Skip to main content

A Bialgebraic Approach to Automata and Formal Language Theory

  • Conference paper
Logical Foundations of Computer Science (LFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5407))

Included in the following conference series:

Abstract

A bialgebra is a structure which is simultaneously an algebra and a coalgebra, such that the algebraic and coalgebraic parts are “compatible”. In this paper, we apply the defining diagrams of algebras, coalgebras, and bialgebras to categories of semimodules and semimodule homomorphisms over a commutative semiring. We then show that formal language theory and the theory of bialgebras have essentially undergone “convergent evolution”. For example, formal languages correspond to elements of dual algebras of coalgebras, automata are “pointed representation objects” of algebras, automaton morphisms are instances of linear intertwiners, and a construction from the theory of bialgebras shows how to run two automata in parallel. We also show how to associate an automaton with an arbitrary algebra, which in the classical case yields the automaton whose states are formal languages and whose transitions are given by language differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adàmek, J., Trnkovà, V.: Automata and algebras in categories. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  2. Buchholz, P.: Bisimulation relations for weighted automata. Theoretical Computer Science 393, 109–123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crutchfield, J.P., Moore, C.: Quantum automata and quantum grammars. Theoretical Computer Science 237, 275–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Duchamp, G., Flouret, M., Laugerotte, È., Luque, J.-G.: Direct and dual laws for automata with multiplicities. Theoretical Computer Science 267, 105–120 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duchamp, G., Tollu, C.: Sweedler’s duals and Schützenberger’s calculus. Arxiv Preprint. arXiv:0712.0125v2

    Google Scholar 

  6. Fitting, M.: Bisimulations and boolean vectors. Advances in Modal Logic 4, 97–125 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Golan, J.S.: Semirings and their applications. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  8. Grossman, R.L., Larson, R.G.: Bialgebras and realizations. In: Bergen, J., Catoiu, S., Chin, W. (eds.) Hopf Algebras, pp. 157–166. Marcel Dekker, Inc., New York (2004)

    Google Scholar 

  9. Grossman, R.L., Larson, R.G.: The realization of input-output maps using bialgebras. Forum Mathematicum 4, 109–121 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Katsov, Y.: Tensor products and injective envelopes of semimodules over additively regular semirings. Algebra Colloquium 4(2), 121–131 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Kozen, D.: Automata on guarded strings and applications. Matématica Contemporânea 24, 117–139 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Infor. and Comput. 110(2), 366–390 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lang, S.: Algebra: revised, 3rd edn. Springer, Heidelberg (2002)

    Book  Google Scholar 

  14. Litvinov, G.L., Masloc, V.P., Shpiz, G.B.: Tensor products of idempotent semimodules. An algebraic approach. Mathematical Notes 65(4) (1999)

    Google Scholar 

  15. Majid, S.: Foundations of quantum group theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  16. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249, 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Street, R.: Quantum groups: a path to current algebra. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  18. Worthington, J.: Automatic proof generation in Kleene algebra. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS/AKA 2008. LNCS, vol. 4988, pp. 382–396. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Worthington, J. (2008). A Bialgebraic Approach to Automata and Formal Language Theory. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2009. Lecture Notes in Computer Science, vol 5407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92687-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92687-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92686-3

  • Online ISBN: 978-3-540-92687-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics