
Laboratoire
Spécification
Vérification

et

Laboratoire
Spécification
Vérification

et

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

ATL with strategy contexts
and bounded memory

Thomas Brihaye, Arnaud Da Costa,

François Laroussinie, Nicolas Markey

Research report LSV-08-14

ATL with strategy contexts
and bounded memory

Thomas Brihaye1, Arnaud Da Costa2,
François Laroussinie3, and Nicolas Markey2

1 Institut de mathématiques, Université de Mons-Hainaut, Belgium
2 Lab. Spécification & Vérification, ENS Cachan – CNRS UMR 8643, France

3 LIAFA, Univ. Paris 7 – CNRS UMR 7089, France
thomas.brihaye@umh.ac.be, dacosta@lsv.ens-cachan.fr,

francoisl@liafa.jussieu.fr, markey@lsv.ens-cachan.fr

Abstract. We extend the alternating-time temporal logics ATL and
ATL? with strategy contexts and memory constraints: the first extension
make strategy quantifiers to not “forget” the strategies being executed
by the other players. The second extension allows strategy quantifiers to
restrict to memoryless or bounded-memory strategies.
We first consider expressiveness issues. We show that our logics can
express important properties such as equilibria, and we formally compare
them with other similar formalisms (ATL, ATL? , Game Logic, Strategy
Logic, ...). We then address the problem of model-checking for our logics,
providing a PSPACE algoritm for the sublogics involving only memoryless
strategies and an EXPSPACE algorithm for the bounded-memory case.

1 Introduction

Temporal logics and model checking. Temporal logics (LTL, CTL) have been
proposed for the specification of reactive systems almost thirty years ago [15, 7,
16]. Since then, they have been widely studied and successfully used in many
situations, especially for model checking—the automatic verification that a model
of a system satisfies a temporal logic specification.

Alternating-time temporal logic. Over the last ten years, a new flavor of temporal
logics has been developed: alternating-time temporal logics (ATL) [2]. ATL is a
fundamental logic for specifying and verifying properties in multi-agent systems
(modeled as Concurrent Game Systems (CGS) [2]), in which several agents can
concurrently act upon the behaviour of the system. On these models, it is not
only interesting to know if something can or will happen, as is expressed in CTL
or LTL, but also if some agent(s) can control the evolution of the system in
order to enforce a given property, whatever the other agents do. ATL can express
this kind of properties thanks to its quantifier over strategies, denoted 〈〈A〉〉
(where A is a coalition of agents). That coalition A has a strategy for reaching a
winning location is then written 〈〈A〉〉F win (where F is the LTL modality for
“eventually”).

Our contributions. In this paper, we extend ATL and ATL? to express richer
properties: while ATL strategy quantifier drops strategies introduced by earlier
quantifiers in the evaluation of the formula, our logics keep executing those
strategies. For example, our new modality, which we write 〈·A·〉 , allows us to
express the property “A has a strategy such that (1) Player B always has a
strategy (given that of A) to enforce Φ and (2) Player C always has a strategy
(given the same strategy of A) to enforce Ψ”. This would be written as follows:
〈·A·〉G

(
〈·B·〉Φ∧ 〈·C·〉Ψ

)
. Note that naive attempts to express this property in ATL

fail: for instance, in the ATL formula 〈〈A〉〉G (〈〈B〉〉Φ ∧ 〈〈C〉〉Ψ), the coalitions do
not cooperate anymore, while in 〈〈A〉〉G (〈〈A,B〉〉Φ ∧ 〈〈A,C〉〉Ψ), the coalition A
is allowed to use different strategies when playing with B and C. In order to
achieve this idea, we naturally adapt the semantics of ATL? in order to interpret
a formula within a stategy context.

Secondly we parameterise strategy quantifiers with the resources (in terms of
memory) allowed for strategies: we define the quantifier 〈·As·〉 with s ∈ (N ∪ {∞}),
which restricts the quantification to strategies using memory of size s (called
s-memory strategies) for Player A. It is well-known that memoryless strategies
are enough to enforce ATL properties, but this is not the case for ATL? formulae,
nor for our extension of ATL (and ATL?) with strategy contexts.

Our results are twofold: we mainly study the expressiveness of the new
formalisms we propose, and compare them with classical formalisms such as ATL,
ATL?, Alternating-time-µ-calculus (AMC) [2], the Game Logic (GL) [2], and also
with recent formalisms such as Strategy Logic (SL) [6] or qDµ [13], ... While our
logic does not contain any of those two, it can express most of their interesting
properties, especially regarding equilibria. We also study the model-checking
problem for our logics: while we have a non-elementary algorithm for the general
case, we propose a polynomial-space algorithm for model-checking our logic in
the memoryless case, and extend it to an exponential-space algorithm for the
bounded-memory setting.

Related works. Very recently, several works have focused on the same kind
of extension of ATL, and come up with different solutions that we list below.
Generally speaking, this leads to very expressive logics, able to express equilibrium
properties. The counterpart is that those logics have very high complexity.

– IATL [1] extends ATL with strategy contexts, with a similar definition as ours,
but it forces players to commit to a strategy, which they are not allowed
to modify in the sequel. This logic is then studied in the memoryless case
(which is proven to be a strict restriction to memory-based strategies).

– SL [6] extends temporal logics with first-order quantification over strategies.
This extension has been defined and studied only in the two-player turn-based
setting, where a non-elementary algorithm is proposed.

– qDµ [13] considers strategies as labellings of the computation tree of the game
structure with fresh atomic propositions. This provides a way of explicitly
dealing with strategies. This extension is added on top of the decision µ-
calculus Dµ, yielding a very expressive, yet decidable framework.

– Stochastic Game Logic [4] is a similar extension to ours, but for stochastic
games. It is undecidable in the general case, but proved decidable when
restricting to memoryless strategies.

Plan of the paper. Section 2 contains the definitions of our logics, and of our
bounded-memory setting. Section 3 deals with the expressiveness results, and
compares our extension with those cited in the related work above. In Section 4,
we consider the model-checking problem for our extensions, and provide algorithms
for the case of s-memory strategies.

Due to lack of space, some of the proofs are postponed to the appendix.

2 Definitions

In this section we introduce classical definitions of concurrent game structures,
strategies and outcomes. We then define a notion of s-bounded memory strategies.

2.1 Concurrent Game Structures

Concurrent game structures are a multi-player extension of classical Kripke
structures [2]. Their definition is as follows:

Definition 1. A Concurrent Game Structure (CGS for short) C is a 8-tuple
(Loc, `0,AP, Lab,Agt,M,Mov,Edg) where:

– Loc is a finite set of locations, `0 ∈ Loc is the initial location;
– AP is a finite, non-empty set of atomic propositions;
– Lab : Loc→ 2AP is a labelling function;
– Agt = {A1, ..., Ak} is a finite set of agents (or players);
– M is a finite, non-empty set of moves;
– Mov : Loc× Agt→ P(M) r {∅} defines the (finite) set of possible moves of

each agent in each location.
– Edg : Loc×Mk → Loc, where k = |Agt|, is a function defining the transition

table. With each location and each set of moves of the agents, it associates
the resulting location.

