1. The cost of a path from
node u to node v is the sum of the costs of nodes in the path including u and v. A derelicting tree

in G is a subgraph t of G that satisfies the following four conditions:
1. t only contains nodes X,D,N,W ; so it must be a tree, and we call w its root;
2. the leaves of t are labelled either with D or with W ;
3. for every leaf v labelled with D in t, the cost of the path from w to v in t is −1;
4. the cost of any other path in t starting from w is nonnegative.

Figure 7(a) shows an example of a derelicting tree. Conditions 1. and 2. are trivially satisfied.
The cost of v1v2v4v7v10 is −1 and the same for v1v3v6. Finally, any other path starting from v1
has nonnegative cost. For example, v1v3v5v8 has cost 1.
Figure 7(b) depicts a remarkable instance of derelicting tree: an n-bounded spine with n occur-
rences of X nodes that we shall represent as a dashed box with name nX .

Superlazy Reduction Step and Rewriting System on Pure Proof Nets. The superlazy

normalization step is →XNDW , defined in Figure 8, ∇t being any derelicting tree. ❀⊸,❀⊗

,❀M ,❀XNDW denote the surface contextual closure of the rewriting steps −→⊸,−→⊗,−→M

,−→XNDW . “Surface” means that we never apply a reduction inside a box. ❀ is the union of
❀⊸,❀⊗,❀M ,❀XNDW . The reflexive and transitive closure of ❀ is ❀∗.
Superlazy reduction is a very restricted notion of reduction. In particular, it is almost useless
when applied to proof nets obtained from ordinary lambda-terms via the usual, uniform encoding.
In particular:
• If terms are encoded via the so-called call-by-name encoding (i.e., the one induced by Girard’s
correspondence (A → B)

◦
≡ !A◦

⊸ B◦), then any redex (λx.M)N where M consists of an
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Figure 7: A generic derelicting tree (a) and a bounded spine (b)
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Figure 8: Superlazy cut elimination step

application LP and x appears free in P , cannot be reduced in the corresponding proof net: a
box would be faced with something different from a derelicting tree.

• On the other hand, if terms are encoded via the call-by-value encoding (i.e. via the corre-
spondence (A → B)

◦
≡ !(A◦

⊸ B◦)), then any redex (λx.M)N where M consists itself of an
abstraction λy.L and x appears free in L cannot be reduced in the corresponding proof net.

Unfortunately, we do not even know any criteria allowing to guarantee that certain proof nets can
be reduced to normal form (w.r.t. ordinary reduction) by way of superlazy reduction. Moreover,
there currently isn’t any result characterizing the class of normal forms w.r.t. superlazy reduction;
this is in contrast, for example, to lambda calculus and call-by-value reduction, where the cbv
normal form of any (closed) term M (if any) is always a value. This is why proving that proof
nets are complete w.r.t. some given class of functions, under the superlazy reduction, is non-
trivial. Nonetheless, we explicitly prove the completeness of superlazy reduction (see Section 4).
The next section shows why both (A → B)

◦
≡ !A◦

⊸ B◦ and (A → B)
◦
≡ !(A◦

⊸ B◦) do not
work well here: superlazy reduction of any proof net always terminates in a time bounded by
suitable primitive recursive functions.
Linear Logic with superlazy reduction can be seen as a generalization of the principles of Soft
Linear Logic. Every time a box is replicated, that box is opened. According to this vision, a
derelicting tree with m leaves is similar to a multiplexor node of rank m. However, the structure
of SLL gives a further restriction: if k is the rank of the proof net G, that is the maximum rank
of the multiplexers in G, we are sure that every box of G will be copied at most k times. Such a
restriction leads to a polytime bound (see [7]).
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3 Soundness

Let’s begin with some definitions. Given a proof G and any reduction relation →, [G]→ and ||G||→
denote the maximum length of a reduction sequence starting in G (under →) and the maximum
size of any reduct of G (under →), respectively. |G| is the size of a proof net G. If G ❀

∗ F and b∗

is a box in F , then b∗ is the merge of the residuals of one or more boxes b′1, . . . , b
′
k in G; in this case

we say that b∗ is the residual* of {b′1, . . . , b
′
k}. For shortness we say also that b∗ is the residual*

of b′1, meaning that b∗ is the residual* of b′1 plus some other boxes. If b is a box in G, we denote
BG(b) = {b}∪ {d | d is a box of G contained in b}. A reduction sequence σ ≡ G ❀ G′

❀ . . . ❀ H

is said to be a (n, d)-box reduction if there are r ≤ n boxes b1, . . . , br between those at level 0 in
G such that the following conditions hold:
• The nodes of the proof nets inside every box b1, . . . , br are at most at depth d.
• The box d∗ involved in any step ❀XNDW of σ is a residual* of some boxes {d1, . . . , dk} of G
where for every i ≤ k there exists j ≤ r such that di ∈ BG(bj).

