
From Philosophical to Industrial Logics⋆

Moshe Y. Vardi⋆⋆

Rice University, Department of Computer Science, Rice University, Houston, TX
77251-1892, U.S.A., Email: vardi@cs.rice.edu,

URL:http://www.cs.rice.edu/∼vardi

Abstract. One of the surprising developments in the area of program
verification is how ideas introduced by logicians in the early part of the
20th Century ended up yielding by the 21 Century industrial-standard
property-specification languages. This development was enabled by the
equally unlikely transformation of the mathematical machinery of au-
tomata on infinite words, introduced in the early 1960s for second-order
logic, into effective algorithms for model-checking tools. This paper at-
tempts to trace the tangled threads of this development.

1 Thread I: Classical Logic of Time

1.1 Monadic Logic

In 1902, Russell send a letter to Frege in which he pointed out that Frege’s log-
ical system was inconsistent. This inconsistency has become known as Russell’s
Paradox. Russell, together with Whitehead, published Principia Mathematica in
an attempt to resolve the inconsistency, but the monumental effort did not con-
vince mathematicians that mathematics is indeed free of contradictions. This has
become know as the “Foundational Crisis.” In response to that Hilbert launched
what has become known as “Hilbert’s Program.” (See [1].)

One of the main points in Hilbert’s program was the decidability of mathe-
matic. In 1928, Hilbert and Ackermann published “Principles of Mathematical
Logic”, in which they posed the question of the Decision Problem for first-order
logic. This problem was shown to be unsolvable by Church and Turing, inde-
pendently, in 1936; see [2]. In response to that, logicians started the project of
classifying the decidable fragments of first-order logic [2, 3]. The earliest decid-
ability result for such a fragment is for the Monadic Class, which is the fragment
of first-order predicate logic where all predicates, with the exception of the equal-
ity predicate, are required to be monadic. This fragment can express the classical
sylogisms. For example the formula

((∀x)(H(x) →M(x)) ∧ (∀x)(G(x) → H(x))) → (∀x)(G(x) → M(x))

⋆ A earlier version of this paper, under the title “From Church and Prior to PSL”,
appeared in the Proc. 2006 Workshop on 25 Years of Model Checking, Lecture Notes

in Computer Science, Springer.
⋆⋆ Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and

ANI-0216467, by BSF grant 9800096, and by a gift from the Intel Corporation.

expresses the inference of: “if all humans are mortal and all Greeks are human,
then all Greeks are mortal.”

In 1915 Löwenheim showed that the Monadic Class is decidable [4]. His proof
technique was based on the bounded-model property, proving that a monadic sen-
tence is satisfiable if it is satisfiable in a model of bounded size. This enables
the reduction of satisfiability testing to searching for a model of bounded size.
L”owenheim’s tecchnique was extended by Skolem in 1919 to Monadic Second
Order Logic, in which one can also quantify over monadic predicates, in addition
to quantifying over domain elements [5]. Skolem also used the bounded-model
property. To prove this property, he introduced the technique of quantifier elim-
ination, which is a key technique in mathematical logic [2].

Recall, that the only binary predicate in Skolem’s monadic second-order logic
is the equality predicate. One may wonder what happens if we also allow inequal-
ity predicates. Such an extension is the subject of the next section.

1.2 Logic and Automata

Classical logic views logic as a declarative formalism, aimed at the specification
of properties of mathematical objects. For example, the sentence

(∀x, y, x)(mult(x, y, z) ↔ mult(y, x, z))

expressed the commutativity of multiplication. Starting in the 1930s, a differ-
ent branch of logic focused on formalisms for describing computations, starting
with the introduction of Turing machines in the 1930s, and continuing with the
development of the theory of finite-state machines in the 1950s. A surprising,
intimate, connection between these two paradigms of logic emerged in the late
1950s.

A nondeterministic finite automaton on words (NFW) A = (Σ,S, S0, ρ, F)
consists of a finite input alphabet Σ, a finite state set S, an initial state set
S0 ⊆ S, a transition relation ρ ⊆ S ×Σ × S, and an accepting state set F ⊆ S.
An NFW runs over an finite input word w = a0, . . . , an−1 ∈ Σ∗. A run of A
on w is a finite sequence r = s0, . . . , sn of states in S such that s0 ∈ S0, and
(si, ai, si+1) ∈ ρ, for 0 ≤ i < n. The run r is accepting if sn ∈ F . The word w is
accepted by A if A has an accepting run on w. The language of A, denoted L(A),
is the set of words accepted byA. The class of languages accepted by NFWs forms
the class of regular languages, which are defined in terms of regular expressions.
This class is extremely robust and has numerous equivalent representations [6].

Example 1. We describe graphically below an NFW that accepts all words over
the alphabet {0, 1} that end with an occurrence of 1. The arrow on the left des-
ignates the initial state, and the circle on the right designates an accepting state.

We now view a finite word w = a0, . . . , an−1 over an alphabet Σ as a re-
lational structure Mw, with the domain of 0, . . . , n − 1 ordered by the binary
relation <, and the unary relations {Pa : a ∈ Σ}, with the interpretation that

0

1
1

0

Pa(i) holds precisely when ai = a. We refer to such structures as word structures.
We now use first-order logic (FO) to talk about such words. For example, the
sentence

(∃x)((∀y)(¬(x < y)) ∧ Pa(x))

says that the last letter of the word is a. We say that such a sentence is over the
alphabet Σ.

Going beyond FO, we obtain monadic second-order logic (MSO), in which we
can have monadic second-order quantifiers of the form ∃Q, ranging over subsets
of the domain, and giving rise to new atomic formulas of the form Q(x). Given
a sentence ϕ in MSO, its set of models models(ϕ) is a set of words. Note that
this logic extends Skolem’s logic with the addition of the linear order <.

The fundamental connection between logic and automata is now given by the
following theorem, discovered independently by Büchi, Elgot, and Trakhtenbrot.

Theorem 1. [7–12] Given an MSO sentence ϕ over alphabet Σ, one can con-
struct an NFW Aϕ with alphabet Σ such that a word w in Σ∗ is accepted by
Aϕ iff ϕ holds in the word structure Mw. Conversely, given an NFW A with
alphabet Σ, one can construct an MSO sentence ϕA over Σ such that ϕA holds
in a word structure Mw iff w is accepted by A.

Thus, the class of languages defined by MSO sentences is precisely the class of
regular languages.

To decide whether a sentence ϕ is satisfiable, that is, whether models(ϕ) 6= ∅,
we need to check that L(Aϕ) 6= ∅. This turns out to be an easy problem. Let
A = (Σ,S, S0, ρ, F) be an NFW. Construct a directed graph GA = (S,EA),
with S as the set of nodes, and EA = {(s, t) : (s, a, t) ∈ ρ for some a ∈ Σ}. The
following lemma is implicit in [7–10] and more explicit in [13].

Lemma 1. L(A) 6= ∅ iff there are states s0 ∈ S0 and t ∈ F such that in GA

there is a path from s0 to t.

We thus obtain an algorithm for the Satisfiability problem of MSO over
word structures: given an MSO sentence ϕ, construct the NFW Aϕ and check
whether L(A) 6= ∅ by finding a path from an initial state to an accepting state.
This approach to satisfiability checking is referred to as the automata-theoretic
approach, since the decision procedure proceeds by first going from logic to au-
tomata, and then searching for a path in the constructed automaton.

There was little interest in the 1950s in analyzing the computational complex-
ity of the Satisfiability problem. That had to wait until 1974. Define the func-
tion exp(k, n) inductively as follows: exp(0, n) = n and exp(k+1, n) = 2exp(k,n).
We say that a problem is nonelementary if it can not be solved by an algorithm
whose running time is bounded by exp(k, n) for some fixed k ≥ 0; that is, the
running time cannot be bounded by a tower of exponentials of a fixed height.
It is not too difficult to observe that the construction of the automaton Aϕ in
[7–10] involves a blow-up of exp(n, n), where n is the length of the MSO sen-
tence being decided. It was shown in [14, 15] that the Satisfiability problem
for MSO is nonelementary. In fact, the problem is already nonelementary for FO
[15].

1.3 Reasoning about Sequential Circuits

The field of hardware verification seems to have been started in a little known
1957 paper by Church, in which he described the use of logic to specify sequential
circuits [16]. A sequential circuit is a switching circuit whose output depends not
only upon its input, but also on what its input has been in the past. A sequential
circuit is a particular type of finite-state machine, which became a subject of
study in mathematical logic and computer science in the 1950s.

Formally, a sequential circuit C = (I,O,R, f, g, r0) consists of a finite set I of
Boolean input signals, a finite set O of Boolean output signals, a finite set R of
Boolean sequential elements, a transition function f : 2I × 2R → 2R, an output
function g : 2R → 2O, and an initial state r0 ∈ 2R. (We refer to elements of I ∪
O∪R as circuit elements, and assume that I, O, and R are disjoint.) Intuitively,
a state of the circuit is a Boolean assignment to the sequential elements. The
initial state is r0. In a state r ∈ 2R, the Boolean assignment to the output signals
is g(r). When the circuit is in state r ∈ 2R and it reads an input assignment
i ∈ 2I , it changes its state to f(i, r).