The size |C| of a CGS C is defined as |Loc|+ |Edg|, where |Edg| is the size of
the transition table1.

The intended behaviour is as follows [2]: in a location `, each player Ai
chooses one possible move mAi in Mov(`, Ai) and the next location is given
by Edg(`,mA1 , ...,mAk). We write Next(`) for the set of all possible successor
locations from `, and Next(`, Aj ,m), with m ∈ Mov(`, Aj), for the restriction of
Next(`) to locations reachable from ` when player Aj makes the move m.

1 Our results would still holds if we consider symbolic CGSs, where the transition table
is encoded through boolean formulas [11].

2.2 Coalition, bounded-memory strategy, outcomes.

A coalition is a subset of agents. In multi-agent systems, a coalition A plays
against its opponent coalition Agt rA as if they were two single players. We thus
extend Mov and Next to coalitions:

– Given A ⊆ Agt and ` ∈ Loc, Mov(`, A) denotes the possible moves for
coalition A from `. Such a move m is composed of a single move for every
agent of the coalition, that is m def= (ma)a∈A.

– Next is extended to coalitions in a natural way: given m = (ma)a∈A ∈
Mov(`, A), we let Next(`, A,m) denote the restriction of Next(`) to locations
reachable from ` when every player Aj ∈ A makes the move mAj .

Strategies and outcomes. Let C be a CGS. A computation of C is an infinite
sequence ρ = `0`1 . . . of locations such that for any i, `i+1 ∈ Next(`i). We write
ρi for the i-th suffix of ρ, and ρ[i] for the i+ 1-st location `i. A strategy for a
player Ai ∈ Agt is a function fAi that maps any finite prefix of a computation to
a possible move for Ai, i.e., satisfying fAi(`0 . . . `m) ∈ Mov(`m, Ai). A strategy is
memoryless if it only depends on the current state (i.e., fAi(`0 . . . `m) = fAi(`m)).
A strategy for a coalition A of agents is a set of strategies, one for each agent
in the coalition. The set of strategies (resp. memoryless strategies) for A is
denoted Strat(A) (resp. Strat0(A)).

A strategy for Aj induces a set of computations from `, called the outcomes
of fAj from ` and denoted Out(`, fAj), that player Aj can enforce: `0`1 . . . ∈
Out(`, fAj) iff `0 = ` and `i+1 ∈ Next(`i, Aj , fAj (`0 . . . `i)) for any i. Given a coali-
tion A, a strategy for A is a tuple FA containing one strategy for each player in A:
FA = {fAj |Aj ∈ A}. The domain of FA (dom(FA)) is A. The strategy fAj for Aj
is also denoted (FA)|Aj ; more generally, (FA)|B (resp. (FA)\B) denotes the restric-
tion of FA to the coalition A ∩B (resp. A\B). The outcomes of FA from a loca-
tion ` are the computations enforced by the strategies in FA: `0`1 . . . ∈ Out(`, FA)
iff `0 = ` and for any i, `i+1 ∈ Next(`i, A, (fAj (`0, . . . , `i))Aj∈A). Note that
Out(`, FA) ⊆ Out(`, (FA)|B) for any coalitions A and B, and in particular that
Out(`, F∅) represents the set of all computations from ` (since Strat(∅) = {∅}).

It is also possible to combine two strategies F ∈ Strat(A) and F ′ ∈ Strat(B),
resulting in a strategy F◦F ′ ∈ Strat(A∪B) defined as follows: (F◦F ′)|Aj (`0 . . . `m)
equals F|Aj (`0 . . . `m) if Aj ∈ A, and it equals F ′|Aj (`0 . . . `m) otherwise.

Finally, given a strategy F , an execution ρ and some integer i ≥ 0, we define
the restriction F ρ,i of F to the behavior from the future state ρ[i]: F ρ,i(π) =
F (ρ[0 . . . i] · π). Note that if F is memoryless, then F ρ,i = F .

Bounded-memory strategies. Between the general strategies (without any bound
over its resources) and the simple memoryless strategies, we can consider s-
bounded memory strategies. Let s be a (binary-encoded) integer representing the
size of the memory. The most basic notion of memory-based strategies is based on
the s-th suffix of the history: in that case, a strategy σ is a function from Q[0,s]

to M. The main drawback of this approach is that the players cannot choose

which part of the history is recorded, they can only remember the s last events
(see Appendix A.1 for an example of this very limited kind of memory-bounded
strategy).

More interestingly, we can define a bounded memory strategy as a memoryless
strategy over the locations of the CGS and a set of memory cells [12]: choosing
the move depends on both the location and the current memory cell, and after
every move, the player can “update” its memory by moving to another cell. The
size of the memory is then defined as the number of cells. Let Cell be the set of
s+ 1 memory cells {0, . . . , s}.

Formally an s-memory strategy FA for Player A is a 3-tuple (Fmov, F cell, c)
where: Fmov is a mapping from Cell× Loc to M that associates a move with the
current memory cell and the current location of the CGS, F cell is a mapping from
Cell× Loc to Cell that updates the memory cell, and c is the current memory cell
of this strategy. In the following, we also denote Fmov(c, `) by FA(`) in order to
simplify the notation: FA(`) is the move for A induced by the strategy FA from
the location ` and given then current memory cell c.

We can adapt the previous notions to this kind of strategy FA = (Fmov, F cell, c).
The set Next(`, A, FA(`)) contains the possible successor locations when A plays
from ` according to FA. Of course, the memory cell of FA changes along an
execution ρ, and we define F ρ,iA as the strategy (Fmov, F cell, ci) where ci is defined
inductively with: c0 = c and cj+1 = F cell(ρ[j], cj). Finally the outcomes Out(`, FA)
are the executions ρ = `0`1 . . . such that `j+1 ∈ Next(`j , A, F

ρ,j
A (`j)).

Coalitions are handled the usual way: we use pairs (A, s) to represent a
coalition A ⊆ Agt and a memory-bounds vector s ∈ (N∪{∞})A which associates
a size s(Aj) with the memory that agent Aj ∈ A can use for its strategy. The set
of strategies for A with memory bound s is denoted Strats(A), and we omit to
mention the memory bound when none is imposed.

2.3 The logic ATL?sc,∞

We now define the logic ATL?sc,∞ that extends ATL? with strategy contexts and
bounded-memory strategy quantifiers:

Definition 2. The syntax of ATL?sc,∞ is defined by the following grammar:

ATL?sc,∞ 3 ϕs, ψs ::= P | ¬ϕs | ϕs ∨ ψs | 〈·A, s·〉ϕp | ·〉A〈·ϕs
ϕp, ψp ::= ϕs | ¬ϕp | ϕp ∨ ψp | Xϕp | ϕp Uψp

with P ∈ AP, A ⊆ Agt and s ∈ (N ∪ {∞})A. For convenience, we write e.g.
〈·As, Bt·〉ϕ instead of 〈·{A,B}, {A 7→ s,B 7→ t}·〉ϕ.

Given a formula ϕ ∈ ATL?sc,∞, the size of ϕ, denoted by |ϕ|, is the size of the
tree representing that formula, assuming binary-encoding of integer constants.