• r is the least with the above properties.

Remark 3.1 A few observations about the above definition:

1. G may contain more than n boxes at level 0, or it may contain boxes whose depth is greater
than d;

2. H is not necessarily a normal form. It may contain boxes at level d, or higher;

3. By definition, any node inside the boxes b1, . . . , br must have depth at least 1. This means
that if σ is a (n, 0)-box reduction it is, in fact, talking about at most n boxes that contain

nodes at level 0. They cannot exist, so σ only uses the linear rewriting steps −→⊸,−→⊗;
4. By definition, every reduction starting at any net G is a (|G|, ∂(G))-box reduction because

|G| necessarily bounds the number n of boxes, and ∂(G) bounds the value d;

5. If b∗ is a box involved in a ❀XNDW step and it is a residual* of some box b in G at level
0, then b = bi for some i by definition. More important, also the converse holds: for each i

there exists a residual* b∗i of bi along the reduction G ❀
∗ H that is involved in a ❀XNDW

step; that is, bi will eventually be opened.

Now we define a family of functions {fd : N×N → N}d∈N such that every fd(n,m) bounds both the
reduction cost and the size of the reducts, of every net G when performing a (n, d)-box reductions
on it:

f0(n,m) = m

fd+1(0,m) = m

fd+1(n+ 1,m) = 1 + fd+1(n,m) + fd
(
2fd+1(n,m)2, 2fd+1(n,m)2

)

By definition, all the functions fd are primitive recursive.

Lemma 3.2 For every d, n,m ∈ N, fd+1(n,m) ≥ fd(n,m) and fd(n+ 1,m) ≥ fd(n,m).

The proof is by induction on n. We can prove the following:

Proposition 3.3 Let G be any proof net and let G ❀
k H be a (n, d)-box reduction with k steps.

Then k, |H | ≤ fd(n, |G|).

Proof. We can proceed by induction on d:
• If d = 0, thanks to the aspect (iii) above, the reduction G ❀

k H only involves multiplicative
reduction steps. They strictly reduce the size of the underlying net. So, |H |, k ≤ |G| =
f0(n, |G|).

• Suppose the thesis holds for d and suppose G ❀
k H is a (n, d+1)-box reduction. We proceed

by another induction, this time on n:
• If n = 0, then none of the boxes at level d+ 1 can be reduced. As a consequence, G ❀

k H

only involves multiplicative reduction steps and, again,

|H |, k ≤ m = fd+1(0,m).
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• Suppose the thesis holds for n and suppose G ❀
k H is a (n + 1, d + 1)-box reduction

sequence. By definition, there are r ≤ n + 1 boxes b1 . . . , br in G satisfying the definition
above. If r = 0, the reduction is performed in linear time, so |H | ≤ |G| ≤ fd+1(n+ 1,m).
Otherwise, we already noted that for each box bi there is a residue* b∗i that will be involved
in a ❀XWND step. There is clearly one index t, where 1 ≤ t ≤ r, such that b∗t is the last
box being copied among the residuals of the bi’s in the sequence G ❀

k H . The reduction
under consideration can be decomposed as follows:

G ❀
i F ❀XWND J ❀

j H

where the step F ❀XWND J is the reduction of b∗t . Up to the F , the reduction sequence
can be considered as a (n, d + 1)-box reduction sequence: the witness list of boxes is
b1, . . . , bt−1, bt+1, . . . , br. After J , on the other hand, the reduction sequence can be consid-
ered as a (|J |, d)-box reduction sequence. Indeed, by definition of σ, all the boxes that will
be involved in a ❀XWND step are residual* of some boxes {d1, . . . , dk} inside b1, . . . , br;
but all the boxes bi have been opened, so the residual of their content is less depth.
Applying both inductive hypothesis, we get

i, |F | ≤ fd+1 (n,m)

|J | ≤ 2|F |2 usual reduction bound

j, |H | ≤ fd (|J |, |J |)

As a consequence:

|J | ≤ 2fd+1(n,m)2

k = i+ 1 + r ≤ fd+1(n,m) + 1 + fd(|J |, |J |)

≤ fd+1(n,m) + 1 + fd
(
2fd+1(n,m)2, 2fd+1(n,m)2

)

|H | ≤ fd(|J |, |J |) < fd+1(n,m) + 1 + fd(|J |, |J |)

≤ fd+1(n,m) + 1 + fd
(
2fd+1(n,m)2, 2fd+1(n,m)2

)

This concludes the proof.