A trace over a set V of Boolean variables is an infinite word over the alphabet
2V , i.e., an element of (2V)ω . A trace of the sequential circuit C is a trace over
I ∪O ∪R that satisfies some conditions. Specifically, a sequence τ = (i0, r0,o0),
(i1, r1,o1), . . ., where ij ∈ 2I , oj ∈ 2O, and rj ∈ 2R, is a trace of C if rj+1 =
f(ij, rj) and oj = g(rj), for j ≥ 0. Thus, in modern terminology, Church was
following the linear-time approach [17] (see discussion in Section 2.1). The set
of traces of C is denoted by traces(C).

We saw earlier how to associate relational structures with words. We can
similarly associate with an infinite word w = a0, a1, . . . over an alphabet 2V , a
relational structure Mw = (IN,≤, V), with the naturals IN as the domain, ordered
by <, and extended by the set V of unary predicates, where j ∈ p, for p ∈ V ,
precisely when p holds (i.e., is assigned 1) in ai.

1 We refer to such structures as
infinite word structures. When we refer to the vocabulary of such a structure, we
refer explicitly only to V , taking < for granted.

1 We overload notation here and treat p as both a Boolean variable and a predicate.

We can now specify traces using First-Order Logic (FO) sentences con-
structed from atomic formulas of the form x = y, x < y, and p(x) for p ∈
V = I ∪R ∪O.2 For example, the FO sentence

(∀x)(∃y)(x < y ∧ p(y))

says that p holds infinitely often in the trace. In a follow-up paper in 1963
[18], Church considered also specifying traces using monadic second-order logic
(MSO), where in addition to first-order quantifiers, which range over the ele-
ments of IN, we allow also monadic second-order quantifiers, ranging over subsets
of IN, and atomic formulas of the form Q(x), where Q is a monadic predicate
variable. (This logic is also called S1S, the “second-order theory of one successor
function”.) For example, the MSO sentence,

(∃P)(∀x)(∀y)((((P (x) ∧ y = x+ 1) → (¬P (y)))∧
(((¬P (x)) ∧ y = x+ 1) → P (y)))∧
(x = 0 → P (x)) ∧ (P (x) → q(x))),

where x = 0 is an abbrevaition for (¬(∃z)(z < x)) and y = x+ 1 is an abbrevia-
tion for (y > x∧¬(∃z)(x < z ∧ z < y)), says that q holds at every even point on
the trace. In effect, Church was proposing to use classical logic (FO or MSO) as
a logic of time, by focusing on infinite word structures. The set of infinite models
of an FO or MSO sentence ϕ is denoted by modelsω(ϕ).

Church posed two problems related to sequential circuits [16]:

– The Decision problem: Given circuit C and a sentence ϕ, does ϕ hold in
all traces of C? That is, does traces(C) ⊆ models(ϕ) hold?

– The Synthesis problem: Given sets I and O of input and output signals,
and a sentence ϕ over the vocabulary I∪O, construct, if possible, a sequential
circuit C with input signals I and output signals O such that ϕ holds in all
traces of C. That is, construct C such that traces(C) ⊆ models(ϕ) holds.

In modern terminology, Church’s Decision problem is the model-checking

problem in the linear-time approach (see Section 2.2). This problem did not
receive much attention after [16, 18], until the introduction of model checking in
the early 1980s. In contrast, the Synthesis problem has remained a subject of
ongoing research; see [19–23]. One reason that the Decision problem did not
remain a subject of study, is the easy observation in [18] that the Decision

problem can be reduced to the validity problem in the underlying logic (FO
or MSO). Given a sequential circuit C, we can easily generate an FO sentence
αC that holds in precisely all structures associated with traces of C. Intuitively,
the sentence αC simply has to encode the transition and output functions of
C, which are Boolean functions. Then ϕ holds in all traces of C precisely when
αC → ϕ holds in all word structures (of the appropriate vocabulary). Thus, to
solve the Decision problem we need to solve the Validity problem over word
structures. As we see next, this problem was solved in 1962.

2 We overload notation here and treat p as both a circuit element and a predicate
symbol.

1.4 Reasoning about Infinite Words

Church’s Decision problem was essentially solved in 1962 by Büchi who showed
that the Validity problem over infinite word structures is decidable [24]. Ac-
tually, Büchi showed the decidability of the dual problem, which is the Sat-

isfiability problem for MSO over infinite word structures. Büchi’s approach
consisted of extending the automata-theoretic approach, see Theorem 1, which
was introduced a few years earlier for word structures, to infinite word struc-
tures. To that end, Büchi extended automata theory to automata on infinite
words.

A nondeterministic Büchi automaton on words (NBW) A = (Σ,S, S0, ρ, F)
consists of a finite input alphabet Σ, a finite state set S, an initial state set
S0 ⊆ S, a transition relation ρ ⊆ S ×Σ × S, and an accepting state set F ⊆ S.
An NBW runs over an infinite input word w = a0, a1, . . . ∈ Σω. A run of A on
w is an infinite sequence r = s0, s1, . . . of states in S such that s0 ∈ S0, and
(si, ai, si+1) ∈ ρ, for i ≥ 0. The run r is accepting if F is visited by r infinitely
often; that is, si ∈ F for infinitely many i’s. The word w is accepted by A if A has
an accepting run on w. The infinitary language of A, denoted Lω(A), is the set
of infinite words accepted by A. The class of languages accepted by NBWs forms
the class of ω-regular languages, which are defined in terms of regular expressions
augmented with the ω-power operator (eω denotes an infinitary iteration of e)
[24].

Example 2. We describe graphically an NBW that accepts all words over the
alphabet {0, 1} that contain infinitely many occurrences of 1. The arrow on the
left designates the initial state, and the circle on the right designates an accept-
ing state. Note that this NBW looks exactly like the NFW in Example 1. The
only difference is that in Example 1 we considered finite input words and here
we are considering infinite input words.

0

1
1

0

As we saw earlier, the paradigmatic idea of the automata-theoretic approach
is that we can compile high-level logical specifications into an equivalent low-level
finite-state formalism.

Theorem 2. [24] Given an MSO sentence ϕ with vocabulary V , one can con-
struct an NBW Aϕ with alphabet 2V such that a word w in (2V)ω is accepted

by Aϕ iff ϕ holds in the word structure Mw. Conversely, given an NBW A with
alphabet 2V , one can construct an MSO sentence ϕA with vocabulary V such
that ϕA holds in an infinite word structure Mw iff w is accepted by A.

Thus, the class of languages defined by MSO sentences is precisely the class of
ω-regular languages.

To decide whether sentence ϕ is satisfiable over infinite words, that is, whether
modelsω(ϕ) 6= ∅, we need to check that Lω(Aϕ) 6= ∅. Let A = (Σ,S, S0, ρ, F) be
an NBW. As with NFWs, construct a directed graph GA = (S,EA), with S as
the set of nodes, and EA = {(s, t) : (s, a, t) ∈ ρ for some a ∈ Σ}. The following
lemma is implicit in [24] and more explicit in [25].

Lemma 2. Lω(A) 6= ∅ iff there are states s0 ∈ S0 and t ∈ F such that in GA

there is a path from s0 to t and a path from t to itself.

We thus obtain an algorithm for the Satisfiability problem of MSO over
infinite word structures: given an MSO sentence ϕ, construct the NBW Aϕ and
check whether Lω(A) 6= ∅ by finding a path from an initial state to an accepting
state and a cycle through that accepting state. Since the Decision problem
can be reduced to the Satisfiability problem, this also solves the Decision

problem.
Neither Büchi nor Church analyzed the complexity of the Decision problem.

The non-elementary lower bound mentioned earlier for MSO over words can be
easily extended to infinite words. The upper bound here is a bit more subtle.
For both finite and infinite words, the construction of Aϕ proceeds by induction
on the structure of ϕ, with complementation being the difficult step. For NFW,
complementation uses the subset construction, which involves a blow-up of 2n [13,
26]. Complementation for NBW is significantly more involved, see [27]. The blow-
up of complementation is 2Θ(n log n), but there is still a gap between the known
upper and lower bounds. At any rate, this yields a blow-up of exp(n, n logn) for
the translation from MSO to NBW.

2 Thread II: Temporal Logic

2.1 From Aristotle to Kamp

The history of time in logic goes back to ancient times.3 Aristotle pondered
how to interpret sentences such as “Tomorrow there will be a sea fight,” or
“Tomorrow there will not be a sea fight.” Medieval philosophers also pondered
the issue of time.4 By the Renaissance period, philosophical interest in the logic
of time seems to have waned. There were some stirrings of interest in the 19th
century, by Boole and Peirce. Peirce wrote:

3 For a detailed history of temporal logic from ancient times to the modern period,
see [28].

4 For example, William of Ockham, 1288–1348, wrote (rather obscurely for the modern
reader): “Wherefore the difference between present tense propositions and past and
future tense propositions is that the predicate in a present tense proposition stands
in the same way as the subject, unless something added to it stops this; but in a past

“Time has usually been considered by logicians to be what is called
‘extra-logical’ matter. I have never shared this opinion. But I have thought
that logic had not yet reached the state of development at which the in-
troduction of temporal modifications of its forms would not result in
great confusion; and I am much of that way of thinking yet.”