We use standard abbreviations such as > def≡ P ∨¬P , ⊥ def≡ ¬>, Fϕ
def≡ >Uϕ, etc,

and omit to mention the memory bound when no memory constraint is imposed.

An ATL?sc,∞ formula Φ is interpreted over a state ` of a CGS C within a
strategy context F ∈ Strat(B) for some coalition B; this is denoted by ` |=F Φ.
The semantics is defined as follows:

` |=F 〈·A, s·〉ϕp iff ∃FA ∈ Strats(A). ∀ρ ∈ Out(`, FA◦F). ρ |=FA◦F ϕp,

` |=F ·〉A〈·ϕs iff ` |=F\A ϕs,

ρ |=F ϕs iff ρ[0] |=F ϕs,

ρ |=F Xϕp iff ρ1 |=Fρ,1 ϕp,

ρ |=F ϕp Uψp iff ∃i. ρi |=Fρ,i ψp and ∀0 ≤ j < i. ρj |=Fρ,j ϕp.

Given a CGS C with initial location `0, and an ATL?sc,∞ formula Φ, the
model-checking problem consists in deciding whether2 `0 |=∅ Φ.

ATL?sc,∞ contains several extensions compared to ATL?: the combination
(or nesting) of strategies in a context and the way of handling separately s-
memory strategies.

Two ATL?sc,∞ formulae Φ and Φ′ are equivalent, denoted Φ ≡ Φ′, iff their
truth value is the same for any location in any CGS under any strategy context F :
` |=F Φ ⇔ ` |=F Φ

′ for any C, `, and F .
The formula 〈·A, s·〉ϕ holds on a location ` within a context F for a coalition B

iff there exists a s-memory strategy for A to enforce ϕ when B plays according to
the strategy F . We use 〈·A·〉 to denote the modality with no restriction over the
memory allowed for the strategies of A (i.e., the modality 〈·A,∞A·〉); and we use
〈·A0·〉 as an abbreviation for 〈·A, 0A·〉 to consider only memoryless strategies.

Conversely the modality ·〉A〈· removes the strategy for A from the current
context under which the formula is interpreted. The operator ·〉Agt〈· allows
us to empty the current context, and then we clearly have: ` |=F ·〉Agt〈·ϕ ⇔
` |=F ′ ·〉Agt〈·ϕ for any context F and F ′.

This entails that ATL?sc,∞ contains ATL? (thus also CTL?). Indeed the classical
strategy quantifier of ATL?, namely 〈〈A〉〉 , does not handle strategy context:
〈〈A〉〉ϕ holds for a location ` iff A has a strategy to enforce ϕ whatever the choices
of Agt\A. Clearly 〈〈A〉〉ϕ is equivalent to ·〉Agt〈· 〈·A·〉ϕ.

Clearly the existence of an s-memory strategy for A to enforce ϕ entails the
existence of an s′-memory strategy if s′ ≥ s (i.e., s′(Aj) ≥ s(Aj) for all Aj ∈ A).
Note that the converse is not true except for special cases such as ATL where
memoryless strategies are sufficient (see [2, 17]).

Now we introduce several fragments of ATL?sc,∞:

– ATL?sc,b (with b ∈ N) is the fragment of ATL?sc,∞ where the quantifiers 〈·A, s·〉
only use memory-bounds less or equal to b. In particular, ATL?sc,0 only allows
memoryless strategies.

– ATL?sc is the fragment of ATL?sc,∞ where no restriction over the memory is
allowed (any strategy quantifier deals with strategies with possibly infinite
memory).

2 The context can be omitted when it is empty, and we can directly write ` |= Φ.

– ATLsc,∞ contains the formulae where every temporal modality is in the
immediate scope of a strategy quantifier (i.e., the path formulae are restricted
to ϕs Uψs, ϕs Rψs – R is the “Release” modality–, and Xϕs). It follows
from the above discussion that ATLsc,∞ contains ATL and CTL. We also
define the fragments ATLsc,b and ATLsc as above.

3 Expressiveness

In this section, we consider expressiveness issues to first illustrate the ability
of ATL?sc,∞ to state interesting properties and then to compare it with other
classical formalisms.

3.1 Some interesting formulas of ATL?sc,∞

First we introduce a new strategy quantifier in order to specify that “for any
strategy of coalition A, every run in the corresponding outcome satisfies a
formula ϕ”:

[·A·]ϕ def≡ ¬ 〈·A·〉 ¬ 〈·∅·〉ϕ.

It translates as follows:

` |=F [·A·]ϕ iff ∀FA ∈ Strat(A). ∀ρ ∈ Out(`, FA◦F). ρ |=FA◦F ϕ.

Note that this modality is not the dual of 〈·A·〉 because we want an universal
quantification over the runs in the outcomes. Thus it is different from the JAK
in [2] which specifies the existence of counter -strategies for Agt\A to ensure ϕ.

Examples of properties using strategy contexts. The new modalities 〈·A·〉
allow us to express many interesting properties over the strategies of different
players in a game. In particular, our logics can express the different examples
that motivated the introduction of SL, qDµ or IATL:

– We can express the fact that “Player 1 can ensure Φ1 while Player 2 plays
to ensure Φ2” with the following formula:

Ψ = 〈·A1·〉 [·A2·]
((
·〉A1〈· 〈·∅·〉Φ2

)
⇒ Φ1

)
. (1)

When we interpret Ψ with the semantics of ATL?sc,∞ we get:

` |= Ψ iff ∃F1. ∀F2.(∀ρ2 ∈ Out(`, {F2}). ρ2 |=F2 Φ2) ⇒
(∀ρ ∈ Out(`, {F1, F2}). ρ |={F1,F2} Φ1) (2)

The use of modality ·〉A1〈· allows us to specify that Φ1 has to be ensured
by Player 1 only when Player 2 follows a true strategy to ensure (whatever
Player 1 does) Φ2.

– the winning secure equilibrium [5] is a special form of Nash equilibrium where
both players can cooperate to satisfy an objective Φ1 ∧ Φ2, and if Player 1
(resp. 2) abandons the cooperation to ensure ¬Φ2 (resp. ¬Φ1) then Player 2
(resp. 1) can enforce ¬Φ1 (resp. ¬Φ2). The existence of such equilibrium can
be stated as follows (Φ1 and Φ2 are assumed to be LTL formulas):

〈·A1, A2·〉
(
Φ1 ∧ Φ2 ∧ [·A1·] (¬Φ2 ⇒ ¬Φ1) ∧ [·A2·] (¬Φ1 ⇒ ¬Φ2)

)
.

Indeed this formula states that Players 1 and 2 can cooperate together to
ensure the common objective, but there is no way for one player to enforce
its own objective and the negation of the objective of the other player.

– Given two players A1 and A2 having their own objectives Φ1 and Φ2, the
Nash equilibrium holds for two strategies F1 and F2 for players 1 and 2
respectively, if there is no “better” strategy F ′1 for A1 w.r.t. Φ1 when Player 2
plays according to F2, and vice versa for Player 2. This property characterises
pairs of strategies. Given two strategies F1 and F2 in the strategy context F ,
the following formula holds for states ` within F iff F1 and F2 correspond to
a Nash equilibrium in `:(

(〈·A1·〉Φ1)⇒ Φ1 ∧ (〈·A2·〉Φ2)⇒ Φ2

)
– The notion of dominating strategy can also be expressed: if F is a strategy

for A1, then a state ` satisfies the following formula within the strategy
context F iff F is a dominating strategy from s w.r.t. the objective Φ:
(〈·Agt\A1·〉 ¬Φ)⇒ ¬〈·A1·〉Φ. Indeed if the opponent can ensure ¬Φ when A1

plays F , then it was not possible for A1 to win.

Bounding the memory of the opponent. Our definition of bounded-memory
strategies does not restrict the possible co-strategies for the opponents. However,
it might sometimes be interesting to look for strategies that are winning only
against deterministic bounded-memory opponents. This can be expressed in our
logic by dualizing the bounded-memory quantifier: formula 〈·A·〉 [·Agt \A, s·]Φ))
states that coalition A has a strategy enforcing Φ if the opponent coalition has
s-bounded memory.

Expressiveness of ·〉A〈· quantifier. In the previous section, we illustrate
the use of modality ·〉A〈· by expressing the classical ATL? modality 〈〈A〉〉
with ·〉Agt〈· 〈·A·〉 : we first forget the current strategy context and then quantify
over the existence of a strategy for A: relaxing is necessary because it has to
be a real strategy, i.e., correct for any choice for the other agents. In fact, this
modality does not add expressive power to ATL?sc,∞:

Proposition 3. For any ATL?sc,∞ formula Φ, there exists a formula Ψ containing
no ·〉−〈· modality such that Φ ≡ Ψ .

Proof. Given a subset of agents C ⊆ Agt and Φ ∈ ATL?sc,∞, we define formula Φ
C

recursively as follows:

〈·A·〉Φ
C def= 〈·A·〉 [·C\A·]ΦC\A ·〉A〈·Φ

C def= Φ
C∪A

ΦUΨ
C def= Φ

C
UΨ

C
XΦ

C def= XΦ
C

Φ ∧ ΨC def= Φ
C ∧ ΨC ¬ΦC def= ¬ΦC

P
C def= P

Now, for any strategy context F and any C ⊆ dom(F), and for any state q
and any execution ρ, we have the following equivalences:

q |=F\C Φ⇔ q |=F Φ
C

ρ |=F\C Φp ⇔ ρ |=F Φp
C

The proof is done by structural induction over the formula (see Appendix A.2).
Letting Ψ = Φ

∅
yields the result. �

3.2 Comparison with other formalisms

Formal comparison of expressiveness. Two comparison criteria can be used
to compare the expressive power of logics:

– The distinguishing power is the ability of a logic to distinguish models. Two
models C1 and C2 are distinguished by L iff there exists a formula Φ ∈ L s.t.
C1 |= Φ and C2 6|= Φ. We write L1 ≤dp L2 when L2 can distinguish any two
models that can be distinguished by L1.

– The expressiveness is the ability of a logic to express properties. We say
that L2 is more expressive than L1 (written L1 ≤ex L2) when for every L1

formula, there exists an equivalent formula in L2.

We define <dp, ≡dp, >ex and ≡ex in a standard way. Note that logics L1 and L2

can have the same distinguishing power (i.e., L1 ≤dp L2 and L2 ≤dp L1) and
differ on the expressiveness criterion. This happens e.g. for CTL and CTL? .

Comparison with ATL? . From the distinguishing power point of view, we have
the following two results that emphasize the ability of our new modality 〈·A·〉 :

Proposition 4. For any b ∈ N, we have {ATLsc,b, ATLsc} >dp ATL?.

Proof. First note that ATLsc,0 and ATLsc both contain ATL (remember that
memoryless quantification is sufficient for ATL) and that ATL and ATL? have the
same distinguishing power [3]. This entails {ATLsc,0,ATLsc} ≥dp ATL?.

The proof that ATLsc,0 >dp ATL? uses the fact formula 〈·Agt0·〉 (X 〈·∅0·〉XP)
has no equivalent in ATL? (see Lemma 13 in Appendix A.3). This entails
that ATLsc,b >dp ATL? for any b. Finally, we have ATLsc >dp ATL? because
〈·A1·〉X

(
〈·A2·〉XP ∧ 〈·A2·〉XP ′

)
cannot be expressed in ATL? (see Lemma 14

in Appendix A.3). �

As a direct corollary of the previous results and of the inclusion of ATL
(resp. ATL?) in ATLsc,∞ (resp. ATL?sc,∞), we obtain the following theorem:

Theorem 5. For any b ∈ N, we have:

– {ATLsc,∞,ATLsc,b,ATLsc} >ex ATL
– ATL?sc,∞ >ex ATL?

– ATL? 6≥ex {ATLsc,b,ATLsc}

Finally note also that we can the use of strategy contexts in ATL allows us to
reach the expressive power of CTL? :

Proposition 6. CTL? ≤ex ATLsc

The proof is given in Appendix A.3. Here we just illustrate the underlying
translation with two examples:

– EG (P ∨XP) is equivalent to 〈·Agt·〉G (P ∨ 〈·∅·〉XP);
– E(

∞
FP ⇒

∞
FP ′) is equivalent to 〈·Agt·〉F (〈·∅·〉G¬P)∨ 〈·Agt·〉G (〈·∅·〉FP ′).

Comparison with Game Logic. We now compare our new logics with Game
Logic, proving that it is strictly less expressive than ATL?sc. Game Logic was
introduced in [2] in order to express the module checking problem [10]. This logic
is an extension of ATL? that allows us to deal explicitly with the execution tree
induced by a strategy: given such a tree t, it is possible to quantify over the
executions inside t and specify temporal properties. For example, the formula
∃∃A.((∃P UP ′) ∧ (∀FP ′′)) specifies that there exists a strategy FA for A such
that we have for the tree induced by FA: (1) there exists a run verifying P UP ′

and (2) every run verifies FP ′′. The definition of GL is given in Appendix A.5.
We have the following result:

Theorem 7. ATLsc >ex GL

Proof (sketch). The proof is based on a translation from GL into ATLsc (see
Prop. 16 in appendix) and the fact that the ATLsc formula 〈·A1·〉X (〈·A2·〉
X b ∧ 〈·A3·〉X a) has no equivalent in GL (see Prop. 17 in appendix). �

Comparison with AMC. Alternating-time µ-calculus is neither more nor less
expressive than our extensions of ATL:

Proposition 8. ATLsc,∞ 6≤ex AMC and AMC 6≤ex ATL?sc,∞.

Proof. The CGS C2 (described in Figure 3 in Appendix A.3) is a simple unfolding
of C1, thus they satisfy the same AMC formulae but they can be distinguished by
ATLsc,∞, this gives the first result. When considering one-player CGS (i.e., Kripke
structures), our ATL?sc,∞ is clearly equivalent to CTL? , which is strictly less
expressive than the (classical) µ-calculus. �

Comparison with Strategy Logic [6]. Strategy Logic (SL for short) has
recently been defined in [6] as an extension of LTL with first-order quantifi-
cation on strategies. That player A has a strategy to enforce ϕ is then writ-
ten ∃σA. ∀σB . ϕ(σA, σB) where the arguments given to ϕ indicate on which path
ϕ is evaluated.