Corollary 3.4 For every n ∈ N there is a primitive recursive function gn : N → N such that for

every proof net G, [G]❀, ||G||❀ ≤ g∂(G)(|G|).

Proof. Remember that every reduction sequence from Π is a (|Π|, ∂(Π))-reduction sequence. So,
we can use Proposition 3.3 and choose gd(n) = fd(n, n).

4 Completeness

The goal is to show the existence of an embedding of any primitive recursive function f into a
pure proof net Gf such that Gf simulates f via superlazy reduction. The existence of such an
embedding is what we mean by completeness.

4.1 Recalling the Primitive Recursive Functions

The primitive recursive functions (PR) are functions from tuples of natural numbers to a natural
number. PR is the least set that both contains the basic primitive recursive functions and which
is closed under a finite number of applications of composition and primitive recursion.

Basic Primitive Functions. The basic primitive functions are the 0-ary constant function 0,
the 1-ary successor function s : N → N, and the m-ary projection function πm

i : Nm → N, for
every m ≥ 1 and 1 ≤ i ≤ m. For every natural number n, the natural number s(n) is simply n+1,
while πm

i (n1, . . . , nm) is the i-th argument ni, for every n1, . . . , nm ∈ N.
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Composition. Let f be an n-ary PR function and let g1, . . . , gn be m-ary PR functions. The
composition of f with g1, . . . , gn is the m-ary function defined as follows:

◦[f, g1, . . . , gn](n1, . . . , nm) = f(g1(n1, . . . , nm), . . . , gn(n1, . . . , nm)).

Primitive Recursion. Let f be an m-ary PR function and let g be an (m+2)-ary PR function.
The function defined by primitive recursion on f and g is the (m + 1)-ary function defined as
follows:

rec[f, g](0, n1, . . . , nm) = f(n1, . . . , nm)

rec[f, g](n+ 1, n1, . . . , nm) = g(n, rec[f, g](n, n1, . . . , nm), n1, . . . , nm)
(1)

4.2 Representation of Integer Functions

We represent (tuples) of natural numbers and functions from naturals to natural as proof nets.

Clusters. Figure 9 introduces clusters of, at least, one instance of the nodes L⊸, L⊗, R⊗.

L⊸L⊸

g1

e1 em

gm

· · ·

· · ·

≡ nL⊸

e1 em

g1
gm

. . .

(a)

L⊗L⊗

g1

em−1e1

g2 gm

e

m ≥ 1

· · ·

· · ·

≡ mL⊗

e

g1 gm

. . .

(b)

R⊗R⊗

g1

e1 em−1

g2 gm

e

m− 1 ≥ 1

· · ·

· · ·

≡ mR⊗

g1 gm

e

. . .

(c)

Figure 9: Clusters of nodes

Numerals. Figure 10 introduces the closed proof nets 0 and n, with n ≥ 1. nX is the n-bounded
spine in Figure 7(b). A basic observation to prove the completeness is that every n contains a
n-bounded spine.

R⊸W

R⊸

C

≡
0

C

nX

nL⊸

R⊸

R⊸

C

. . .

n ≥ 1

≡
n

C

Figure 10: Church numerals as proof nets
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Tuples of numerals. The proof nets 〈n1, . . . , nm〉 are obtained as follows. If m = 1, then 〈n1〉
coincides to the net n1. Otherwise, if m > 1, then 〈n1, . . . , nm〉 is obtained by composing the m

conclusions of every proof net n1, . . . , nm with one of the premises of mR⊗.

Integer functions. Let G be a proof net with a single premise and a single conclusion. We write
G ⌣ 〈n1, . . . , nm〉 to mean the closed proof net with a single conclusion obtained by plugging the
conclusion of the net 〈n1, . . . , nm〉 into the assumption of G.
For every function f : Nm → N, with arity m ≥ 0, we shall say that a proof net Gf with one

premise represents f iff Gf ⌣ 〈n1, . . . , nm〉 reduces to f(n1, . . . , nm), for every n1, . . . , nm ∈ N.

4.3 The Completeness theorem

Now we can state formally the Completeness theorem:

Theorem 4.1 (Completeness) Every f in PR is represented by a proof net Gf .

To prove it we define how to map every f ∈ PR into a corresponding Gf . Then we show that

superlazy reduction allows to rewrite any Gf ⌣ 〈n1, . . . , nm〉 to f(n1, . . . , nm). To map a function
into a net requires to program with the proof nets as we do here below.

The Successor. Figure 11 defines the proof net Gs that represents the successor function.
Gs ⌣ 〈n〉 yields n+ 1 because Gs extends the bounded spine nX and nL⊸ of n into (n + 1)X
and (n+ 1)L⊸, the core of n+ 1.

PD

X L⊸

L⊸

L⊸

R⊸

R⊸

C

≡

P

Gs

C

Figure 11: The proof net Gs (successor)

Unity and Erasure. Figure 12(a) introduces the closed proof net Unity that we identify as ⋆.
Figure 12(b) introduces the proof net ε with two occurrences of ⋆ in it. ε ⌣ 〈n〉 reduces to ⋆,
because (i) the conclusion of the box of the topmost ⋆ is plugged into the root of the bounded
spine of 〈n〉 ≡ n, and (ii) by means of ❀XWND , we get n instances of the identity, “iteratively”
applied to the lower occurrence of ⋆, which, after some reduction transform to ⋆.

Diagonal. Figure 13 introduces the proof net ∇ that duplicates a given unary string. ∇ ⌣ 〈n〉
reduces to 〈n, n〉 because the conclusion of the box in the definition of ∇ is plugged into the root
of the bounded spine in 〈n〉 ≡ n.
There is an obvious generalization m∇ of ∇, with m ≥ 2, necessary to represent the composition
of functions in PR. m∇ has a single premise and a single conclusion, and it multiplies a given
argument m times.
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R⊸

R!

C

≡

⋆

C

(a)

P

⋆ L⊸

⋆ L⊸

C

≡ ε

P

C

(b)

Figure 12: The unity proof net (⋆) and the erasure proof net (ε)

L⊗

Gs Gs

P

R⊗〈0, 0〉

R⊸

R!

L⊸

L⊸

C

≡ ∇

P

C

Figure 13: The proof net ∇ (duplicator)

Projections. Figure 14 defines the proof net Gπm

i
that implements the basic primitive recursive

function πm
i , for any m ≥ 1, with 1 ≤ i ≤ m. The proof net has the expected behavior thanks to

the correct behavior of ε.

Composition. Figure 15 introduces the proof net G◦[f,g1,...,gn] that represents the function
h : Nm → N obtained by composition from f : Nn → N and g1, . . . , gn : Nm → N. Of course the
proof nets Gf , Gg must represent the functions f , g.

Primitive Recursion. We assume that the function f : Nm → N can be represented by the
proof net Gf , and that g : Nm+2 → N can be represented by the proof net Gg. Figure 16 introduces
the proof net G

rec[f,g]. We shall show that G
rec[f,g] represents the (m+ 1)-ary primitive recursion

rec[f, g], as defined by equations (1). G
rec[f,g] is built using two more proof nets G1 and G2. The

base function G1 of G
rec[f,g] is in Figure 16. G1 is a closed net that, after an application, yields

a function f ′ that, taking a tuple −→n of m integers, gives a pair of naturals. A little bit more
formally, f ′ (−→n ) = 〈0, f (−→n )〉. Instead, the net G2 in Figure 17 is the iterable step function of
G

rec[f,g]. Iterable means that G2 can be used as the first argument of a Church numeral. G2 maps
a net that behaves as a function with an ideal type N

m → N
2 to a net with the same type. More

precisely, g′ (〈n0, h〉,
−→n ) = 〈n0 + 1, g (n0, h (

−→n ) ,−→n )〉. In particular, the iteration starts from the
result of G1, morally having the right type.
Now, we want to prove thatG

rec[f,g] ⌣ 〈n0, n1, . . . , nm〉 reduces to the expected result rec[f, g] (n0,
−→n ).

The keypoint is the application of G2, inside G
rec[f,g], as an argument of n0. If n0 = 0, then the
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P

mR⊗

ε

. . .

ε

W W

C

m− 1 occurrences of ε

. . . . . .

≡

P

Gπm

i

C

Figure 14: The proof net Gπm

i

whole box around G2 is erased. This returns the identity. But, for every n0 > 0, G2 is replicated
n0 times by the bounded spine n0X of n0. This iterates n0 times the function g′, leading to a new
function g′(n0). Now, the behavior of the net becomes obvious. g′(n0) takes 〈0, f〉 and −→n as its
arguments. Then, it iterates the step function. Finally, the result has form 〈n0, g

′(n) (〈n0, f〉,
−→n )〉.

An application of the right projection gives the result.

Proof of Theorem 4.1. By induction on the structure of f . The possible structures to be con-
sidered are: 0, s, πm

i , ◦[h, g1, . . . , gn] and rec[h, g]. If f ≡ 0 (base case), the statement holds by
the reflexivity of ❀∗. If f ≡ s or πm

i , we already know that these functions can be represented.
If f ≡ ◦[h, g1, . . . , gn], by inductive hypothesis the functions Gh and Ggi can be represented. And
the composition is representable. Similarly, if f ≡ rec[h, g], by inductive hypothesis the functions
Gh and Gg can be represented. So their primitive recursion rec[h, g] is representable too.

5 Further Developments

As we explained in the Introduction, this paper is just the first step in a long-term study about
how to control modal impredicativity.
The are at least two distinct research directions the authors are following at the time of writing.
We recall the obtained results here, pointing to further work for additional details and proofs.
First of all, the way we proved completeness of proof net reduction w.r.t. primitive recursion
suggests a way of capturing Hofmann’s non-size increasing computation [6] by way of a proper,
further restriction to superlazy reduction. We basically need two constraints:
• Boxes can only be copied when they are closed, i.e., when they have no premises.
• Any box b can only be copied if the proof net contained in b only contains one node X at level
0.

The obtained reduction relation is said to be the non-size increasing superlazy reduction and
is denoted with ⇒. With these constraints, non-size increasing polytime computation can be
simulated by pure proof nets. Moreover:

Theorem 5.1 For every n ∈ N there is a polynomial pn : N → N such that for every proof net Π,
[G]⇒, ||G||⇒ ≤ p∂(G)(|G|)

The second direction we are considering concerns methods to keep modal impredicativity under
control by more traditional static methods in the spirit of light logics. Consider the equivalence
between !A and !A⊗A. As already pointed out, this equivalence is somehow necessary to get modal
impredicativity. So, controlling it means controlling modal impredicativity. Now, suppose that
the above equivalence holds but A only contains instances of the ! operator which are intrinsically
different from the top-level one in !A. Morally, this would imply that even if a contraction node is
“in” A, it cannot communicate with the box in !A, because they are of a different nature. This way
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P

mL⊗

n∇ . . . n∇

nL⊗
. . . nL⊗

. . . . . .

mR⊗
. . . mR⊗

Gg1
. . . Ggn

nR⊗

Gf

C

≡

P

G◦[f,g1,...,gn]

C

Figure 15: The proof net G◦[f,g1,...,gn]

modal impredicativity would be under control. But the question is: how to distinguish different
instances of ! from each other? One (naive) answer is the following: consider a generalization of
(multiplicative and exponential) Linear Logic where syntactically different copies !a1

, !a2
, . . . of the

modal operator ! are present. As an example, take the set {!n}n∈N. Then, impose the following
constraint: !aA is a legal formula only if the operators !b1 , . . . , !bn appearing in A are all different
from a, i.e., if a 6∈ {b1, . . . , bn}. We strongly believe that this way a system enjoying properties
similar to those of predicative recurrence schemes [8] can be obtained.

6 Conclusions

We described modal impredicativity and a concrete tool — superlazy reduction — that controls it.
Superlazy reduction on pure proof nets greatly influences the expressive power of the underlying
computational model: from a Turing complete model we go down to first-order primitive recursive
functions.
In a sentence, we learn that the expressive power of a programming language system can be
controlled by acting on the dynamics (i.e., the underlying reduction relation) without touching
the statics (i.e., the language into which programs are written). To get the complete picture,
however, we still need tools to predict which set of programs will be useful from a computational
point of view.
This could have potential applications in the field of implicit computational complexity, where
one aims at designing programming languages and logical systems corresponding to complexity
classes. Indeed, the impact of ICC in applications crucially depends on the intensional expressivity
of the proposed systems: one should be able to write programs naturally.
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P

G1

G2

R! (m+ 1)L⊗

. . .

mR⊗L⊸

L⊸

L⊸

Gπ2

2

C

≡

P

Grec[f,g]

C

0 Gf

R⊗

R⊸

C

≡

G1

C

Figure 16: The proof nets G
rec[f,g] and G1
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Figure 17: The proof net G2
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