There were also some stirrings of interest in the first half of the 20th century,
but the birth of modern temporal logic is unquestionably credited to Prior. Prior
was a philosopher, who was interested in theological and ethical issues. His own
religious path was somewhat convoluted; he was born a Methodist, converted
to Presbytarianism, became an atheist, and ended up an agnostic. In 1949, he
published a book titled “Logic and The Basis of Ethics”. He was particularly
interested in the conflict between the assumption of free will (“the future is to
some extent, even if it is only a very small extent, something we can make for
ourselves”), foredestination (“of what will be, it has now been the case that it
will be”), and foreknowledge (“there is a deity who infallibly knows the entire
future”). He was also interested in modal logic [29]. This confluence of interests
led Prior to the development of temporal logic. 5 His wife, Mary Prior, recalled
after his death:

“I remember his waking me one night [in 1953], coming and sitting on
my bed, . . ., and saying he thought one could make a formalised tense
logic.”

Prior lectured on his new work when he was the John Locke Lecturer at the
University of Oxford in 1955–6, and published his book “Time and Modality” in
1957 [31].6 In this book, he presented a temporal logic that is propositional logic
extended with two temporal connectives, F and P , corresponding to “sometime
in the future” and “sometime in the past”. A crucial feature of this logic is that
it has an implicit notion of “now”, which is treated as an indexical, that is, it
depends on the context of utterance for its meaning. Both future and past are
defined with respect to this implicit “now”.

It is interesting to note that the linear vs. branching time dichotomy, which
has been a subject of some controversy in the computer science literature since

tense and a future tense proposition it varies, for the predicate does not merely stand
for those things concerning which it is truly predicated in the past and future tense
propositions, because in order for such a proposition to be true, it is not sufficient
that that thing of which the predicate is truly predicated (whether by a verb in the
present tense or in the future tense) is that which the subject denotes, although it is
required that the very same predicate is truly predicated of that which the subject
denotes, by means of what is asserted by such a proposition.”

5 An earlier term was tense logic; the term temporal logic was introduced in [30]. The
technical distinction between the two terms seems fuzzy.

6 Due to the arcane infix notation of the time, the book may not be too ac-
cessible to modern readers, who may have difficulties parsing formulas such as
CKMpMqAMKpMqMKqMp.

1980 (see [32]), has been present from the very beginning of temporal-logic de-
velopment. In Prior’s early work on temporal logic, he assumed that time was
linear. In 1958, he received a letter from Kripke,7 who wrote

“In an indetermined system, we perhaps should not regard time as a
linear series, as you have done. Given the present moment, there are
several possibilities for what the next moment may be like – and for each
possible next moment, there are several possibilities for the moment after
that. Thus the situation takes the form, not of a linear sequence, but of
a ‘tree’.”

Prior immediately saw the merit of Kripke’s suggestion: “the determinist sees
time as a line, and the indeterminist sees times as a system of forking paths.” He
went on to develop two theories of branching time, which he called “Ockhamist”
and “Peircean”. (Prior did not use path quantifiers; those were introduced later,
in the 1980s. See Section 3.2.)

While the introduction of branching time seems quite reasonable in the con-
text of trying to formalize free will, it is far from being simple philosophically.
Prior argued that the nature of the course of time is branching, while the nature
of a course of events is linear [35]. In contrast, it was argued in [30] that the
nature of time is linear, but the nature of the course of events is branching: “We
have ‘branching in time,’ not ‘branching of time’.”8

During the 1960s, the development of temporal logic continued through both
the linear-time approach and the branching-time approach. There was little con-
nection, however, between research on temporal logic and research on classical
logics, as described in Section 1. That changed in 1968, when Kamp tied together
the two threads in his doctoral dissertation.

Theorem 3. [36] Linear temporal logic with past and binary temporal connec-
tives (“strict until” and “strict since”) has precisely the expressive power of FO
over the ordered naturals (with monadic vocabularies).

It should be noted that Kamp’s Theorem is actually more general and asserts
expressive equivalence of FO and temporal logic over all “Dedekind-closed or-
ders”. The introduction of binary temporal connectives by Kamp was necessary
for reaching the expressive power of FO; unary linear temporal logic, which has
only unary temporal connectives, is weaker than FO [37]. The theorem refers
to FO formulas with one free variable, which are satisfied at an element of a
structure, analogously to temporal logic formulas, which are satisfied at a point
of time.

7 Kripke was a high-school student, not quite 18, in Omaha, Nebraska. Kripke’s inter-
est in modal logic was inspired by a paper by Prior on this subject [33]. Prior turned
out to be the referee of Kripke’s first paper [34].

8 One is reminded of St. Augustin, who said in his Confessions: “What, then, is time?
If no one asks me, I know; but if I wish to explain it to some who should ask me, I
do not know.”

It should be noted that one direction of Kamp’s Theorem, the translation
from temporal logic to FO, is quite straightforward; the hard direction is the
translation from FO to temporal logic. Both directions are algorithmically ef-
fective; translating from temporal logic to FO involves a linear blowup, but
translation in the other direction involves a nonelementary blowup.

If we focus on FO sentences rather than FO formulas, then they define sets
of traces (a sentence ϕ defines models(ϕ)). A characterization of of the expres-
siveness of FO sentences over the naturals, in terms of their ability to define sets
of traces, was obtained in 1979.

Theorem 4. [38] FO sentences over naturals have the expressive power of ∗-free
ω-regular expressions.

Recall that MSO defines the class of ω-regular languages. It was already shown
in [39] that FO over the naturals is weaker expressively than MSO over the
naturals. Theorem 4 was inspired by an analogous theorem in [40] for finite
words.

2.2 The Temporal Logic of Programs

There were some early observations that temporal logic can be applied to pro-
grams. Prior stated: “There are practical gains to be had from this study too,
for example, in the representation of time-delay in computer circuits” [35]. Also,
a discussion of the application of temporal logic to processes, which are defined
as “programmed sequences of states, deterministic or stochastic” appeared in
[30].

The “big bang” for the application of temporal logic to program correctness
occurred with Pnueli’s 1977 paper [41]. In this paper, Pnueli, inspired by [30],
advocated using future linear temporal logic (LTL) as a logic for the specification
of non-terminating programs; see overview in [42].

LTL is a temporal logic with two temporal connectives, “next” and “until”.9

In LTL, formulas are constructed from a set Prop of atomic propositions us-
ing the usual Boolean connectives as well as the unary temporal connective X
(“next”), and the binary temporal connective U (“until”). Additional unary tem-
poral connectives F (“eventually”), and G (“always”) can be defined in terms
of U . Note that all temporal connectives refer to the future here, in contrast to
Kamp’s “strict since” operator, which refers to the past. Thus, LTL is a future
temporal logic. For extensions with past temporal connectives, see [43–45].

LTL is interpreted over traces over the set Prop of atomic propositions. For
a trace τ and a point i ∈ IN, the notation τ, i |= ϕ indicates that the formula ϕ
holds at the point i of the trace τ . Thus, the point i is the implicit “now” with
respect to which the formula is interpreted. We have that

– τ, i |= p if p holds at τ(i),

9 Unlike Kamp’s “strict until” (“p strict until q” requires q to hold in the strict future),
Pnueli’s “until” is not strict (“p until q” can be satisfied by q holding now), which
is why the “next” connective is required.

– τ, i |= Xϕ if τ, i+ 1 |= ϕ, and
– τ, i |= ϕUψ if for some j ≥ i, we have τ, j |= ψ and for all k, i ≤ k < j, we

have τ, k |= ϕ.

The temporal connectives F and G can be defined in terms of the temporal
connective U ; Fϕ is defined as true Uϕ, and Gϕ is defined as ¬F¬ϕ. We say
that τ satisfies a formula ϕ, denoted τ |= ϕ, iff τ, 0 |= ϕ. We denote by models(ϕ)
the set of traces satisfying ϕ.

As an example, the LTL formula G(request → F grant), which refers to
the atomic propositions request and grant, is true in a trace precisely when
every state in the trace in which request holds is followed by some state in the
(non-strict) future in which grant holds. Also, the LTL formula G(request →
(request U grant)) is true in a trace precisely if, whenever request holds in a
state of the trace, it holds until a state in which grant holds is reached.

The focus on satisfaction at 0, called initial semantics, is motivated by the
desire to specify computations at their starting point. It enables an alternative
version of Kamp’s Theorem, which does not require past temporal connectives,
but focuses on initial semantics.

Theorem 5. [46] LTL has precisely the expressive power of FO over the ordered
naturals (with monadic vocabularies) with respect to initial semantics.

As we saw earlier, FO has the expressive power of star-free ω-regular expres-
sions over the naturals. Thus, LTL has the expressive power of star-free ω-regular
expressions (see [47]), and is strictly weaker than MSO. An interesting outcome
of the above theorem is that it lead to the following assertion regarding LTL
[48]: “The corollary due to Meyer – I have to get in my controversial remark – is
that that [Theorem 5] makes it theoretically uninteresting.” Developments since
1980 have proven this assertion to be overly pessimistic on the merits of LTL.