While this logic has only been defined on 2-player turn-based games, its
definition can easily be extended to our n-player CGS framework. We conjecture
that ATLsc,∞ and SL are incomparable:

– SL can explicitly manipulate strategies as first-order elements. It can for
instance state properties such as

∃x1. ∃y1. ∃x2. ∃y2.
[
ϕ1(x1, y1) ∧ ϕ2(x2, y1) ∧ ϕ3(x1, y2) ∧ ϕ4(x2, y2)

]
which (we conjecture) ATLsc,∞ cannot express due to the circular constraint.

– on the other hand, SL requires subformulas embedded in modalities to be
closed. As a consequence, formula

∃x1. ∀y1. [G (∃y2. [F p](x1, y2))](x1, y1)

is not an SL formula (because ∃y2. [F p](x1, y2) is not closed), while it is
expressed in ATLsc,∞ as

〈·A·〉G (〈·B·〉F p).

However, it should be noticed that the simple one-alternation fragment of SL
can be translated into ATL?sc,∞.

Comparison with qDµ [13]. The logic qDµ [13] extends the decision µ-
calculus with quantification over strategies. In that setting, strategies are thought
of as a labelling of the infinite computation tree of the system with extra atomic
propositions and this allows to have strategy contexts. There is neither explicit
modality ·〉A〈· nor bounded-memory strategy quantification in qDµ. But as we
have seen above, any ATL?sc formula can be translated into an equivalent ·〉−〈· -free
formula, which can in turn be expressed in qDµ [14].

Note also that qDµ is able to express that a strategy is memoryless (provided
that it has access to the names of the locations of the CGS): this is achieved
by saying that the strategy always labels the same set of successors in any two
copies of the same location in the execution tree.

Comparison with IATL [1]. IATL extends ATL with a context in a similar way
as ATLsc,∞ does, but there is no way of replacing a strategy by another one: once
a player has committed to applying a strategy, she cannot change her mind. It is
thus easy to see that ATLsc,∞ is (strictly) more expressive than IATL.

Figure 1 summarizes the expressiveness results of our logics.

SL

qDµ

ATL?sc,∞

ATL?sc AMC

GL

ATL?

ATLsc

ATL

IATL

Th. 7

×
Prop. 8

×
×

×

Th. 5

Fig. 1. Expressiveness of ATLsc,∞ and ATL?sc,∞ compared to classical logics

4 ATLsc,∞ and ATL?
sc,∞ model-checking

We begin with proving that model-checking is decidable for our logic. Still, as
is the case for Strategy Logic, the resulting algorithm has very high complexity.
We thus focus on simpler cases (namely, memoryless and bounded-memory
strategies), where more efficient algorithms can be obtained.

Theorem 9. Model checking ATL?sc,∞ formulas over CGS is decidable.

Proof. The translation from ATL?sc to qDµ yields decidability of ATL?sc. Moreover,
as we will see in Section 4.2, it is possible to encode the bounded-memory strategies
as memoryless strategies over an extended CGS. Since memorylessness can be
expressed with qDµ, this provides an indirect algorithm for ATL?sc,∞ model
checking. �

4.1 Model-checking ATL?sc,0 and ATLsc,0

Theorem 10. The model checking problems for ATL?sc,0 and ATLsc,0 over CGSs
are PSPACE-complete.

Proof. We only address the membership in PSPACE. The hardness proof is given
in Lemma 18 in Appendix A.6 (and is similar to that of [4]).

Let C be a CGS, ` a location and F a memoryless strategy context, assigning
a memoryless strategy to each player of some coalition A. Since F contains only
memoryless strategies, it associates with each location one move for each agent
in A. Dropping the other moves of those agents, we get a CGS, denoted (C, F),
whose set of executions is exactly the set of outcomes of F in C.

From this and the fact that a memoryless strategy can be stored in spaceO(|Q|),
we get a simple PSPACE model-checking algorithm for ATL?sc,0 that relies on a
(PSPACE) model-checking algorithm for LTL. The main difficulty is that strat-
egy contexts prevent us from proceeding in a standard bottom-up fashion. As
a consequence, our algorithm consists in enumerating strategies starting from
outermost strategy quantifiers.

If ϕ is an ATL?sc,0 path formula, we denote by Φ(ϕ) the set of outermost
quantified ϕ subformulae (i.e. of the form 〈·A·〉ψ), and by σ(ϕ) the corresponding

LTL formula where all subformulae ψ ∈ Φ(ϕ) have been replaced by new proposi-
tions aψ. We enumerate all possible contexts, recursively calling the algorithm at
each step of the enumeration, and thus gradually taking care of each labelling aψ.
Algorithm 1 describes the procedure. �

Algorithm 1 : MC-ATL?sc,0(C, F, `0, ϕ) – ATL?sc,0 model checking

Require: a CGS C, F ∈ Strat0(A), l0 ∈ Loc and an ATL?sc,0 path formula ϕ
Ensure: YES iff ∀λ ∈ Out(`0, F), λ |=F ϕ
C′ := (C, F)
foreach ψ ∈ Φ(ϕ) do

case ψ = 〈·B0·〉ψ′ :
for FB ∈ Strat0(B), ` ∈ Loc do

if MC-ATL?sc,0(C, FB◦F, l, ψ′), then label l with aψ
case ψ = ·〉B〈·ψ′ :

for l ∈ Loc do
if MC-ATL?sc,0(C, F\B , l, ψ′), then label l with aψ

return MC LTL (C′, l0, Aσ(ϕ))

Note that PSPACE-completeness extends straightforwardly to “memoryless”
extensions (i.e., with quantification over memoryless strategies) of ATL? and SL.
Since ATL objectives do not require memory, ATL0 is the same as ATL, and its
model-checking problem is PTIME-complete. Moreover a similar algorithm would
work for symbolic CGSs, a succinct encoding of CGS proposed in [9].

Remark 1. Both the algorithm and the PSPACE-hardness can be adapted for IATL.
This corrects the ∆P

2 -completeness result of [1].

4.2 Bounded-memory strategies

The case of bounded-memory strategies can be handled in a similar way as
memoryless strategies. Indeed as explained in Subsection 2.2, we can see an
s-bounded strategy for Player Ai as a memoryless strategy over an extended
structure containing the original CGS C and a particular CGS controlled by Ai
and describing its memory.

Formally, for a playerAi, we define the CGS Ms
Ai

as follows: Ms
Ai

= (Agt, Locis, 0,
∅,∅,Mi

s ∪ {⊥},Movis,Edgis) where

– Locis = {0, . . . , s} is the set of (unlabeled) locations;
– Mi

s is isomorphic to Locis (and we identify both sets),
– Movis and Edgis do not depend on the location: Movis allows only one move ⊥

to each player, except for player Ai, who is allowed to play any move in Mi
s.

Then Edgis returns the location chosen by Ai.

Let s ∈ NAgt be a memory-bounds vector. Now considering the product
structure Cs =

∏
Ai∈Agt Ms(Ai)

Ai
× C, for all player Aj we can very simply export

s(Aj) memory-bounded strategies of C to some memoryless strategies over Cs.
Indeed, given a Player Aj , we do not want to consider all memoryless strategies f
over Cs but only the ones where Aj exclusively uses the information from Ms(Aj)

Aj

(i.e., such that f(i1, . . . , ij , . . . , ik, l) = f(0, . . . , ij , . . . , 0, l)). Let RStrat0Cs(Aj) be
this restricted set of such strategies ; clearly we have RStrat0Cs(Aj) ⊂ Strat0Cs(Aj).

Adapting the proof of Theorem 10 to memory-bounded strategies, we get:

Proposition 11. Let C = (Agt, Loc, `0,AP, Lab,M,Mov,Edg) be a CGS. Let ϕ ∈
ATL?sc,b involving only s-memory quantifiers. Then ϕ can be checked in exponential
space.

Proof. We run the algorithm of Theorem 10 over the structure Cs, restricting the
enumerations of Strat0Cs(B) to those of RStrat0Cs(B). �

Remark 2. – If the memory-bounds s were given in unary, our algorithm would
be PSPACE, since the LTL model-checking over the product structure can be
performed on the fly.

– Note that this algorithm can deal with formula containing several subformulas
〈·A, s1·〉ϕ1, . . . , 〈·A, sp·〉ϕp with different different memory-bounds si (for the
same coalition A).

– Since our algorithm consists in enumerating the strategies, it could cope with
games of incomplete information, where the strategies would be based on
(some of) the atomic propositions labeling a location, rather than on the
location itself [17].

– Bounded-memory quantification can be defined also for the other formalisms
where memory-based strategies are needed, e.g. ATL? or SL. Our EXPSPACE
algorithm could easily be adapted to that case.

5 Conclusion

In this paper we propose powerful extensions of ATL and ATL? logics. These
extensions allow us to express many interesting and complex properties that have
motivated the definition of new formalisms in the past. An advantage of these
extensions is to treat strategies through modalities as in ATL and ATL?.

As future work, we plan to study the exact complexity of model-checking
ATLsc,∞ and ATL?sc,∞, with the aim of possibly finding reasonably efficient
algorithms for our expressive extensions of ATL and ATL? . Finally we think that
the ability to deal explicitly with bounded-memory strategies is an interesting
approach to develop.

References

1. T. Ågotnes, V. Goranko, and W. Jamroga. Alternating-time temporal logics with
irrevocable strategies. In Proceedings of the 11th Conference on Theoretical Aspects
of Rationality and Knowledge (TARK’07), pages 15–24, 2007.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

3. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations. In Proc. 9th Intl Conf. Concurrency Theory (CONCUR’98), volume 1466
of LNCS, pages 163–178. Springer, 1998.

4. Ch. Baier, T. Brázdil, M. Größer, and A. Kučera. Stochastic game logic. In
Proceedings of the 4th International Conference on Quantitative Evaluation of
Systems (QEST’07), pages 227–236. IEEE Comp. Soc. Press, 2007.

5. K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equilibria.
Theoretical Computer Science, 365(1-2):67–82, 2006.

6. K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In Proc. of
the 18th International Conference on Concurrency Theory (CONCUR’07), Lisbon,
Portugal, volume 47013 of LNCS, pages 59–73. Springer, 2007.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronous skeletons
using branching-time temporal logic. In Proc. 3rd Workshop Logics of Programs
(LOP’81), volume 131 of LNCS, pages 52–71. Springer, 1981.

8. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, volume B, chapter 16, pages 995–1072. Elsevier, 1990.

9. W. Jamroga and J. Dix. Do agents make model checking explode (computationally)?
In Proceedings of the 4th International Central and Eastern European Conference
on Multi-Agent Systems (CEEMAS’05), volume 3690 of LNCS. Springer, 2005.

10. O. Kupferman, M. Y. Vardi, and P. Wolper. Module checking. Information and
Computation, 164(2):322–344, 2001.

11. F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and complexity
of ATL. In Proc. 10th Intl Conf. Foundations of Software Science and Computation
Structures (FoSSaCS’07), volume 4423 of LNCS, pages 243–257, Braga, Portugal,
2007. Springer.

12. R. Mazala. Infinite games. In Automata, Logics, and Infinite Games, volume 2500
of LNCS, pages 23–42. Springer-Verlag, 2002.

13. S. Pinchinat. A generic constructive solution for concurrent games with expressive
constraints on strategies. In Proceedings of the 5th International Symposium on
Automated Technology for Verification and Analysis (ATVA’07), LNCS. Springer-
Verlag, 2007.

14. S. Pinchinat. Personal communication, 2008.
15. A. Pnueli. The temporal logic of programs. In Proc. 18th Ann. Symp. Foundations

of Computer Science (FOCS’77), pages 46–57. IEEE Comp. Soc. Press, 1977.
16. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In Proc. 5th Intl Symp. on Programming (SOP’82), volume 137 of LNCS,
pages 337–351. Springer, 1982.

17. P.-Y. Schobbens. Alternating-time logic with imperfect recall. In Proceedings of the
1st Workshop on Logic and Communication in Multi-Agent Systems (LCMAS’03),
volume 85 of ENTCS. Elsevier, 2004.

A Appendix

A.1 Discussion about the bounded-memory strategy

Here we illustrate the drawback of the basic notion of bounded-memory strategy
where we can only consider the s-th suffix of the history.

Consider the game depicted on Fig. 2. It can be proved that there exists no
history-based bounded-memory strategy for Player 1 from state s0 for the LTL
objective (X a ∧G b) ∨ (X¬a ∧G c) (stating that only b-states should be visited
if a has been visited at the beginning of the execution, and only c-states should
be visited otherwise) because the crucial information (visiting s1) occurs at the
very beginning of the execution.

b, c
s0

a, b, c
s1

b, c
s2

b, c
s3

c
s4

b, c
s5

b
s6

〈1.1〉

〈1.2〉

〈1.1〉

〈2.2〉

〈1.2〉,〈2.1〉

Fig. 2. A game with no history-based bounded-memory strategy

But with the notion of bounded-memory strategy we have adopted, we can
easily see that Player 1 has a 1-bounded memory strategy to ensure that the
formula (X a ∧G b) ∨ (X¬a ∧G c) holds. Indeed, we can define the strategy
F = (Fmov, F cell, 0) with:

F cell(0, s0) = F cell(0, s2) = F cell(0, s3) = F cell(0, s4) = F cell(0, s5) = 0
F cell(0, s1) = F cell(1, s3) = F cell(1, s5) = F cell(1, s6) = 1
Fmov(0, s3) = 2 and Fmov(1, s3) = 1

Memory cell 0 encodes the fact that s1 has not (or “not yet”) been visited. This
strategy is easily seen to be winning.

A.2 Elimination of ·〉A〈·

Here we give the proof of the following lemma used in Proposition 3:

Lemma 12. For any strategy context F , any subset C ⊆ dom(F) and any
formula Φ ∈ ATL?sc,∞ and any path formula Φp, we have:

q |=F\C Φ ⇔ q |=F Φ
C

ρ |=F\C Φp ⇔ ρ |=F Φp
C

Proof. The proof is done by structural induction over the formula. In this proof
we will use C ′ as an abbreviation for the coalition C \ A. Moreover FB ranges
over strategies for coalition B.