Pnueli also discussed the analog of Church’s Decision problem: given a
finite-state program P and an LTL formula ϕ, decide if ϕ holds in all traces
of P . Just like Church, Pnueli observed that this problem can be solved by
reduction to MSO. Rather than focus on sequential circuits, Pnueli focused on
programs, modeled as (labeled) transition systems [49]. A transition systemM =
(W,W0, R, V) consists of a set W of states that the system can be in, a set
W0 ⊆ W of initial states, a transition relation R ⊆ W 2 that indicates the
allowable state transitions of the system, and an assignment V : W → 2Prop of
truth values to the atomic propositions in each state of the system. (A transition
system is essentially a Kripke structure [50].) A path in M that starts at u is
a possible infinite behavior of the system starting at u, i.e., it is an infinite
sequence u0, u1 . . . of states in W such that u0 = u, and (ui, ui+1) ∈ R for all
i ≥ 0. The sequence V (u0), V (u1) . . . is a trace of M that starts at u. It is the
sequence of truth assignments visited by the path. The language of M , denoted
L(M), consists of all traces of M that start at a state in W0. Note that L(M)
is a language of infinite words over the alphabet 2Prop. The language L(M) can
be viewed as an abstract description of the system M , describing all possible
traces. We say that M satisfies an LTL formula ϕ if all traces in L(M) satisfy ϕ,

that is, if L(M) ⊆ models(ϕ). When W is finite, we have a finite-state system,
and can apply algorithmic techniques.

What about the complexity of LTL reasoning? Recall from Section 1 that
satisfiability of FO over trace structures is nonelementary. In contrast, it was
shown in [51–57] that LTL Satisfiability is elementary; in fact, it is PSPACE-
complete. It was also shown that the Decision problem for LTL with respect
to finite transition systems is PSPACE-complete [53–55]. The basic technique
for proving these elementary upper bounds is the tableau technique, which was
adapted from dynamic logics [58] (see Section 3.1). Thus, even though FO and
LTL are expressively equivalent, they have dramatically different computational
properties, as LTL reasoning is in PSPACE, while FO reasoning is nonelemen-
tary.

The second “big bang” in the application of temporal logic to program cor-
rectness was the introduction of model checking by Clarke and Emerson [59] and
by Queille and Sifakis [60]. The two papers used two different branching-time
logics. Clarke and Emerson used CTL (inspired by the branching-time logic UB
of [61]), which extends LTL with existential and universal path quantifiers E and
A. Queille and Sifakis used a logic introduced by Leslie Lamport [17], which ex-
tends propositional logic with the temporal connectives POT (which corresponds
to the CTL operator EF) and INEV (which corresponds to the CTL opera-
tor AF). The focus in both papers was on model checking, which is essentially
what Church called the Decision problem: does a given finite-state program,
viewed as a finite transition system, satisfy its given temporal specification. In
particular, Clarke and Emerson showed that model checking transition systems
of size m with respect to formulas of size n can be done in time polynomial
in m and n. This was refined later to O(mn) (even in the presence of fairness
constraints, which restrict attention to certain infinite paths in the underlying
transition system) [62, 63]. We drop the term “Decision problem” from now on,
and replace it with the term “Model-Checking problem”.10

It should be noted that the linear complexity of model checking refers to the
size of the transition system, rather than the size of the program that gave rise to
that system. For sequential circuits, transition-system size is essentially exponen-
tial in the size of the description of the circuit (say, in some Hardware Description
Language). This is referred to as the “state-explosion problem” [65]. In spite of
the state-explosion problem, in the first few years after the publication of the
first model-checking papers in 1981-2, Clarke and his students demonstrated that
model checking is a highly successful technique for automated program verifica-
tion [66, 67]. By the late 1980s, automated verification had become a recognized
research area. Also by the late 1980s, symbolic model checking was developed

10 The model-checking problem is analogous to database query evaluation, where we
check the truth of a logical formula, representing a query, with respect to a database,
viewed as a finite relational structure. Interestingly, the study of the complexity of
database query evaluation started about the same time as that of model checking
[64].

[68, 69], and the SMV tool, developed at CMU by McMillan [70], was starting
to have an industrial impact. See [71] for more details.

The detailed complexity analysis in [62] inspired a similar detailed analysis of
linear time model checking. It was shown in [72] that model checking transition
systems of size m with respect to LTL formulas of size n can be done in time
m2O(n). (This again was shown using a tableau-based technique.) While the
bound here is exponential in n, the argument was that n is typically rather
small, and therefore an exponential bound is acceptable.

2.3 Back to Automata

Since LTL can be translated to FO, and FO can be translated to NBW, it is
clear that LTL can be translated to NBW. Going through FO, however, would
incur, in general, a nonelementary blowup. In 1983, Wolper, Sistla, and I showed
that this nonelementary blowup can be avoided.

Theorem 6. [73, 74] Given an LTL formula ϕ of size n, one can construct an
NBW Aϕ of size 2O(n) such that a trace σ satisfies ϕ if and only if σ is accepted
by Aϕ.

It now follows that we can obtain a PSPACE algorithm for LTL Satisfia-

bility: given an LTL formula ϕ, we construct Aϕ and check that Aϕ 6= ∅ using
the graph-theoretic approach described earlier. We can avoid using exponential
space, by constructing the automaton on the fly [73, 74].

What about model checking? We know that a transition system M satisfies
an LTL formula ϕ if L(M) ⊆ models(ϕ). It was then observed in [75] that the
following are equivalent:

– M satisfies ϕ

– L(M) ⊆ models(ϕ)

– L(M) ⊆ L(Aϕ)

– L(M) ∩ ((2Prop)ω − L(Aϕ)) = ∅
– L(M) ∩ L(A¬ϕ) = ∅
– L(M ×A¬ϕ) = ∅

Thus, rather than complementing Aϕ using an exponential complementation
construction [24, 76, 77], we complement the LTL property using logical negation.
It is easy to see that we can now get the same bound as in [72]: model checking
programs of size m with respect to LTL formulas of size n can be done in time
m2O(n). Thus, the optimal bounds for LTL satisfiability and model checking can
be obtained without resorting to ad-hoc tableau-based techniques; the key is the
exponential translation of LTL to NBW.

One may wonder whether this theory is practical. Reduction to practice took
over a decade of further research, which saw the development of

– an optimized search algorithm for explicit-state model checking [78, 79],

– a symbolic, BDD-based11 algorithm for NBW nonemptiness [68, 69, 81],
– symbolic algorithms for LTL to NBW translation [68, 69, 82], and
– an optimized explicit algorithm for LTL to NBW translation [83].

By 1995, there were two model-checking tools that implemented LTL model
checking via the automata-theoretic approach: Spin [84] is an explicit-state LTL
model checker, and Cadence’s SMV is a symbolic LTL model checker.12 See [85]
for a description of algorithmic developments since the mid 1990s. Additional
tools today are VIS [86], NuSMV [87], and SPOT [88].

It should be noted that Kurshan developed the automata-theoretic approach
independently, also going back to the 1980s [89–91]. In his approach (as also in
[92, 74]), one uses automata to represent both the system and its specification
[93].13 The first implementation of COSPAN, a model-checking tool that is based
on this approach [94], also goes back to the 1980s; see [95].

2.4 Enhancing Expressiveness

Can the development of LTL model checking [72, 75] be viewed as a satisfactory
solution to Church’s Decision problem? Almost, but not quite, since, as we
observed earlier, LTL is not as expressive as MSO, which means that LTL is
expressively weaker than NBW. Why do we need the expressive power of NBWs?
First, note that once we add fairness to transitions systems (sse [62, 63]), they
can be viewed as variants of NBWs. Second, there are good reasons to expect the
specification language to be as expressive as the underlying model of programs
[96]. Thus, achieving the expressive power of NBWs, which we refer to as ω-
regularity, is a desirable goal. This motivated efforts since the early 1980s to
extend LTL.

The first attempt along this line was made by Wolper [56, 57], who defined
ETL (for Extended Temporal Logic), which is LTL extended with grammar oper-
ators. He showed that ETL is more expressive than LTL, while its Satisfiabil-

ity problem can still be solved in exponential time (and even PSPACE [53–55]).
Then, Sistla, Wolper and I showed how to extend LTL with automata connec-
tives, reaching ω-regularity, without losing the PSPACE upper bound for the
Satisfiability problem [73, 74]. Actually, three syntactical variations, denoted
ETLf , ETLl, and ETLr were shown to be expressively equivalent and have these
properties [73, 74].

Two other ways to achieve ω-regularity were discovered in the 1980s. The
first is to enhance LTL with monadic second-order quantifiers as in MSO, which
yields a logic, QPTL, with a nonelementary Satisfiability problem [97, 77].
The second is to enhance LTL with least and greatest fixpoints [98, 99], which

11 To be precise, one should use the acronym ROBDD, for Reduced Ordered Binary
Decision Diagrams [80].

12 Cadence’s SMV is also a CTL model checker. See
www.cadence.com/webforms/cbl_software/index.aspx.

13 The connection to automata is somewhat difficult to discern in the early papers [89,
90].

yields a logic, µLTL, that achieves ω-regularity, and has a PSPACE upper bound
on its Satisfiability and Model-Checking problems [99]. For example, the
(not too readable) formula

(νP)(µQ)(P ∧X(p ∨Q)),

where ν and µ denote greatest and least fixpoint operators, respectively, is equiv-
alent to the LTL formula GFp, which says that p holds infinitely often.

3 Thread III: Dynamic and Branching-Time Logics

3.1 Dynamic Logics

In 1976, a year before Pnueli proposed using LTL to specify programs, Pratt
proposed using dynamic logic, an extension of modal logic, to specify programs
[100].14 In modal logic 2ϕ means that ϕ holds in all worlds that are possible
with respect to the current world [50]. Thus, 2ϕ can be taken to mean that ϕ
holds after an execution of a program step, taking the transition relation of the
program to be the possibility relation of a Kripke structure. Pratt proposed the
addition of dynamic modalities [e]ϕ, where e is a program, which asserts that
ϕ holds in all states reachable by an execution of the program e. Dynamic logic
can then be viewed as an extension of Hoare logic, since ψ → [e]ϕ corresponds
to the Hoare triple {ψ}e{ϕ} (see [106]). See [105] for an extensive coverage of
dynamic logic.

In 1977, a propositional version of Pratt’s dynamic logic, called PDL, was
proposed, in which programs are regular expressions over atomic programs [107,
108]. It was shown there that the Satisfiability problem for PDL is in NEX-
PTIME and EXPTIME-hard. Pratt then proved an EXPTIME upper bound,
adapting tableau techniques from modal logic [109, 58]. (We saw earlier that
Wolper then adapted these techniques to linear-time logic.)

Pratt’s dynamic logic was designed for terminating programs, while Pnueli
was interested in nonterminating programs. This motivated various extensions of
dynamic logic to nonterminating programs [110–113]. Nevertheless, these logics
are much less natural for the specification of ongoing behavior than temporal
logic. They inspired, however, the introduction of the (modal) µ-calculus by
Kozen [114, 115]. The µ-calculus is an extension of modal logic with least and
greatest fixpoints. It subsumes expressively essentially all dynamic and temporal
logics [116]. Kozen’s paper was inspired by previous papers that showed the use-
fulness of fixpoints in characterizing correctness properties of programs [117, 118]
(see also [119]). In turn, the µ-calculus inspired the introduction of µLTL, men-
tioned earlier. The µ-calculus also played an important role in the development
of symbolic model checking [68, 69, 81].

14 See discussion of precursor and related developments, such as [101–104], in [105].

3.2 Branching-Time Logics

Dynamic logic provided a branching-time approach to reasoning about programs,
in contrast to Pnueli’s linear-time approach. Lamport was the first to study the
dichotomy between linear and branching time in the context of program cor-
rectness [17]. This was followed by the introduction of the branching-time logic
UB, which extends unary LTL (LTL without the temporal connective “until”
) with the existential and universal path quantifiers, E and A [61]. Path quan-
tifiers enable us to quantify over different future behavior of the system. By
adapting Pratt’s tableau-based method for PDL to UB, it was shown that its
Satisfiability problem is in EXPTIME [61]. Clarke and Emerson then added
the temporal conncetive “until” to UB and obtained CTL [59]. (They did not
focus on the Satisfiability problem for CTL, but, as we saw earlier, on its
Model-Checking problem; the Satisfiability problem was shown later to
be solvable in EXPTIME [120].) Finally, it was shown that LTL and CTL have
incomparable expressive power, leading to the introduction of the branching-time
logic CTL∗, which unifies LTL and CTL [121, 122].

The key feature of branching-time logics in the 1980s was the introduction
of explicit path quantifiers in [61]. This was an idea that was not discovered by
Prior and his followers in the 1960s and 1970s. Most likely, Prior would have
found CTL∗ satisfactory for his philosophical applications and would have seen
no need to introduce the “Ockhamist” and “Peircean” approaches.

3.3 Combining Dynamic and Temporal Logics

By the early 1980s it became clear that temporal logics and dynamic logics pro-
vide two distinct perspectives for specifying programs: the first is state based,
while the second is action based. Various efforts have been made to combine the
two approaches. These include the introduction of Process Logic [123] (branching
time), Yet Another Process Logic [124] (branching time), Regular Process Logic
[125] (linear time), Dynamic LTL [126] (linear time), and RCTL [127] (branch-
ing time), which ultimately evolved into Sugar [128]. RCTL/Sugar is unique
among these logics in that it did not attempt to borrow the action-based part of
dynamic logic. It is a state-based branching-time logic with no notion of actions.
Rather, what it borrowed from dynamic logic was the use of regular-expression-
based dynamic modalities. Unlike dynamic logic, which uses regular expressions
over program statements, RCTL/Sugar uses regular expressions over state pred-
icates, analogously to the automata of ETL [73, 74], which run over sequences
of formulas.

4 Thread IV: From LTL to ForSpec, PSL, and SVA

In the late 1990s and early 2000s, model checking was having an increasing
industrial impact. That led to the development of three industrial temporal
logics based on LTL: ForSpec, developed by Intel, and PSL and SVA, developed
by industrial standards committees.

4.1 From LTL to ForSpec

Intel’s involvement with model checking started in 1990, when Kurshan, spend-
ing a sabbatical year in Israel, conducted a successful feasibility study at the
Intel Design Center (IDC) in Haifa, using COSPAN, which at that point was
a prototype tool; see [95]. In 1992, IDC started a pilot project using SMV. By
1995, model checking was used by several design projects at Intel, using an inter-
nally developed model checker based on SMV. Intel users have found CTL to be
lacking in expressive power and the Design Technology group at Intel developed
its own specification language, FSL. The FSL language was a linear-time logic,
and it was model checked using the automata-theoretic approach, but its design
was rather ad-hoc, and its expressive power was unclear; see [129].

In 1997, Intel’s Design Technology group at IDC embarked on the develop-
ment of a second-generation model-checking technology. The goal was to develop
a model-checking engine from scratch, as well as a new specification language. A
BDD-based model checker was released in 1999 [130], and a SAT-based model
checker was released in 2000 [131].

I got involved in the design of the second-generation specification language
in 1997. That language, ForSpec, was released in 2000 [132]. The first issue to be
decided was whether the language should be linear or branching. This led to an
in-depth examination of this issue [32], and the decision was to pursue a linear-
time language. An obvious candidate was LTL; we saw that by the mid 1990s
there were both explicit-state and symbolic model checkers for LTL, so there was
no question of feasibility. I had numerous conversations with L. Fix, M. Hadash,
Y. Kesten, and M. Sananes on this issue. The conclusion was that LTL is not
expressive enough for industrial usage. In particular, many properties that are
expressible in FSL are not expressible in LTL. Thus, it turned out that the
theoretical considerations regarding the expressiveness of LTL, i.e., its lack of ω-
regularity, had practical significance. I offered two extensions of LTL; as we saw
earlier both ETL and µLTL achieve ω-regularity and have the same complexity
as LTL. Neither of these proposals was accepted, due to the perceived difficulty
of usage of such logics by Intel validation engineers, who typically have only
basic familiarity with automata theory and logic.

These conversations continued in 1998, now with A. Landver. Avner also
argued that Intel validation engineers would not be receptive to the automata-
based formalism of ETL. Being familiar with RCTL/Sugar and its dynamic
modalities [128, 127], he asked me about regular expressions, and my answer
was that regular expressions are equivalent to automata [6], so the automata
of ETLf , which extends LTL with automata on finite words, can be replaced
by regular expressions over state predicates. This lead to the development of
RELTL, which is LTL augmented by the dynamic regular modalities of dynamic
logic (interpreted linearly, as in ETL). Instead of the dynamic-logic notation
[e]ϕ, ForSpec uses the more readable (to engineers) (e triggers ϕ), where e is a
regular expression over state predicates (e.g., (p∨q)∗, (p∧q)), and ϕ is a formula.
Semantically, τ, i |= (e triggers ϕ) if, for all j ≥ i, if τ [i, j] (that is, the finite
word τ(i), . . . , τ(j)) “matches” e (in the intuitive formal sense), then τ, j |= ϕ;

see [133]. Using the ω-regularity of ETLf , it is now easy to show that RELTL
also achieves ω-regularity [132].

While the addition of dynamic modalities to LTL is sufficient to achieve ω-
regularity, we decided to also offer direct support to two specification modes
often used by verification engineers at Intel: clocks and resets. Both clocks and
resets are features that are needed to address the fact that modern semiconductor
designs consist of interacting parallel modules. While clocks and resets have a
simple underlying intuition, defining their semantics formally is quite nontrivial.
ForSpec is essentially RELTL, augmented with features corresponding to clocks
and resets, as we now explain.

Today’s semiconductor designs are still dominated by synchronous circuits.
In synchronous circuits, clock signals synchronize the sequential logic, providing
the designer with a simple operational model. While the asynchronous approach
holds the promise of greater speed (see [134]), designing asynchronous circuits is
significantly harder than designing synchronous circuits. Current design method-
ology attempts to strike a compromise between the two approaches by using
multiple clocks. This results in architectures that are globally asynchronous but
locally synchronous. The temporal-logic literature mostly ignores the issue of
explicitly supporting clocks. ForSpec supports multiple clocks via the notion of
current clock. Specifically, ForSpec has a construct change on c ϕ, which states
that the temporal formula ϕ is to be evaluated with respect to the clock c; that
is, the formula ϕ is to be evaluated in the trace defined by the high phases of
the clock c. The key feature of clocks in ForSpec is that each subformula may
advance according to a different clock [132].

Another feature of modern designs’ consisting of interacting parallel modules
is the fact that a process running on one module can be reset by a signal coming
from another module. As noted in [135], reset control has long been a critical
aspect of embedded control design. ForSpec directly supports reset signals. The
formula accept on a ϕ states that the property ϕ should be checked only un-
til the arrival of the reset signal a, at which point the check is considered to
have succeeded. In contrast, reject on r ϕ states that the property ϕ should
be checked only until the arrival of the reset signal r, at which point the check
is considered to have failed. The key feature of resets in ForSpec is that each
subformula may be reset (positively or negatively) by a different reset signal; for
a longer discussion see [132].

ForSpec is an industrial property-specification language that supports hardware-
oriented constructs as well as uniform semantics for formal and dynamic valida-
tion, while at the same time it has a well understood expressiveness (ω-regularity)
and computational complexity (Satisfiability and Model-Checking prob-
lems have the same complexity for ForSpec as for LTL) [132]. The design ef-
fort strove to find an acceptable compromise, with trade-offs clarified by the-
ory, between conflicting demands, such as expressiveness, usability, and imple-
mentability. Clocks and resets, both important to hardware designers, have a
clear intuitive semantics, but formalizing this semantics is nontrivial. The rig-
orous semantics, however, not only enabled mechanical verification of various

theorems about the language, but also served as a reference document for the
implementors. The implementation of model checking for ForSpec followed the
automata-theoretic approach, using alternating automata as advocated in [136]
(see [137]).

4.2 From ForSpec to PSL and SVA

In 2000, the Electronic Design Automation Association instituted a standardiza-
tion body called Accellera.15 Accellera’s mission is to drive worldwide develop-
ment and use of standards required by systems, semiconductor and design tools
companies. Accellera decided that the development of a standard specification
language is a requirement for formal verification to become an industrial reality
(see [95]). Since the focus was on specifying properties of designs rather than de-
signs themselves, the chosen term was “property specification language” (PSL).
The PSL standard committee solicited industrial contributions and received four
language contributions: CBV, from Motorola, ForSpec, from Intel, Temporal e,
from Verisity [138], and Sugar, from IBM.

The committee’s discussions were quite fierce.16 Ultimately, it became clear
that while technical considerations play an important role, industrial commit-
tees’ decisions are ultimately made for business considerations. In that con-
tention, IBM had the upper hand, and Accellera chose Sugar as the base lan-
guage for PSL in 2003. At the same time, the technical merits of ForSpec were
accepted and PSL adopted all the main features of ForSpec. In essence, PSL (the
current version 1.1) is LTL, extended with dynamic modalities (referred to as
the regular layer), clocks, and resets (called aborts). PSL did inherit the syntax
of Sugar, and does include a branching-time extension as an acknowledgment to
Sugar.17

There was some evolution of PSL with respect to ForSpec. After some debate
on the proper way to define resets [140], ForSpec’s approach was essentially ac-
cepted after some reformulation [141]. ForSpec’s fundamental approach to clocks,
which is semantic, was accepted, but modified in some important details [142]. In
addition to the dynamic modalities, borrowed from dynamic logic, PSL also has
weak dynamic modalities [143], which are reminiscent of “looping” modalities in
dynamic logic [110, 144]. Today PSL 1.1 is an IEEE Standard 1850–2005, and
continues to be refined by the IEEE P1850 PSL Working Group.18

Practical use of ForSpec and PSL has shown that the regular layer (that is,
the dynamic modalities), is highly popular with verification engineers. Another
standardized property specification language, called SVA (for SystemVerilog As-
sertions), is based, in essence, on that regular layer [145].

15 See http://www.accellera.org/.
16 See http://www.eda-stds.org/vfv/.
17 See [139] and language reference manual at http://www.eda.org/vfv/docs/PSL-v1.

1.pdf.
18 See http://www.eda.org/ieee-1850/.

5 Contemplation

This evolution of ideas, from Löwenheim and Skolem to PSL and SVA, seems
to me to be an amazing development. It reminds me of the medieval period,
when building a cathedral spanned more than a mason’s lifetime. Many masons
spend their whole lives working on a cathedral, never seeing it to completion. We
are fortunate to see the completion of this particular “cathedral”. Just like the
medieval masons, our contributions are often smaller than we’d like to consider
them, but even small contributions can have a major impact. Unlike the medieval
cathedrals, the scientific cathedral has no architect; the construction is driven
by a complex process, whose outcome is unpredictable. Much that has been
discovered is forgotten and has to be rediscovered. It is hard to fathom what our
particular “cathedral” will look like in 50 years.

Acknowledgments

I am grateful to E. Clarke, A. Emerson, R. Goldblatt, A. Pnueli, P. Sistla,
P. Wolper for helping me trace the many threads of this story, to D. Fisman,
C. Eisner, J. Halpern, D. Harel and T. Wilke for their many useful comments
on earlier drafts of this paper, and to S. Nain, K. Rozier, and D. Tabakov for
proofreading earlier drafts. I’d also like to thank K. Rozier for her help with
graphics.

References

1. Davis, M.: Engines of Logic: Mathematicians and the Origin of the Computer.
Norton (2001)

2. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer
(1996)

3. Dreben, D., Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quan-
tificational Formulas. Addison-Wesley (1979)

4. Löwenheim, L.: Über Möglichkeiten im Relativkalküll (On possibilities in the
claculus of relations). Math. Ann. 76 (1915) 447–470 [Translated in From Frege
to Gödel, van Heijenoort, Harvard Univ. Press, 1971].

5. Skolem, T.: Untersuchung über Axiome des Klassenkalküls und über
Produktations- und Summationsprobleme, welche gewisse Klassen von Aussagen
betreffen (Investigations of the axioms of the calculusof classes and on product
and sum problems that are connected with certain class of statements). Viden-
skabsakademiet i Kristiania, Skrifter I 3 (1919) [Translated in Selected Works in
Logic by Th. Skolem”, J.E. Fenstak, Scand. Univ. Books, Universitetsforlaget,
Oslo, 1970, 67–101].

6. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

7. Büchi, J.: Weak second-order arithmetic and finite automata. Zeit. Math. Logik
und Grundl. Math. 6 (1960) 66–92

8. Büchi, J., Elgot, C., Wright, J.: The non-existence of certain algorithms for finite
automata theory (abstract). Notices Amer. Math. Soc. 5 (1958) 98

9. Elgot, C.: Decision problems of finite-automata design and related arithmetics.
Trans. Amer. Math. Soc. 98 (1961) 21–51

10. Trakhtenbrot, B.: The synthesis of logical nets whose operators are described in
terms of one-place predicate calculus. Doklady Akad. Nauk SSSR 118(4) (1958)
646–649

11. Trakhtenbrot, B.: Certain constructions in the logic of one-place predicates. Dok-
lady Akad. Nauk SSSR 138 (1961) 320–321

12. Trakhtenbrot, B.: Finite automata and monadic second order logic. Siberian
Math. J 3 (1962) 101–131 Russian; English translation in: AMS Transl. 59 (1966),
23-55.

13. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3 (1959) 115–125

14. Meyer, A.R.: Weak monadic second order theory of successor is not elementary
recursive. In: Proc. Logic Colloquium. Volume 453 of Lecture Notes in Mathe-
matics., Springer (1975) 132–154

15. Stockmeyer, L.: The complexity of decision procedures in Automata Theory and
Logic. PhD thesis, MIT (1974) Project MAC Technical Report TR-133.

16. Church, A.: Applicaton of recursive arithmetics to the problem of circuit synthesis.
In: Summaries of Talks Presented at The Summer Institute for Symbolic Logic,
Communications Research Division, Institute for Defense Analysis (1957) 3–50

17. Lamport, L.: “Sometimes” is sometimes “not never” - on the temporal logic of
programs. In: Proc. 7th ACM Symp. on Principles of Programming Languages.
(1980) 174–185

18. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathe-
maticians, 1962, Institut Mittag-Leffler (1963) 23–35

19. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies.
Trans. AMS 138 (1969) 295–311

20. Kupferman, O., Piterman, N., Vardi, M.: Safraless compositional synthesis. In:
Proc 18th Int. Conf. on Computer Aided Verification. Volume 4144 of Lecture
Notes in Computer Science., Springer (2006) 31–44

21. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE
Symp. on Foundations of Computer Science. (2005) 531–540

22. Rabin, M.: Automata on infinite objects and Church’s problem. Amer. Mathe-
matical Society (1972)

23. Thomas, W.: On the synthesis of strategies in infinite games. In Mayr, E., Puech,
C., eds.: Proc. 12th Symp. on Theoretical Aspects of Computer Science. Volume
900 of Lecture Notes in Computer Science., Springer (1995) 1–13

24. Büchi, J.: On a decision method in restricted second order arithmetic. In: Proc.
Int. Congress on Logic, Method, and Philosophy of Science. 1960, Stanford Uni-
versity Press (1962) 1–12

25. Trakhtenbrot, B., Barzdin, Y.: Finite Automata. North Holland (1973)
26. Sakoda, W., Sipser, M.: Non-determinism and the size of two-way automata. In:

Proc. 10th ACM Symp. on Theory of Computing. (1978) 275–286
27. Vardi, M.Y.: The büchi complementation saga. In: Proc. 24th Sympo. on Theo-

retical Aspects of Computer Science. Volume 4393 of Lecture Notes in Computer
Science., Springer (2007) 12–22

28. Øhrstrøm, P., Hasle, P.: Temporal Logic: from Ancient Times to Artificial Intel-
ligence. Studies in Linguistics and Philosophy, vol. 57. Kluwer (1995)

29. Prior, A.: Modality de dicto and modality de re. Theoria 18 (1952) 174–180
30. N. Rescher, A.U.: Temporal Logic. Springer (1971)

31. Prior, A.: Time and Modality. Oxford University Press (1957)
32. Vardi, M.: Branching vs. linear time: Final showdown. In: Proc. 7th Int. Conf.

on Tools and Algorithms for the Construction and Analysis of Systems. Volume
2031 of Lecture Notes in Computer Science., Springer (2001) 1–22

33. Prior, A.: Modality and quantification in s5. J. Symbolic Logic 21 (1956) 60–62
34. Kripke, S.: A completeness theorem in modal logic. Journal of Symbolic Logic

24 (1959) 1–14
35. Prior, A.: Past, Present, and Future. Clarendon Press (1967)
36. Kamp, J.: Tense Logic and the Theory of Order. PhD thesis, UCLA (1968)
37. Etessami, K., Vardi, M., Wilke, T.: First-order logic with two variables and unary

temporal logic. Inf. Comput. 179(2) (2002) 279–295
38. Thomas, W.: Star-free regular sets of ω-sequences. Information and Control 42(2)

(1979) 148–156
39. Elgot, C., Wright, J.: Quantifier elimination in a problem of logical design. Michi-

gan Math. J. 6 (1959) 65–69
40. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Pres (1971)
41. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. on

Foundations of Computer Science. (1977) 46–57
42. Goldblatt, R.: Logic of time and computation. Technical report, CSLI Lecture

Notes, no.7, Stanford University (1987)
43. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Logics of Pro-

grams. Volume 193 of Lecture Notes in Computer Science., Springer (1985) 196–
218

44. Markey, N.: Temporal logic with past is exponentially more succinct. EATCS
Bulletin 79 (2003) 122–128

45. Vardi, M.: A temporal fixpoint calculus. In: Proc. 15th ACM Symp. on Principles
of Programming Languages. (1988) 250–259

46. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proc. 7th ACM Symp. on Principles of Programming Languages. (1980) 163–
173

47. Pnueli, A., Zuck, L.: In and out of temporal logic. In: Proc. 8th IEEE Symp. on
Logic in Computer Science. (1993) 124–135

48. Meyer, A.: Ten thousand and one logics of programming”. Technical report, MIT
(1980) MIT-LCS-TM-150.

49. Keller, R.: Formal verification of parallel programs. Communications of the ACM
19 (1976) 371–384

50. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University
Press (2002)

51. Halpern, J., Reif, J.: The propositional dynamic logic of deterministic, well-
structured programs (extended abstract). In: Proc. 22nd IEEE Symp. on Foun-
dations of Computer Science. (1981) 322–334

52. Halpern, J., Reif, J.: The propositional dynamic logic of deterministic, well-
structured programs. Theor. Comput. Sci. 27 (1983) 127–165

53. Sistla, A.: Theoretical issues in the design of distributed and concurrent systems.
PhD thesis, Harvard University (1983)

54. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logics. In:
Proc. 14th Annual ACM Symposium on Theory of Computing. (1982) 159–168

55. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logic.
Journal of the ACM 32 (1985) 733–749

56. Wolper, P.: Temporal logic can be more expressive. In: Proc. 22nd IEEE Symp.
on Foundations of Computer Science. (1981) 340–348

57. Wolper, P.: Temporal logic can be more expressive. Information and Control
56(1–2) (1983) 72–99

58. Pratt, V.: A near-optimal method for reasoning about action. Journal of Com-
puter and Systems Science 20(2) (1980) 231–254

59. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Proc. Workshop on Logic of Programs. Volume
131 of Lecture Notes in Computer Science., Springer (1981) 52–71

60. Queille, J., Sifakis, J.: Specification and verification of concurrent systems in
Cesar. In: Proc. 9th ACM Symp. on Principles of Programming Languages.
Volume 137 of Lecture Notes in Computer Science., Springer (1982) 337–351

61. Ben-Ari, M., Manna, Z., Pnueli, A.: The logic of nexttime. In: Proc. 8th ACM
Symp. on Principles of Programming Languages. (1981) 164–176

62. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite state concur-
rent systems using temporal logic specifications: A practical approach. In: Proc.
10th ACM Symp. on Principles of Programming Languages. (1983) 117–126

63. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Transactions on Program-
ming Languagues and Systems 8(2) (1986) 244–263

64. Vardi, M.: The complexity of relational query languages. In: Proc. 14th ACM
Symp. on Theory of Computing. (1982) 137–146

65. Clarke, E., Grumberg, O.: Avoiding the state explosion problem in temporal
logic model-checking algorithms. In: Proc. 16th ACM Symp. on Principles of
Distributed Computing. (1987) 294–303

66. Browne, M., Clarke, E., Dill, D., Mishra, B.: Automatic verification of sequential
circuits using temporal logic. IEEE Transactions on Computing C-35 (1986)
1035–1044

67. Clarke, E., Mishra, B.: Hierarchical verification of asynchronous circuits using
temporal logic. Theoretical Computer Science 38 (1985) 269–291

68. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
1020 states and beyond. In: Proc. 5th IEEE Symp. on Logic in Computer Science.
(1990) 428–439

69. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
1020 states and beyond. Information and Computation 98(2) (1992) 142–170

70. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
71. Clarke, E.: The birth of model checking. This Volume (2007)
72. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy

their linear specification. In: Proc. 12th ACM Symp. on Principles of Program-
ming Languages. (1985) 97–107

73. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1) (1994) 1–37

74. Wolper, P., Vardi, M., Sistla, A.: Reasoning about infinite computation paths.
In: Proc. 24th IEEE Symp. on Foundations of Computer Science. (1983) 185–194

75. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. 1st IEEE Symp. on Logic in Computer Science. (1986)
332–344

76. Kupferman, O., Vardi, M.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(2) (2001) 408–429

77. Sistla, A., Vardi, M., Wolper, P.: The complementation problem for Büchi au-
tomata with applications to temporal logic. Theoretical Computer Science 49

(1987) 217–237

78. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient al-
gorithms for the verification of temporal properties. In: Proc 2nd Int. Conf. on
Computer Aided Verification. Volume 531 of Lecture Notes in Computer Science.,
Springer (1990) 233–242

79. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient al-
gorithms for the verification of temporal properties. Formal Methods in System
Design 1 (1992) 275–288

80. Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE
Transactions on Computing C-35(8) (1986) 677–691

81. Emerson, E., Lei, C.L.: Efficient model checking in fragments of the propositional
µ-calculus. In: Proc. 1st IEEE Symp. on Logic in Computer Science. (1986)
267–278

82. Clarke, E., Grumberg, O., Hamaguchi, K.: Another look at LTL model check-
ing. In: Proc 6th Int. Conf. on Computer Aided Verification. Lecture Notes in
Computer Science, Springer (1994) 415 – 427

83. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Dembiski, P., Sredniawa, M., eds.: Protocol
Specification, Testing, and Verification, Chapman & Hall (1995) 3–18

84. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (1997) 279–295

85. Vardi, M.: Automata-theoretic model checking revisited. In: Proc. 8th Int. Conf.
on Verification, Model Checking, and Abstract Interpretation. Volume 4349 of
Lecture Notes in Computer Science., Springer (2007) 137–150

86. Brayton, R., Hachtel, G., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A.,
Cheng, S.T., Edwards, S., Khatri, S., Kukimoto, T., Pardo, A., Qadeer, S., Ran-
jan, R., Sarwary, S., Shiple, T., Swamy, G., Villa, T.: VIS: a system for verification
and synthesis. In: Proc 8th Int. Conf. on Computer Aided Verification. Volume
1102 of Lecture Notes in Computer Science., Springer (1996) 428–432

87. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: Proc. 14th Int’l Conf. on Computer Aided Verification. Lecture
Notes in Computer Science 2404, Springer (2002) 359–364

88. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library
using transition-based generalized büchi automata. In: Proc. 12th Int’l Workshop
on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems, IEEE Computer Society (2004) 76–83

89. Aggarwal, S., Kurshan, R.: Automated implementation from formal specification.
In: Proc. 4th Int’l Workshop on Protocol Specification, Testing and Verification,
North-Holland (1984) 127–136

90. Aggarwal, S., Kurshan, R., Sharma, D.: A language for the specification and
analysis of protocols. In: Proc. 3rd Int’l Workshop on Protocol Specification,
Testing, and Verification, North-Holland (1983) 35–50

91. Kurshan, R.: Analysis of discrete event coordination. In de Bakker, J., de Roever,
W., Rozenberg, G., eds.: Proc. REX Workshop on Stepwise Refinement of Dis-
tributed Systems, Models, Formalisms, and Correctness. Volume 430 of Lecture
Notes in Computer Science., Springer (1990) 414–453

92. Sabnani, K., Wolper, P., Lapone, A.: An algorithmic technique for protocol veri-
fication. In: Proc. Globecom ’85. (1985)

93. Kurshan, R.: Computer Aided Verification of Coordinating Processes. Princeton
Univ. Press (1994)

94. Hardin, R., Har’el, Z., Kurshan, R.: COSPAN. In: Proc 8th Int. Conf. on Com-
puter Aided Verification. Volume 1102 of Lecture Notes in Computer Science.,
Springer (1996) 423–427

95. Kurshan, R.: Verification technology transfer. In: Proc. 2006 Workshop on 25
Years of Model Checking. Lecture Notes in Conmputer Science, Springer (2007)

96. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. In: Proc. 12th Int. Colloq. on Automata, Languages, and Programming.
Volume 194 of Lecture Notes in Computer Science., Springer (1985) 15–32

97. Sistla, A., Vardi, M., Wolper, P.: The complementation problem for Büchi au-
tomata with applications to temporal logic. In: Proc. 12th Int. Colloq. on Au-
tomata, Languages, and Programming. Volume 194., Springer (1985) 465–474

98. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In Banieqbal, B.,
Barringer, H., Pnueli, A., eds.: Temporal Logic in Specification. Volume 398 of
Lecture Notes in Computer Science., Springer (1987) 62–74

99. Vardi, M.: Unified verification theory. In Banieqbal, B., Barringer, H., Pnueli, A.,
eds.: Proc. Temporal Logic in Specification. Volume 398., Springer (1989) 202–212

100. Pratt, V.: Semantical considerations on Floyd-Hoare logic. In: Proc. 17th IEEE
Symp. on Foundations of Computer Science. (1976) 109–121

101. Burstall, R.: Program proving as hand simulation with a little induction. In:
Information Processing 74, Stockholm, Sweden, International Federation for In-
formation Processing, North-Holland (1974) 308–312

102. Constable, R.: On the theory of programming logics. In: Proc. 9th ACM Symp.
on Theory of Computing. (1977) 269–285

103. Engeler, E.: Algorithmic properties of structures. Math. Syst. Theory 1 (1967)
183–195

104. Salwicki, A.: Algorithmic logic: a tool for investigations of programs. In Butts, R.,
Hintikka, J., eds.: Logic Foundations of Mathematics and Computability Theory.
Reidel (1977) 281–295

105. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
106. Apt, K., Olderog, E.: Verification of Sequential and Concurrent Programs.

Springer (2006)
107. Fischer, M., Ladner, R.: Propositional modal logic of programs (extended ab-

stract). In: Proc. 9th ACM Symp. on Theory of Computing. (1977) 286–294
108. Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. Journal

of Computer and Systems Science 18 (1979) 194–211
109. Pratt, V.: A practical decision method for propositional dynamic logic: Prelimi-

nary report. In: Proc. 10th Annual ACM Symposium on Theory of Computing.
(1978) 326–337

110. Harel, D., Sherman, R.: Looping vs. repeating in dynamic logic. Inf. Comput.
55(1–3) (1982) 175–192

111. Streett, R.: A propositional dynamic logic for reasoning about program diver-
gence. PhD thesis, M.Sc. Thesis, MIT (1980)

112. Street, R.: Propositional dynamic logic of looping and converse. In: Proc. 13th
ACM Symp. on Theory of Computing. (1981) 375–383

113. Streett, R.: Propositional dynamic logic of looping and converse. Information
and Control 54 (1982) 121–141

114. Kozen, D.: Results on the propositional µ-calculus. In: Proc. 9th Colloquium
on Automata, Languages and Programming. Volume 140 of Lecture Notes in
Computer Science., Springer (1982) 348–359

115. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Science
27 (1983) 333–354

116. Bradfield, J., Stirling, C.: PDL and modal µ-calculus. In Blackburn, P., van
Benthem, J., Wolter, F., eds.: Handbook of Modal Logic. Elsevier (2006)

117. Emerson, E., Clarke, E.: Characterizing correctness properties of parallel pro-
grams using fixpoints. In: Proc. 7th Int. Colloq. on Automata, Languages, and
Programming. (1980) 169–181

118. Park, D.: Finiteness is µ-ineffable. Theoretical Computer Science 3 (1976) 173–
181

119. Pratt, V.: A decidable µ-calculus: preliminary report. In: Proc. 22nd IEEE Symp.
on Foundations of Computer Science. (1981) 421–427

120. Emerson, E., Halpern, J.: Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and Systems Science 30 (1985) 1–24

121. Emerson, E., Halpern, J.: “Sometimes” and “not never” revisited: On branching
versus linear time. In: Proc. 10th ACM Symp. on Principles of Programming
Languages. (1983) 127–140

122. Emerson, E., Halpern, J.: Sometimes and not never revisited: On branching versus
linear time. Journal of the ACM 33(1) (1986) 151–178

123. Harel, D., Kozen, D., Parikh, R.: Process logic: Expressiveness, decidability, com-
pleteness. J. Comput. Syst. Sci. 25(2) (1982) 144–170

124. Vardi, M., Wolper, P.: Yet another process logic. In: Logics of Programs. Volume
164 of Lecture Notes in Computer Science., Springer (1984) 501–512

125. Harel, D., Peleg, D.: Process logic with regular formulas. Theoreti. Comp. Sci.
38(2–3) (1985) 307–322

126. Hafer, T., Thomas, W.: Computation tree logic CTL⋆ and path quantifiers in the
monadic theory of the binary tree. In: Proc. 14th Int. Colloq. on Automata, Lan-
guages, and Programming. Volume 267 of Lecture Notes in Computer Science.,
Springer (1987) 269–279

127. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formu-
las. In: Proc 10th Int. Conf. on Computer Aided Verification. Volume 1427 of
Lecture Notes in Computer Science., Springer (1998) 184–194

128. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The
temporal logic Sugar. In: Proc 13th Int. Conf. on Computer Aided Verification.
Volume 2102 of Lecture Notes in Computer Science., Springer (2001) 363–367

129. Fix, L.: Fifteen years of formal property verification at Intel. In: Proc. 2006
Workshop on 25 Years of Model Checking. Lecture Notes in Conmputer Science,
Springer (2007)

130. Fix, L., Kamhi, G.: Adaptive variable reordering for symbolic model checking.
In: Proc. ACM/IEEE Int’l Conf. on Computer Aided Design. (1998) 359–365

131. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi,
M.: Benefits of bounded model checking at an industrial setting. In: Proc 13th
Int. Conf. on Computer Aided Verification. Volume 2102 of Lecture Notes in
Computer Science., Springer (2001) 436–453

132. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A.,
Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M., Zbar, Y.: The ForSpec
temporal logic: A new temporal property-specification logic. In: Proc. 8th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems.
Volume 2280 of Lecture Notes in Computer Science., Springer (2002) 296–211

133. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.: Regular vacu-
ity. In: Proc. 13th Conf. on Correct Hardware Design and Verification Methods.
Volume 3725 of Lecture Notes in Computer Science., Springer (2005) 191–206

134. C.H. van Berkel, M.B. Josephs, S.N.: Applications of asynchronous circuits. Pro-
ceedings of the IEEE 87(2) (1999) 223–233

135. : A comparison of reset control methods: Application note 11.
http://www.summitmicro.com/tech support/notes/note11.htm, Summit
Microelectronics, Inc. (1999)

136. Vardi, M.: Nontraditional applications of automata theory. In: Proc. 11th Symp.
on Theoretical Aspects of Computer Science. Volume 789 of Lecture Notes in
Computer Science., Springer (1994) 575–597

137. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Proc 13th
Int. Conf. on Computer Aided Verification. Volume 2102 of Lecture Notes in
Computer Science., Springer (2001) 53–65

138. Morley, M.: Semantics of temporal e. In Melham, T.F., Moller, F., eds.: Banff’99

Higher Order Workshop (Formal Methods in Computation), University of Glas-
gow, Department of Computing Science Technical Report (1999)

139. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer (2006)
140. Armoni, R., Bustan, D., Kupferman, O., Vardi, M.: Resets vs. aborts in linear

temporal logic. In: Proc. 9th Int. Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems. Volume 2619 of Lecture Notes in Computer
Science., Springer (2003) 65 – 80

141. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout,
D.: Reasoning with temporal logic on truncated paths. In: Proc. 15th Int’l Conf.
on Computer Aided Verification. Volume 2725 of Lecture Notes in Computer
Science., Springer (2003) 27–39

142. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Van Campenhout, D.: The
definition of a temporal clock operator. In: Proc. 30th Int’l Colloquium on Au-
tomata, Languages and Programming. Volume 2719 of Lecture Notes in Computer
Science., Springer (2003) 857–870

143. Eisner, C., Fisman, D., Havlicek, J.: A topological characterization of weakness.
In: Proc. 24th ACM Symp. on Principles of Distributed Computing. (2005) 1–8

144. Harel, D., Peleg, D.: More on looping vs. repeating in dynamic logic. Inf. Process.
Lett. 20(2) (1985) 87–90

145. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog As-
sertions. Springer (2005)