– Ψ
def= 〈·A·〉ϕ.

We have the following equivalences : q |=F 〈·A·〉 [·C ′·]ϕC
′

means by definition

∃FA. ∀FC′ . ∀ρ ∈ Out(q, FC′ ◦FA◦F). ρ |=FC′◦FA◦F ϕ
C′ ,

Then the induction hypothesis yields

∃FA. ∀FC′ . ∀ρ ∈ Out(q, FC′ ◦FA◦F). ρ |=(FC′◦FA◦F)\(C′)
ϕ,

or equivalently, since (FC′ ◦FA◦F)\C′ = FA◦(F\C):

∃FA. ∀FC′ . ∀ρ ∈ Out(q, FC′ ◦FA◦F). ρ |=FA◦(F\C) ϕ,

or else, since we have⋃
FC′∈Strat(C′)

Out(q, FC′ ◦FA◦F) = Out(q, FA◦(F\C))

∃FA. ∀ρ ∈ Out(q, FA◦(F\C)). ρ |=(FA◦(F\C)) ϕ,

leading to q |=F\C 〈·A·〉ϕ, which is the desired result.

– Ψ
def= ·〉A〈·ϕ. On the one hand, by the semantics of ATL?sc,∞, we have that:

q |=F\C ·〉A〈·ϕ iff q |=F\(C∪A) ϕ.

On the other hand, the induction hypothesis tells us that:

q |=F\(C∪A) ϕ iff q |=F ϕ
C∪A.

Gathering the two equivalences, we obtain the desired result.

– Ψ
def= ϕUψ. The semantics of ATL?sc,∞ tells us that ρ |=F\C Ψ if and only if

the following formal holds:

∃i. ρi |=(F\C)ρ,i ψ and ∀0 ≤ j < i. ρj |=(F\C)ρ,j ϕ.

By using the induction hypothesis, the above formula is equivalent to the
following one:

∃i. ρi |=Fρ,i ψ
C

and ∀0 ≤ j < i. ρj |=Fρ,j ϕ
C ,

which means that ρ |=F ϕ
C Uψ

C
. We thus obtain the desired result.

– The remaining cases are straightforward.

�

¬as0

as1

¬as2

¬as′0

as′1

¬as′2

¬as′3

as′4

¬as′5

C1 C2

¬a¬bs0

¬a¬bs1

a¬bs2 ¬a bs3

¬a¬bs′0

¬a¬bs′1

a¬bs′2 ¬a bs′3

〈1.1〉
〈2.2〉

〈1.1〉
〈2.2〉
〈3.3〉

〈1.2〉
〈1.2〉
〈1.3〉
〈3.2〉

〈2.1〉
〈2.1〉
〈2.3〉
〈3.1〉

C′1 C′2

Fig. 3. C1 and C2 (resp C′1 and C′2) cannot be distinguished by ATL∗

A.3 Distinguishing power

Lemma 13. 〈·Agt0·〉 (X 〈·∅0·〉XP) has no equivalent in ATL?.

Proof. Consider the two one-player CGS C1 and C2 in Fig. 3. They clearly satisfy
the same ATL? formulae since C2 corresponds to an unfolding of C1. But we have:

s0 6|= 〈·Agt0·〉X (〈·∅0·〉X a) s′0 |= 〈·Agt0·〉X (〈·∅0·〉X a)

Indeed any memoryless strategy in s0 will contain either the infinite path
s0 → s0 → s0 → . . ., or the path s0 → s1 → s2 → s2 → . . . In order to have
a after two transitions, it is necessary to first take the transition s0 → s0 and
secondly the transition s0 → s1. This can only be achieved by a strategy with
memory. On the contrary, s′0 satisfies clearly the property. �

Note that we could also consider the logic ATL?0, that is the logic ATL?

where every strategy quantifier deals with memoryless strategies. This logic
could distinguish the two structures of the previous proof with the formula
〈〈Agt〉〉0 X XP .

Thus ATLsc,∞ allows us to distinguish models that cannot be distinguished
by ATL?, and note that it is not necessary to use the modality ·〉 − 〈· to obtain
this result. As a consequence we have:

Lemma 14. 〈·A1·〉X
(
〈·A2·〉XP ∧ 〈·A2·〉XP ′

)
has no equivalent in ATL?.

Proof. Now consider the CGSs C′1 and C′2 in Fig. 3. They satisfy the same ATL?

formulae: in C′2, a third move is possible for both players but it does not give
more strategies to enforce particular ATL? properties. But we clearly have that s′0
satisfies 〈·A1·〉X

(
〈·A2·〉XP ∧ 〈·A2·〉XP ′

)
thanks to the third move of Player 1.

But this is not the case for s0 that does not satisfy the ATLsc,∞ formula. �

A.4 Translation from CTL? to ATLsc

Here we give the proof of Proposition 6:

Proof. Let Ψ be a CTL? formula. We first define a translation to build an “almost
ATLsc” formula Ψ as follows:

P
def= P Xϕ

def= 〈·∅·〉Xϕ

¬ϕ def= ϕ ϕUψ
def= 〈·∅·〉 (ϕUψ)

ϕ ∨ ψ def= ϕ ∨ ψ Eϕ
def= 〈·Agt·〉ϕ

We clearly have q |= Φ iff q |=∅ Φ. The existential path quantifier is replaced by
〈·Agt·〉 . Now given a path formula Xϕ, its corresponding Xϕ will be interpreted
within a strategy context – fixed by some 〈·Agt·〉 modality – defining the path.
Thus inserting a 〈·∅·〉 does not change the semantics and allows us to put X in the
immediate scope of a strategy quantifier as required in ATLsc,∞. Nevertheless Ψ
does not yet belong to ATLsc,∞ because it is possible to have a double embedding
of strategy quantifiers of the following form: 〈·Agt·〉 (〈·∅·〉ϕ ∧ . . .). This can be
removed by using the method for translating CTL+into CTL [8] (remember that
〈·Agt·〉 is equivalent to E). �

A.5 Comparison with other formalisms

Game Logic. Game Logic was introduced in [2], it extends of ATL? and allows us
to deal explicitly with the execution tree induced by a strategy. Let ` be a state
and F a strategy for some coalition A, we write ExecTree(`, F) for the subtree
of the computation tree from ` whose infinite rooted paths are the elements of
Out(`, F).

Definition 15. The syntax of GL is defined by the following grammar :

GL 3 ϕs, ψs ::= P | ¬ϕs | ϕs ∨ ψs | ∃∃A.ϕt
ϕt, ψt ::= ϕs | ¬ϕt | ϕt ∨ ψt | ∃ϕp
ϕp, ψp ::= ϕt | ¬ϕp | ϕp ∨ ψp | Xϕp | ϕp Uψp

where P ranges over the set AP and A over the subsets of Agt.

Thus in GL, we distinguish state, tree and path formulae. Note also that path
formulae are interpreted over a path ρ inside a tree t (denoted (t, ρ)). We give
the semantics of the unusual operators :

` |= ∃∃A.ϕt iff ∃FA ∈ Strat(A). ExecTree(`, FA) |= ϕt,

t |= ϕs iff ` |= ϕs, where ` is the root of t,
t |= ∃ϕp iff ∃ρ ∈ t. (t, ρ) |= ϕp,

(t, ρ) |= ϕt iff t |= ϕt.

Proposition 16. Every GL formula can be translated into an equivalent ATL?sc
formula.

Proof. The translation is given by the inductively-defined application σ s.t.:

∃∃A.ϕ def= 〈〈A〉〉ϕ, ∃ϕ def= ¬ 〈·∅·〉 ¬ϕ, P
def= P.

The other inductive rules are defined the natural way.
Note that if ϕ is a GL tree formula, then ϕ is an ATL?sc state formula. In this

translation, we use a strategy context to represent the tree used to interpret GL
path and tree formulae. We must show that for any GL path (resp. tree) formula
ϕp (resp. ϕt), any path ρ in some CGS and any strategy F for some coalition
A, we have: (ExecTree(ρ[0], F), ρ) |= ϕp iff ρ |=F ϕp and ExecTree(ρ[0], F) |=
ϕt iff ρ[0] |=F ϕt. Here we just consider the first equivalence (the second one can
be treated in a similar war). The usual induction steps are straightforward, thus
we only consider the two following cases :

– ϕ = ∃∃Aψ. Then ρ |=F ϕ means that there exists a strategy F ′ for the
coalition A, such that any computation ρ′ in Out(ρ[0], F ′) will satisfy ψ.
With the induction hypothesis, this is equivalent to ∃F ′ ∈ Strat(A). ∀ρ′ ∈
Out(ρ[0], F ′). (ExecTree(ρ[0], F ′), ρ′) |= ψ, and so to ρ[0] |= ∃∃A.ψ because ψ
is a tree formula. Now ∃∃Aψ is a state formula which can be interpreted over
any execution tree with root ρ[0], most accordingly over ExecTree(ρ[0], F).

– ϕ = ∃ψ. Then ρ |=F ϕ means that “not all the computations from ρ[0] and
following the strategy context F do not satisfy ψ”, and then this is equivalent
to ∃ρ′ ∈ Out(ρ[0], F). ρ′ |=F ψ. Again, we obtain by applying the induction
hypothesis that there exists a path in ExecTree(ρ[0], F) that satisfies ψ, and
then ExecTree(ρ[0], F) |= ∃ψ and this is equivalent to (ExecTree(ρ[0], F), ρ) |=
ϕ (as ϕ is a tree formula).

As a result, if we restrict this equivalence to the cases where ϕ is a state
formula and F is the empty strategy, we get that ϕ is an ATL?sc equivalent formula
for ϕ. �

Proposition 17. 〈·A1·〉X (〈·A2·〉X b ∧ 〈·A3·〉X a) has no equivalent in GL.

Proof. Consider the CGSs S1 and S2 in Figure 4. They satisfy the same GL
formulae, since the third move for Player 1 does not affect the sets of execution
trees induced by all strategies for a fixed coalition : for any coalition A and
state q, we have ExecTree(q,StratS1(A)) = ExecTree(q,StratS2(A)). Yet this move
ensures that s′0 satisfies 〈·A1·〉X (〈·A2·〉X b ∧ 〈·A3·〉X a) (when players 2 and 3
respectively choose moves 2 and 1), while s0 does not. �

A.6 PSPACE-hardness of ATLsc,0 model checking

Lemma 18. The model checking problem for ATLsc,0 over CGSs is PSPACE-
hard.

¬a¬bs0

a bs1

a¬bs2 ¬a bs3

¬a¬bs′0

a bs′1

a¬bs′2 ¬a bs′3

S1 S2

〈1.1.3〉,〈1.2.1〉,〈1.3.2〉
〈2.1.3〉,〈2.2.1〉,〈2.3.2〉

〈1.1.3〉,〈1.2.1〉,〈1.3.2〉
〈2.1.3〉,〈2.2.1〉,〈2.3.2〉
〈3.1.3〉,〈3.2.1〉,〈3.3.2〉

〈1.1.1〉
〈1.3.1〉
〈1.1.2〉
〈1.2.2〉

〈1.1.1〉
〈1.3.1〉
〈1.1.2〉
〈1.2.2〉

〈3.1.1〉
〈3.3.1〉

〈1.2.3〉
〈1.3.3〉
〈2.1.1〉
〈2.3.1〉

〈2.1.2〉
〈2.2.2〉
〈2.3.3〉
〈2.2.3〉

〈1.2.3〉
〈1.3.3〉
〈2.1.1〉
〈2.3.1〉

〈2.1.2〉
〈2.2.2〉
〈2.3.3〉
〈2.2.3〉

〈3.1.2〉
〈3.2.2〉
〈3.2.3〉
〈3.3.3〉

Fig. 4. S1 and S2 cannot be distinguished by GL

Proof. We reduce it to the PSPACE-complete problem QBFSAT:

QBFSAT:

Input: A family of variables X = {x1, ..., xn}, a boolean CNF formula
ϕ =

∧
j=1,...,J Cj on the set of variables X.

Output: The value of ∃x1∀x2∃x3...Qnxnϕ(x1, ..., xn), where Qn is a ∀ if n
is even, and a ∃ otherwise

From an instance I of this problem, we build the turn-based CGS C on Fig. 5.
In C we have n different agents, one for each variable, who play only once and
so give a value to their variable. In fact the players have successively the choice
between two moves, for true or false. We then label the states in order to be able
to express that every disjunctive clause Cj will eventually be set to true:

– ∀1 ≤ i ≤ n, Lab(xi) = {Cj | xi appears in Cj},
– ∀1 ≤ i ≤ n, Lab(¬xi) = {Cj | ¬xi appears in Cj}.

v1

x1

¬x1

v2

x2

¬x2

v3

xn

¬xn

vn+1

〈2〉

〈1〉

〈2〉

〈1〉

controlled by A1 controlled by A2 controlled by An

Fig. 5. C without the labels

Since each player plays once, a strategy for Ai corresponds to a truth value for
the variable xi. Thus, the formula 〈·A0

i ·〉ψs (resp. ¬ 〈·A0
i ·〉 ¬ψs) means that there

exists a truth value for xi such that (resp. no matter what the truth value for xi
is) ψs stands. Note that when a player makes his move, every opponent knows

the move, because it is written in the context. Therefore, those who play after
him can take it into consideration when comes their turn.

Now consider the following ATL?sc,0 formula :

ΨI
def= 〈·A0

1·〉 (¬ 〈·A0
2·〉 ¬(〈·A0

3·〉 (¬ . . . εn
∧

j=1,...,J

〈·∅0·〉FCj . . .)))

where εn is ¬ if n is even, and ∅ otherwise. Clearly ΨI holds for C iff I is a
positive instance of QBFSAT. Finally it is easy to obtain an equivalent model
checking problem for ATLsc,0. Let Ψ ′I be the ATLsc,0 formula defined from ΨI by
inserting X after every 〈·A0

i ·〉 modality. And let C′ be the CGS defined from C
by adding n states q1, . . . , qn and n− 1 transitions qi → qi+1 for i < n, and the
transition qn → v1. Clearly q1 |= Ψ ′I iff I is a positive instance. �

It should be noticed that ·〉 · 〈· has not been used in the hardness proof.

